Какое из свойств не относится к гармоническому току

Какое из свойств не относится к гармоническому току thumbnail

Ответы на модуль 1 (ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ, ТОПОЛОГИЧЕСКИЕ ПАРАМЕТРЫ И МЕТОДЫ РАСЧЕТА ЭЛЕКТРИЧЕСКИХ ЦЕПЕЙ ПОСТОЯННОГО ТОКА) по предмету электротехника, электроника и схемотехника.

1) Напряжение измеряется в следующих единицах: вольт (В).

2) При применении метода параллельного преобразования резистивной схемы эквивалентная проводимость равна: алгебраической сумме проводимостей резистивных элементов.

3) Электрическая мощность связана с величиной напряжения: прямо пропорциональной зависимостью.

4) При методе расчета цепей с помощью законов Кирхгофа действует следующее правило выбора контуров для составления уравнений: каждый после­дующий контур должен включать в себя хотя бы одну новую ветвь, не охвачен­ную предыдущими уравнениями.

5) Какое сходство у идеализированных источников напряжения и тока: способны отдавать в электрическую цепь неог­раниченную мощность.

6) Величина магнитного потока измеряется в следующих единицах: вебер (Вб).

7) При наличии полной симметрии между схемами резистивных цепей звезда – треугольник величина сопротивления элемента схемы треугольник: равна ТРЕМ величинам сопротивления элемента схемы звезда.

8) Ток измеряется в следующих единицах: ампер (А).

9) Электрическая проводимость обратно пропорциональна: электрическому сопротивлению.

10) Электрическое напряжение – это: энергия, расходуемая на перемещение единицы заряда.

11) По второму закону Кирхгофа в любом замкнутом контуре электрической цепи: алгебраическая сумма па­дений напряжений на элементах, входящих в контур, равна алгебраической сумме ЭДС.

12) Значение индуктивности прямо пропорционально: потокосцеплению.

13) В индуктивном элементе (реактивное сопротивление) происходит: запасание магнитной энергии.

14) К источнику электрической энергии относится: аккумулятор.

15) По закону Ома для цепи, не содержащей ЭДС: сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению.

16) Электрический ток определяется как: скорость изменения электрического заряда во времени

17) При расчете цепи методом контурных токов применяются: второй закон ОЧИТАНИИ С ПРИНЦИПОМ НАЛОЖЕНИЯ.

18) В емкостном элементе (реактивное сопротивление) происходит: запасание электрической энергии.

19) К приемнику электрической энергии относится: электронагреватель.

20) Первый закон Кирхгофа гласит: сумма токов, подходящих к узлу, равна сумме токов, выходящих из узла.

21) Электрическая мощность измеряется в следующих единицах: ватт (Вт).

22) При применении метода последовательного преобразования резистивной схемы эквивалентное сопротивление равно: алгебраической сумме сопротивлений резистивных элементов.

23) В резистивном элементе происходит: не­обратимое преобразование электромагнитной энергии в тепло или другие виды энергии.

24) Какое из понятий не характеризует геометрию цепи: «элемент».

25) По принципу наложения ток в любой ветви сложной схемы, содержащей несколько источников, равен: алгебраической сумме частичных токов, возникающих в этой ветви от независи­мого действия каждого источника в от­дельности.

Ответы на модуль 2 (АНАЛИЗ И РАСЧЕТ ЦЕПЕЙ ПЕРЕМЕННОГО ТОКА) по предмету электротехника, электроника и схемотехника.

1) В цепи синусоидального тока с резистивным элементом: ток и напряжение совпадают по фазе.

2) На практике единицей измерения полной мощности в гармонических цепях является: вольт-ампер (ВА).

3) Электрические величины гармонических функций нельзя представить: вещественными числами.

4) При последовательном соединении элементов R, L и C при положительных значениях реактивного сопротивления и угла сдвига фаз электрическая цепь в целом носит следующий характер: активно-индуктивный.

5) Если сдвиг фаз между током и напряжением меньше нуля, то: напряжение опережает ток по фазе.

6) Проекция вращающегося вектора гармонической функции на ось ординат в любой момент времени, равна: мгновенному значению функции времени.

7) В цепи синусоидального тока с катушкой индуктивности: напряжение опережает ток на угол 90є

8) Коэффициент отношения действующего значения синусоидального напряжения к его амплитудному значению составляет: 0.707.

9) Гармоническим электрическим током называется ток, который: изменяется во времени по своему значению и направлению через равные промежутки времени.

10) Какое из свойств не относится к гармоническому току: после многократной трансформации форма сигнала изменяется.

11) Угловая частота синусоидального тока: обратно пропорциональна периоду колебаний.

12) В цепи синусоидального тока с конденсаторомнапряжение отстает от тока на угол 90є

13) По первому закону Кирхгофа в комплексной форме: сумма комплексных значений токов, подходящих к узлу, равна сумме комплексных значений токов, выходящих из узла.

14) Наиболее распространенный переменный ток изменяется в соответствии с функцией: синус.

15) По закону Ома в комплексной форме: комплексное значение тока прямо пропорционально комплексному значению напряжения и обратно пропорционально комплексному значению сопротивления.

16) В цепи синусоидального тока с конденсато­ром С происходит: обратимый процесс обмена энергией между электрическим полем конденсатора и источником.

17) Амплитудные значения гармонического тока:

18) Коэффициент отношения среднего значения синусоидального тока к его максимальному значению составляет: 0.637.

19) По второму закону Кирхгофа в комплексной форме в любом замкнутом контуре электрической цепи: алгебраическая сумма комплексных значений напряжений на сопротивлениях контура равна алгебраической сумме комплексных значений ЭДС.

20) Активная мощность активно-реактивной электрической цепи на переменном токе не зависит от: угловой частоты гармонических колебаний.

21) Активная мощность в цепи синусоидального тока с резистивным элементом всегда больше нуля, что означает: в цепи с резистором протекает необратимый процесс преобразования электроэнергии в другие виды энергии

22) При последовательном соединении элементов R, L и C при отрицательных значениях реактивного сопротивления и угла сдвига фаз электрическая цепь в целом носит следующий характер: активно-емкостный.

Читайте также:  У каких компонентов есть свойство canvas

23) Деление комплексных чисел может выполняться: как в алгебраической, так и в показательной формах

24) К характеристикам гармонического тока не относится: минимальные значения тока и напряжения.

25) Комплексное число нельзя представить в следующей форме: квадратичной.

Ответы на модуль 3 (КОЛЕБАТЕЛЬНЫЕ КОНТУРЫ. ЯВЛЕНИЯ РЕЗОНАНСА.) по предмету электротехника, электроника и схемотехника.

1) При изменении частоты внешнего источника энергии: изменяются реактивные сопротивления элементов, ток в цепи и на­пряжения на отдельных участках.

2) Какой из параметров не характеризует свойства параллельного колебательного контура? волновое сопротивление с.

3) Полоса пропускания резонансного контура: обратно пропорциональна его добротности.

4) Какое из мероприятий нельзя проводить для повышения коэффициента мощности электрической цепи? для компенсации индуктивной составляющей тока последовательно с приемниками включать конденсаторы.

5) Какое свойство не относится к напряжениям UL и UC на реактивных элементах в цепи, находящейся в режиме резонанса напряжений? напряжения совпадают по фазе и не равны по модулю.

6) Явление резонанса напряжений наблюдается в цепи: с последовательным соединением источника энергии и реактивных элементов L и C.

7) В режиме резонанса напряжений  индуктивное сопротивление равно емкостному сопротивлению

8) Для параллельного колебательного контура, если сдвиг фаз между напряжением на участке цепи и током меньше нуля, то: общий ток имеет емкостной характер.

9) Активная мощность равна полной мощности в режиме резонанса, если коэффициент мощности: cosц = 1.

10) Свободные колебания контура не зависят от: частоты вынужденных колебаний источника энергии щ.

11) В режиме резонанса в случае совпадения частоты собственных колебаний wo с частотой вынужденных колебаний источника энергии щ (щo = щ): амплитуда гармонических колебаний энергии в цепи увеличивается.

12) Условие возникновения резонансного режима можно определить через параметры элементов схемы следующим образом  входное сопротивление (входная проводимость) схемы со стороны выводов источника энергии должно носить чисто активный характер

13) Резонанс напряжений возникает при следующем условии: полное сопротивление цепи имеет минимальное значение и равно активному значению.

14) Для параллельного колебательного контура, если сдвиг фаз между напряжением на участке цепи и током больше нуля, то: общий ток имеет индуктивный характер.

15) Резонанса токов в электрической цепи нельзя достичь следующим способом: изменением параметра активного элемента цепи R.

16) В режиме резонанса токов полная проводимость электрической схемы имеет: минимальное значение и равна значению активной проводимости

17) Какое из свойств не относится к току источника, протекающему через цепь с элементами R, L и C в режиме резонанса токов  ИМЕЕТ ЧИСТО РЕАКТИВНЫЙ ХАРАКТЕР

18) При наличии в электрической цепи режима резонанса напряжений: ток максимален и совпадает по фазе с напряжением источника.

19) Основное условие возникновения резонанса токов вытекает из следующего условия: реактивная проводимость индуктивного элемента равна реактивной проводимости емкостного элемента.

20) Угол сдвига фаз между напряжением и током в электрической цепи при параллельном соединении элементов R, L и C определяется как арктангенс отношения: общей реактивной проводимости к активной проводимости.

21) Явление резонанса токов наблюдается в электрической цепи: с параллельным соединением источника энергии и реактивных элементов L и C.

22) В электрической цепи возможно появление свободных гармонических колебаний энергии, если в ней: содержатся как катушки индуктивности L, так и конденсаторы С.

Из за большого объема этот материал размещен на нескольких страницах:

1 2 3 4 5 6

Источник

Автор admin На чтение 3 мин. Просмотров 12 Опубликовано 12.02.2013

Ответы на модуль 2 (АНАЛИЗ И РАСЧЕТ ЦЕПЕЙ ПЕРЕМЕННОГО ТОКА) по предмету электротехника, электроника и схемотехника.

1) В цепи синусоидального тока с резистивным элементом: ток и напряжение совпадают по фазе.

2) На практике единицей измерения полной мощности в гармонических цепях является: вольт-ампер (ВА).

3) Электрические величины гармонических функций нельзя представить: вещественными числами.

4) При последовательном соединении элементов R, L и C при положительных значениях реактивного сопротивления и угла сдвига фаз электрическая цепь в целом носит следующий характер: активно-индуктивный.

5) Если сдвиг фаз между током и напряжением меньше нуля, то: напряжение опережает ток по фазе.

6) Проекция вращающегося вектора гармонической функции на ось ординат в любой момент времени, равна: мгновенному значению функции времени.

7) В цепи синусоидального тока с катушкой индуктивности: ток опережает напряжение на угол 90º.

8) Коэффициент отношения действующего значения синусоидального напряжения к его амплитудному значению составляет: 0.707.

9) Гармоническим электрическим током называется ток, который: изменяется во времени по своему значению и направлению через равные промежутки времени.

10) Какое из свойств не относится к гармоническому току: после многократной трансформации форма сигнала изменяется.

11) Угловая частота синусоидального тока: обратно пропорциональна периоду колебаний.

12) В цепи синусоидального тока с конденсатором: напряжение опережает ток на угол 90º.

13) По первому закону Кирхгофа в комплексной форме: сумма комплексных значений токов, подходящих к узлу, равна сумме комплексных значений токов, выходящих из узла.

14) Наиболее распространенный переменный ток изменяется в соответствии с функцией: синус.

15) По закону Ома в комплексной форме: комплексное значение тока прямо пропорционально комплексному значению напряжения и обратно пропорционально комплексному значению сопротивления.

16) В цепи синусоидального тока с конденсато­ром С происходит: обратимый процесс обмена энергией между электрическим полем конденсатора и источником.

Читайте также:  Какие полезные свойства шиповника при

17) Амплитудные значения гармонического тока: изменяются по синусоидальному закону.

18) Коэффициент отношения среднего значения синусоидального тока к его максимальному значению составляет: 0.637.

19) По второму закону Кирхгофа в комплексной форме в любом замкнутом контуре электрической цепи: алгебраическая сумма комплексных значений напряжений на сопротивлениях контура равна алгебраической сумме комплексных значений ЭДС.

20) Активная мощность активно-реактивной электрической цепи на переменном токе не зависит от: угловой частоты гармонических колебаний.

21) Активная мощность в цепи синусоидального тока с резистивным элементом всегда больше нуля, что означает: в цепи с резистором протекает необратимый процесс преобразования электроэнергии в другие виды энергии

22)  При последовательном соединении элементов R, L и C при отрицательных значениях реактивного сопротивления и угла сдвига фаз электрическая цепь в целом носит следующий характер: емкостный.

23) Деление комплексных чисел может выполняться: только в алгебраической форме.

24) К характеристикам гармонического тока не относится: минимальные значения тока и напряжения.

25) Комплексное число нельзя представить в следующей форме: квадратичной.

Источник

Автор admin На чтение 3 мин. Просмотров 29 Опубликовано 12.02.2013

Ответы на модуль 3 (КОЛЕБАТЕЛЬНЫЕ КОНТУРЫ. ЯВЛЕНИЯ РЕЗОНАНСА.) по предмету электротехника, электроника и схемотехника.

1) При изменении частоты внешнего источника энергии: изменяются реактивные сопротивления элементов, ток в цепи и на­пряжения на отдельных участках.

2) Какой из параметров не характеризует свойства параллельного колебательного контура? волновое сопротивление ρ.

3) Полоса пропускания резонансного контура: обратно пропорциональна его добротности.

4) Какое из мероприятий нельзя проводить для повышения коэффициента мощности электрической цепи? для компенсации индуктивной составляющей тока последовательно с приемниками включать конденсаторы.

5) Какое свойство не относится к напряжениям UL и UC на реактивных элементах в цепи, находящейся в режиме резонанса напряжений? напряжения совпадают по фазе и не равны по модулю.

6) Явление резонанса напряжений наблюдается в цепи: с последовательным соединением источника энергии и реактивных элементов L и C.

7) В режиме резонанса напряжений: активное сопротивление равно реактивному сопротивлению.

8) Для параллельного колебательного контура, если сдвиг фаз между напряжением на участке цепи и током меньше нуля, то: общий ток имеет емкостной характер.

9) Активная мощность равна полной мощности в режиме резонанса, если коэффициент мощности: cosφ = 1.

10) Свободные колебания контура не зависят от: частоты вынужденных колебаний источника энергии ω.

11) В режиме резонанса в случае совпадения частоты собственных колебаний wo с частотой вынужденных колебаний источника энергии ω (ωo = ω): амплитуда гармонических колебаний энергии в цепи увеличивается.

12) Условие возникновения резонансного режима можно определить через параметры элементов схемы следующим образом: входное сопротивление (входная проводимость) схемы со стороны выводов источника энергии должно носить реактивный характер.

13) Резонанс напряжений возникает при следующем условии: полное сопротивление цепи имеет минимальное значение и равно активному значению.

14) Для параллельного колебательного контура, если сдвиг фаз между напряжением на участке цепи и током больше нуля, то: общий ток имеет индуктивный характер.

15) Резонанса токов в электрической цепи нельзя достичь следующим способом: изменением параметра активного элемента цепи R.

16) В режиме резонанса токов полная проводимость электрической схемы имеет: максимальное значение и равна значению активной проводимости.

17) Какое из свойств не относится к току источника, протекающему через цепь с элементами R, L и C в режиме резонанса токов? имеет минимальное значение.

18) При наличии в электрической цепи режима резонанса напряжений: ток максимален и совпадает по фазе с напряжением источника.

19) Основное условие возникновения резонанса токов вытекает из следующего условия: реактивная проводимость индуктивного элемента равна реактивной проводимости емкостного элемента.

20) Угол сдвига фаз между напряжением и током в электрической цепи при параллельном соединении элементов R, L и C определяется как арктангенс отношения: общей реактивной проводимости к активной проводимости.

21) Явление резонанса токов наблюдается в электрической цепи: с параллельным соединением источника энергии и реактивных элементов L и C.

22) В электрической цепи возможно появление свободных гармонических колебаний энергии, если в ней: содержатся как катушки индуктивности L, так и конденсаторы С.

23) Какой из параметров не относится к свойствам последовательного колебательного контура? волновая проводимость γ.

24) При параллельном соединении элементов R, L и C общая реактивная проводимость электрической цепи равна: полной комплексной проводимости схемы.

25) Резонанс напряжений в цепи нельзя достичь следующим способом: изменением параметра активного элемента цепи R.

26) Какое из условий не относится к токам IL и IC в ветвях с реактивными элементами в режиме резонанса токов? токи совпадают по фазе.

27) Если в сложной схеме электрической цепи при изменении частоты наблюдаются несколько резонансных режимов (как тока, так и напряжения) в зависимости от ее структуры, то такая схема содержит в своей структуре: более двух разнородных реактивных элементов.

Источник

На практике широкое распространение получил переменный ток.

Рисунок 1 а, б – Примеры периодических токов

Переменный ток – это ток, значение которого изменяется с течением времени.

Периодический ток – это переменный ток, мгновенное значение которого повторяется через равные промежутки времени. (рис. 1 а, б)

Период электрического тока – наименьший интервал времени, по истечении которого значение периодического электрического тока повторяется. Период измеряется в секундах (с). Для периодического тока можно записать:

Читайте также:  Какими свойствами обладают рецепторы биология

ток напряжение закон сопротивление

где К – произвольное целое число.

На рисунках 3.1 представлены временные диаграммы тока, т.е. графики зависимости тока от времени.

Частота периодического тока (циклическая) – есть величина, обратная периоду, и характеризующая число периодов в секунду, т.е. скорость завершения полных циклов изменений мгновенных значений периодического тока:

Частота измеряется в герцах (Гц)

Разновидность периодических прочесов, происходящих в радиотехнических цепях, являются гармонические процессы.

Синусоидальным (гармоническим ) током называется ток, изменяющийся по синусоидальному или косинусоидальному закону:

(3.1)

Традиционно в электротехнической литературе используют синусную форму записи гармонического тока(напряжения), а в радиотехнической – косинусную. Обе формы записи являются равноценными, отличаются только началом отсчёта значений и их можно проиллюстрировать одной и той же кривой (рис. 2).

Рисунок 2 а, б, в – График гармонического тока и напряжения.

Приведём величины, характеризующие синусоидальный ток:

– амплитуда – наибольшее значение гармонического тока (только для гармонического, в остальных случаях пиковое значение). Её размерность совпадает с размерностью i(t).

г(t)=(щt+шi) – мгновенная фаза (фаза) – аргумент функции i(t);

щ – угловая частота – скорость измерения фазы, выражается в радианах в секунду (рад/с)

Т – период – наименьший временной интервал повторения периодического синусоидального сигнала, т.е. следовательно, , откуда период:

f – циклическая частота – число периодов в секунду, т.е..

.

Ток промышленной частоты соответствует f = 50 Гц, а =314 рад/с.

– начальная фаза тока определяет значение фазы при t=0 (часть её для удобства записывают в градусах). Она определяет положение ближайшего положительного максимума( в косинусной форме записи) относительно оси координат (рис 2);

при >0 этот максимум будет смещён влево от оси ординат на величину .

разность фаз, или сдвиг по фазе двух синусоидальных функций одинаковой частоты – разность их начальных. Так, если , а , то сдвигом по фазе между током и напряжением называется угол .

Если , то (рис 3.2.б), тогда максимум напряжения наступает раньше, чем максимум тока. В этом случае говорят, что ток отстаёт по фазе на угол от напряжения или напряжение опережает по фазе ток на угол .

Если , то, тогда максимум тока наступает раньше, чем максимум напряжения. В этом случае говорят, что ток опережает напряжение на угол или напряжение отстаёт по фазе на угол от тока.

При имеем , тогда ток и напряжение совпадают по фазе.

Токи и напряжения цепи, изменяющиеся по гармоническому или другому периодическому закону характеризуются средними за период, средневыпрямленными и действующими.

Среднее значение периодического тока за период определяется выражением:

(3.2)

Для гармонически изменяющихся токов и напряжений среднее значение за период равно нулю, так как площадь, ограниченная полуволной и осью времени, равна площади, ограниченной отрицательной полуволной и осью времени. (рис. 3)

Рисунок 3 – К определению понятия среднего значения периодического тока

Средневыпрямленное значение периодического тока или напряжения называется среднее значение модуля соответствующей периодической функции за период:

Значение пропорционально площади, ограниченной частью кривой и осью времени за период Т, и не зависит от выбора начального момента

Рисунок 4 – К определению понятия средневыпрямленного значения гармонического тока

Средневыпрямлённое значение гармонического тока или напряжения равно среднему значению соответствующей гармонической функции на положительном полупериоде. (см. рис. 4)

(3.3)

Среднее значение за полупериод гармонического тока равно высоте прямоугольника с основанием , площадь которого равна площади под кривой сигнала

Рисунок 5 – К определению понятия действующего значения синусоидального тока

Очень важной характеристикой периодических токов и напряжений являются действующее, или эффективное значение. Действующим значением периодического тока называется среднеквадратическое значение тока за секунду.

(3.4)

Действующее значение I периодического тока i(t)численно равно значению постоянного тока I, при протекании которого за время Т выделяется такое же количество энергии, как и при протекании тока i(t)

Покажем это. Пусть при протекании периодического тока i(t) через линейное сопротивление R в нём в соответствии с выражением (3.4) и законом Джоуля-Ленца за период Т выделяется энергия

(3.5)

Выражение (3.5) совпадает с выражением для энергии, выделяющейся в сопротивлении при протекании через него постоянного тока I_=I в течении времени Т (закон Джоуля-Ленца):

Аналогично можно определить и действующее значение U периодического напряжения и (t).

(3.6)

Действующее значение I гармонического тока i(t) в раз меньше его амплитуды:

(2.7)

Поскольку большинство электроизмерительных приборов реагируют на действующие, а не на максимальные (пиковые)значения токов и напряжений, при описании гармонических и напряжений принято указывать действующее, а не амплитудное значение.

Выражая в (3.1) амплитуду через действующее значение I, ещё одну формулу записи гармонического тока:

(3.8)

В соответствии с ГОСТ 1494-77 обозначают:

мгновенное значение токов и напряжений ветвей, токов источников тока и ЭДС источников напряжения, являющихся гармоническими функциями времени – строчными буквами ;

действующее значение этих величин – соответствующими прописными буквами I, U, J, E

амплитудное значение – теми же прописными буквами с индексом m

Размерность средних, средневыпрямлённых и действующих значений гармонических токов и напряжений совпадают с размерностью соответствующих функций и, следовательно, с размерностью их амплитуд.

Источник