Какое из понятий является физической величиной а какое свойством материи

Какое из понятий является физической величиной а какое свойством материи thumbnail

Физическая наука, включающая в себя химию и физику, обычно изучает природу и свойства материи и энергии в неживых системах. Материя – это вещество вселенной. Это атомы, молекулы и ионы, которые составляют все физические вещества. Материя – это все, что имеет массу и занимает пространство.

Энергия – это то, что способно вызвать изменения. Энергию нельзя создать и ее нельзя уничтожить. Она может быть только сохранена и преобразована из одной формы в другую. Потенциальная энергия – это энергия, хранящаяся в объекте из-за его положения. Кинетическая энергия – это энергия, которая находится в движении и вызывает изменения. Любой объект или частица, которая находится в движении, имеет кинетическую энергию, основанную на ее массе и скорости. Кинетическая энергия может быть преобразована в другие виды энергии, такие как электрическая или тепловая.

Существует пять состояний вещества – твердая материя, жидкость, газ, плазма и конденсат Бозе-Эйнштейна. Основное отличие каждого состояния заключается в плотности частиц.

Агрегатные состояния вещества

Твердое вещество

В твердом теле частицы упакованы плотно, поэтому они не способны сильно двигаться. Эти частицы имеют очень низкую кинетическую энергию. Электроны каждого атома находятся в движении, поэтому атомы имеют небольшую вибрацию, но они зафиксированы в своем положении. Твердые тела имеют определенную форму и определенный объем. Частицы упакованы настолько плотно, что увеличивающееся давление не будет сжимать твердое тело до меньшего объема.

Жидкость

В жидком состоянии частицы вещества имеют большую кинетическую энергию, чем частицы твердого тела. Частицы жидкости не удерживаются в регулярном расположении, но все же еще близки друг к другу, поэтому жидкости имеют определенный объем. Жидкость, как и твердые тела, нельзя сжимать. Частицы жидкости имеют достаточно места, чтобы обтекать друг друга, поэтому жидкость имеет неопределенную форму – она способна изменить форму, чтобы соответствовать форме бутылки. Сила распространяется равномерно по всей жидкости, поэтому, когда объект помещается в нее, ее частицы смещаются объектом.

Величина выталкивающей силы равна весу жидкости, вытесненной объектом. Когда выталкивающая сила равна силе тяжести, тянущей вниз по массе объекта, объект будет плавать.

Частицы жидкости, как правило, удерживаются слабым межмолекулярным притяжением, а не перемещаются свободно, как частицы газа. Эта сила соединяет частицы вместе, образуя капли и потоки.

В апреле 2016 года ученые заявили, что было создано необычное состояние материи, которое было предсказано, но его никто и никогда не видел. Хотя этот тип материи можно было держать в руке, как если бы это был твердый объект, увеличение бы показало беспорядочные взаимодействия его электронов, более характерные для жидкости. В новой материи, называемой квантовая спиновая жидкость Китаева, электроны вступают в квантовый танец, в котором они взаимодействуют и разговаривают друг с другом. Обычно, когда вещество остывает, спин его элеронов стремится выровняться. Но в этой квантовой спиновой жидкости электроны взаимодействуют так, что они влияют на то, как вращаются другие, и никогда не выравниваются, независимо от того, насколько сильно вы охладите материал. Он будет вести себя так, как если бы его электроны, считающиеся неделимыми, разорвались на части.

Газ

Частицы газа имеют большое пространство между собой и высокую кинетическую энергию. Если его не ограничивать, то частицы будут бесконечно разбросаны, если ограничить чем-либо – газ начнет расширятся, чтобы заполнить емкость, в которую его поместили. Когда газ оказывается под давлением, за счет уменьшения объема емкости, пространство между частицами начинает сжиматься, а давление, оказываемое их столкновениями, увеличивается. Если объем емкости постоянен, но температура газа увеличивается, то давление также будет увеличиваться. Частицы газа обладают достаточной кинетической энергией для преодоления межмолекулярных сил, которые удерживают твердые частицы и жидкость вместе, поэтому газ не имеет определенного объема и не имеет определенной формы.

Плазма

Плазма не является распространенным состоянием материи на Земле, но может быть очень распространенным состоянием во вселенной. Плазма состоит из сильно заряженных частиц с чрезвычайно высокой кинетической энергией. Благородные газы, такие как гелий, неон, аргон, криптон, ксенон и радон, часто используются для того, чтобы сделать светящиеся вывески с помощь электричества, которое ионизирует их до состояния плазмы. А звезды по существу являются перегретыми шарами плазмы.

Конденсат Бозе-Эйнштейна

В 1995 году технологии позволили ученым создать новое состояние материи – конденсат Бозе-Эйнштейна. Используя комбинацию лазеров и магнитов охладили образец рубидия до абсолютного нуля. При такой чрезвычайно низкой температуре молекулярное движение очень близко к полной остановке. Так как кинетическая энергия почти не передается от одного атома к другому, атомы начинают сжиматься вместе. Больше нет тысяч отдельных атомов, а остается один супер атом“. Бозе-конденсат используется для изучения квантовой механики на макроскопическом уровне. Свет замедляется, проходя черед него, что позволяет изучать парадокс частицы/волны. Также он обладает многими свойствами сверхтекучей жидкости. Конденсат еще используется для моделирования условий, которые могут быть в черных дырах.

Изменение состояния

Добавление энергии к веществу приводит к физическому изменению – материя переходит из одного состояния в другое. Например, добавление тепла к жидкой воде приводит к тому, что она становится паром, а точнее меняет свое агрегатное состояние на другое – газ. Извлечение энергии также приводит к физическим изменениям, например, когда тепло удаляется, вода становится льдом, то есть твердым телом. Физические изменения также могут быть вызваны движением или давлением.

Плавление и охлаждение

Когда тепло действует на твердое тело, то частицы этого тела начинают быстрее вибрировать и двигаться дальше друг от друга. Когда при стандартном давлении достигается определенная точка – точка плавления – твердое вещество начинает превращаться в жидкость. Точку плавления чистого вещества можно определить с точностью до 0,1°С. Если вы продолжите действовать теплом на тело, то температура не превысит точку плавления, пока все вещество не станет жидким, и только после этого температура снова начнет расти. Разные соединения имеют разную точку плавления – это величина помогает лучше различать их.

Точка замерзания – это температура, при которой жидкое вещество достаточно охлаждено, чтобы стать твердым. По мере охлаждения жидкости движение частиц замедляется. Во многих веществах частицы выравниваются точными геометрическими узорами, образуя кристаллические твердые тела. Большинство жидкостей сжимаются при замерзании. Одной из важных характеристик воды является то, что она расширяется при замерзании, поэтому лед и плавает на воде.

Точка замерзания часто близка к той же температуре, как и у точки плавления, но она не считается характерной для вещества, поскольку несколько факторов могут ее изменить. Например, добавление растворенных веществ в жидкость приведет к понижению точки замерзания. Другие жидкости можно охлаждать до температур, значительно ниже их точки плавления, прежде чем они начнут твердеть. Такие жидкости называются переохлажденными и часто требуют наличие частиц пыли или кристалла для начала процесса кристаллизации.

Читайте также:  В каком ряду химических элементов усиливается неметаллические свойства

Сублимация

Когда твердое тело превращается в газ, минуя жидкую фазу, это называется сублимация. Она происходит, когда кинетическая энергия частиц превышает атмосферное давление, окружающее вещество. Это может произойти, когда температура вещества быстро повышается и выходит за пределы точки кипения. Чаще всего вещество может быть сублимировано путем его охлаждения в условиях вакуума, так что вода в нем подвергнется сублимации и удалится. Несколько летучих веществ будут подвергаться сублимации при нормальной температуре и давлении. Наиболее известным из этих веществ является CO2 или «сухой лед».

Испарение

Испарение представляет собой превращение жидкости в газ. Преобразование происходит путем испарения или кипения.

Поскольку частицы жидкости находятся в постоянном движении, они часто сталкиваются друг с другом, передавая при этом энергию. Эта передача энергии имеет небольшое влияние под поверхностью, но, когда достаточная энергия передается частице вблизи поверхности, частица может получить достаточную энергию, чтобы полностью удалится от образца в виде частицы свободного газа. Этот процесс называется испарением, и он продолжается до тех пор, пока не закончится жидкость. Интересно то, что жидкость охлаждается по мере испарения. Энергия, передаваемая поверхностным молекулам, которая вызывает их “вылет”, выходит из оставшегося жидкого вещества.

Когда к жидкости добавляется достаточное количество тепла, чтобы пузырьки пара образовались ниже поверхности жидкости, в этот момент мы говорим, что жидкость кипит. Температура, при которой жидкость кипит, является переменной. Точка кипения зависит от давления вещества. Жидкость под высоким давлением потребует больше тепла до того, как в ней образуются пузырьки. На больших высотах давление жидкости ниже, поэтому она будет кипеть при более низкой температуре.

Конденсация и охлаждение

Конденсация – это когда газ превращается в жидкость. Конденсация происходит, когда газ охлаждается или сжимается до такой степени, что кинетическая энергия частиц больше не может преодолевать межмолекулярные силы. Начальная группа частиц инициирует процесс, который имеет тенденцию дополнительно охлаждать газ, так что конденсация продолжается. Когда газ превращается непосредственно в твердое вещество, не проходя через жидкую фазу, это называется осаждением или десублимацией. Например, при пониженных температурах водяной пар в атмосфере преобразуется в иней и лед. Мороз стремится обрисовать стебельки травы и ветки, потому что воздух, который касается этих твердых веществ, охлаждается быстрее, чем воздух, который не касается твердой поверхности.

???? ???? ????

Источник

Основополагающим элементом изучения подавляющего количества естественных наук является материя. В этой статье мы рассмотрим понятие, виды материи, формы её движения и свойства.

виды материи

Что такое материя?

На протяжении многих веков понятие материи менялось и совершенствовалось. Так, древнегреческий философ Платон видел её как субстрат вещей, который противостоит их идее. Аристотель же говорил, что это нечто вечное, что не может быть ни сотворено, ни уничтожено. Позже философы Демокрит и Левкипп дали определение материи как некой основополагающей субстанции, из которой состоят все тела в нашем мире и во Вселенной.

Современное понятие материи дал В. И. Ленин, согласно которому она является самостоятельной и независимой объективной категорией, выражаемой человеческим восприятием, ощущениями, она также может быть скопирована и сфотографирована.

Атрибуты материи

Главными характеристиками материи являются три признака:

  • Пространство.
  • Время.
  • Движение.

Первые два отличаются метрологическими свойствами, то есть их можно количественно измерить специальными приборами. Пространство измеряется в метрах и его производных величинах, а время в часах, минутах, секундах, а также в сутках, месяцах, годах и т. д. У времени есть также другое, не менее важное свойство – необратимость. Нельзя вернуться на какую-либо исходную временную точку, вектор времени всегда имеет одностороннюю направленность и движется от прошлого к будущему. В отличие от времени, пространство – более сложное понятие и имеет трёхмерное измерение (высота, длина, ширина). Таким образом, все виды материи могут передвигаться в пространстве за определённый промежуток времени.

Формы движения материи

Всё, что нас окружает, передвигается в пространстве и взаимодействует друг с другом. Движение происходит непрерывно и является главным свойством, которым обладают все виды материи. Между тем этот процесс может протекать не только при взаимодействии нескольких объектов, но и внутри самого вещества, обуславливая его видоизменения. Различают следующие формы движения материи:

  • Механическая – это перемещение предметов в пространстве (падение яблока с ветки, бег зайца).

формы материи

  • Физическая – возникает, когда тело изменяет свои характеристики (например, агрегатное состояние). Примеры: тает снег, испаряется вода и т. д.
  • Химическая – видоизменение химического состава вещества (коррозия металла, окисление глюкозы)
  • Биологическая – имеет место в живых организмах и характеризует вегетативный рост, обмен веществ, размножение и др.

понятие материи

  • Социальная форма – процессы социального взаимодействия: общение, проведение собраний, выборов и т. д.
  • Геологическая – характеризует движения материи в земной коре и недрах планеты: ядре, мантии.

Все вышеназванные формы материи взаимосвязаны, взаимодополняют и взаимозаменяют друг друга. Они не могут существовать самостоятельно и не являются самодостаточными.

Свойства материи

Древняя и современная наука приписывали материи множество свойств. Самое распространённое и очевидное – это движение, однако имеются и другие универсальные свойства:

  • Она несотворима и неуничтожима. Это свойство означает, что любое тело или вещество какое-то время существует, развивается, перестаёт существовать как исходный объект, однако материя не прекращает своего существования, а просто превращается в другие формы.
  • Она вечна и бесконечна в пространстве.
  • Постоянное движение, преобразование, видоизменение.
  • Предопределённость, зависимость от порождающих факторов и причин. Данное свойство является своего рода объяснением происхождения материи как следствия определённых явлений.
Читайте также:  В какую сторону кислотные свойства выражаются сильнее

Основные виды материи

Современные ученые выделяют три фундаментальных вида материи:

  • Вещество, обладающее определённой массой в состоянии покоя, представляет собой наиболее распространённый вид. Оно может состоять из частиц, молекул, атомов, а также их соединений, которые образуют физическое тело.
  • Физическое поле – это особая материальная субстанция, которая призвана обеспечивать взаимодействие объектов (веществ).
  • Физический вакуум – является материальной средой с наименьшим уровнем энергии.

Далее более подробно остановимся на каждом из видов.

Вещество

Вещество – вид материи, главным свойством которого является дискретность, то есть прерывистость, ограниченность. В его структуру входят мельчайшие частицы в виде протонов, электронов и нейтронов, из которых состоит атом. Атомы соединяются в молекулы, формируя вещество, которое, в свою очередь, образует физическое тело или текучую субстанцию.

физическое тело

Любое вещество обладает рядом индивидуальных характеристик, отличающих его от других: масса, плотность, температура кипения и плавления, структура кристаллической решётки. При определённых условиях разные вещества можно соединять и смешивать. В природе они встречаются в трёх агрегатных состояниях: твёрдом, жидком и газообразном. При этом конкретное агрегатное состояние лишь соответствует условиям содержания вещества и интенсивности молекулярного взаимодействия, но не является его индивидуальной характеристикой. Так, вода при разных температурах может принимать и жидкую, и твёрдую, и газообразную форму.

Физическое поле

Виды физической материи включают и такую компоненту, как физическое поле. Оно представляет собой некую систему, в которой материальные тела взаимодействуют. Поле является не самостоятельным объектом, а, скорее, носителем специфичных свойств образовавших его частиц. Таким образом, импульс, высвобожденный от одной частицы, но не поглощённый другой, является принадлежностью поля.

виды физической материи

Физические поля – это реальные неосязаемые формы материи, обладающие свойством непрерывности. Их можно классифицировать по различным критериям:

  1. В зависимости от полеобразующего заряда выделяют: электрическое, магнитное и гравитационное поля.
  2. По характеру движения зарядов: динамическое поле, статистическое (содержит неподвижные относительно друг друга заряженные частицы).
  3. По физической природе: макро- и микрополя (создаются движением отдельных заряженных частиц).
  4. В зависимости от среды существования: внешнее (которое окружает заряженные частицы), внутреннее (поле внутри вещества), истинное (суммарное значение внешнего и внутреннего полей).

Физический вакуум

В XX веке в физике как компромисс между материалистами и идеалистами для объяснения некоторых явлений появился термин “физический вакуум”. Первые приписывали ему материальные свойства, а вторые утверждали, что вакуум – это не что иное, как пустота. Современная физика опровергла суждения идеалистов и доказала, что вакуум – это материальная среда, также получившая название квантового поля. Число частиц в нём приравнивается к нулю, что, однако, не препятствует кратковременному возникновению частиц в промежуточных фазах. В квантовой теории уровень энергии физического вакуума условно принимается за минимальный, то есть равный нулю. Однако экспериментально доказано, что энергетическое поле может принимать как отрицательные, так и положительные заряды. Существует гипотеза, что Вселенная возникла именно в условиях возбуждённого физического вакуума.

вещество вид материи

До сих пор не до конца изучена структура физического вакуума, хотя и известны многие его свойства. Согласно дырочной теории Дирака, квантовое поле состоит из движущихся квантов с одинаковыми зарядами, неясным остаётся состав самих квантов, скопления которых перемещаются в виде волновых потоков.

Источник

Физические понятия, величины. Их единицы измерения и приборы для измерения.

Для решения задания № 1 требуется знание физ.величин и понимание физ.явлений и законов из разных разделов программы. Кроме того, необходимо знать, посредством каких приборов те или иные величины измеряются. Определения, разъясняющие это, перечень основных физ.величин, их единиц и измерительных приборов приведены в разделе теории.

Теория к заданию №1 ОГЭ по физике

Физические величины, явления, законы

Физическая величина – это свойство класса явлений или типового физического объекта, имеющего единую качественную характеристику. Различают основные и производные физ.величины. Производными считаются величины, определяемые двумя или более основными. Примеры основных физ.величин: время, масса, длина, температура. Примеры производных физ.величин: скорость, сила, ускорение, объем, давление.

Под физическим явлением понимается процесс изменения существующего на данный момент (или в данной точке) положения либо состояния физ.системы. Примеры физ.явлений: диффузия, отражение света, испарение влаги, горение газа, электризация.

Физическим законом называется устойчивая взаимосвязь между физ.величинами, явлениями, состояниями тел, установленная эмпирически (опытным путем) и выраженная в виде математической формулы либо словесной формулировки. Примеры физ.законов: з-н Архимеда, з-ны Ома, з-ны Ньютона, з-н Бойля-Мариотта.

Единицы измерения физ.величин

Любая физ.величина характеризуется собственной единицей измерения. Ед.измерения позволяет определить ее количественное значение и соотнести его с проявлениями физ.величины в других объектах и процессах. Как правило, единицы измерения производных физ.величин представлены через единицы основных и других производных. Иногда это проявляется напрямую, отображаясь соотношением единиц величин, участвующих в их определении. Например, скорость выражается в

 , т.е. через определяющие ее перемещение и время. Во многих случаях производные величины имеют собственные – оригинальные – ед.измерения. Так, сила выражается в Ньютонах (Н); но при определении этой единицы всегда оговаривается, что:  , т.е. выражается через единицы массы и ускорения.

Основные физ.величины и единицы их измерения (в СИ):

  • длина, перемещение, координата – метр (м),
  • скорость – метр в сек. (м/с),
  • ускорение – метр в сек.в квадрате (м/с2),
  • время, период колебаний – секунда (с),
  • частота колебаний – герц (Гц),
  • масса – килограмм (кг),
  • сила – ньютон (Н),
  • импульс – килограмм-метр в сек. (кг·м/с),
  • работа (механическая, силы тока и т.д.), энергия, кол-во теплоты – джоуль (Дж),
  • мощность – ватт (Вт),
  • плотность вещества – килограмм на метр кубический (кг/м3),
  • давление – паскаль (Па),
  • температура – кельвин (К), распространена единица «градус Цельсия» (0С),
  • эл.заряд – кулон (Кл),
  • напряженность – вольт на метр (В/м),
  • сила тока – ампер (А),
  • потенциал, напряжение – вольт (В).

Приборы для измерения физ.величин

Они представляют собой устройства для определения количественных значения тех или иных физ.величин. Приборы могут быть различными по сложности своего устройства – от простейших (линейка, рычажные весы) до более или менее сложных (барометр, вольтметр). Приборы для измерения физ.величин в основном уникальны и могут использоваться для измерения единственной величины.

Читайте также:  В каком явлении проявляются квантовые свойства света

Основные измерительные приборы и величины, измеряемые ими:

  • спидометр – скорость,
  • динамометр – сила в механике,
  • термометр – температура,
  • манометр – давление газа или жидкости внутри сосуда,
  • барометр – атмосферное давление,
  • гигрометр – влажность воздуха,
  • ареометр – плотность веществ,
  • мензурка – объем жидкостей,
  • амперметр – сила тока,
  • электрометр – эл.потенциал,
  • вольтметр – эл.напряжение (разность потенциалов),
  • омметр – эл.сопротивление.

Физическое тело

Телом в физике считается материальный объект, отделенный конкретными собственными границами от других тел и характеризующийся а) конкретным объемом, б) постоянной массой, в) формой (обычно – простой). Это понятие используется для упрощенных математических расчетов с целью определения качественных и (или) количественных параметров процессов, в которых участвует данный объект. Примеры физ.тел: автомобиль, человек, Луна, здание.

Вектор

Вектором в физике называют одну из основных характеристик для физических величин, которая обозначает направление их движения. Векторными величинами являются скорость, сила, импульс, ускорение и др. Говоря, например, «вектор скорости», подразумевают, что для рассматриваемого физ.тела в данном случае важно не только то, насколько быстро или медленно оно движется, но и то, в какую сторону осуществляется это движение.

Разбор типовых вариантов заданий №1 ОГЭ по физике

Демонстрационный вариант 2018

Для каждого физического понятия из первого столбца подберите соответствующий пример из второго столбца.

Запишите в таблицу выбранные цифры под соответствующими буквами.

ФИЗИЧЕСКИЕ ПОНЯТИЯ А) физическая величина Б) единица физической величины В) прибор для измерения физической величиныПРИМЕРЫ 1) ньютон 2) инерция 3) масса 4) кристалл 5) весы
Алгоритм решения:

1. Анализируем пример 1 с точки зрения его принадлежности одной из 3 перечисленных категорий (А–В–С). Если соответствие найдено, фиксируем цифру 1 для соответствующей категории физ.понятий, если нет – пропускаем. 2–5. Проделываем аналогичный анализ для остальных примеров (2–5). 6. Заполняем итоговую таблицу. Записываем ответ

Решение:
  1. Ньютон. Это – единица измерения физ.величины «Сила». Следовательно, пример 1 должен быть отнесет в категорию Б.
  2. Инерция. Это – физ.явление в механике, свойство физ.тел. Физ.величиной инерция не является, и тем более не относится к категории единиц физ.величин или приборов.
  3. Масса. Это – одна из основных физ.величин в физике. Т.о., пример 3 относится к категории А.
  4. Кристалл. Это – физическое тело.
  5. Весы. Веся являются прибором для измерения масс физ.тел. Соответственно, пример 5 нужно вписать в таблицу для категории В.
  6. Итоговая таблица:

Ответ: 315

Первый вариант (Камзеева, № 1)

Установите соответствие между физическими величинами (понятиями) и их определениями.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ (ПОНЯТИЯ) A) траектория Б) перемещение B) ускорениеОПРЕДЕЛЕНИЯ 1) физическая величина, характеризующая быстроту изменения скорости тела 2) тело, размеры которого меньше 1 мм 3) тело, размерами которого в данных условиях можно пренебречь 4) вектор, соединяющий начальное положение тела с последующим положением 5) линия, образованная точками, в которых тело побывало в процессе движения
Алгоритм решения:
  1. Выявляем формулировки из второй колонки («Определения»), которые заведомо неверны.
  2. Среди оставшихся – потенциально правильных – определений находим соответствующие формулировки для понятий, предложенных в первой колонке.
  3. Заполняем итоговую таблицу. Записываем ответ.
Решение:
  1. Все 3 приведенные физ.понятия характеризуют свойства тел, связанные с их возможностью движения, но не с описанием самих тел. Поэтому 2-е и 3-е определения из 2-й колонки здесь принципиально не подходят, т.к. описывают собственно тело.
  2. Оставшиеся 1-е, 4-е и 5-е определения распределим между понятиями из 1-й колонки. Понятию А «траектория», согласно определению этой физ.величины, соответствует определение 5, понятию Б – определение 4, понятию В – определение 1.
  3. Итоговая таблица:

Ответ: 541

Второй вариант (Камзеева, № 10)

Установите соответствие между физическими величинами и формулами, по которым эти величины определяются.

Алгоритм решения:

1. Анализируем формулу 1. Выясняем, соответствует ли она какой-либо из физических величин из 1-й колонки.

2–5. Осуществляем аналогичный анализ для остальных формул.

6. Заполняем итоговую таблицу. Записываем ответ.

Решение:
  1. Формула 1, по сути, отображает з-н Ома для участка цепи и позволяет найти силу тока. Т.е. формула имеет смысл, однако не подходит ни для одной из 3-х приведенных физ.величин.
  2. Формула 2 – одна из основных для нахождения работы силы тока. Ее используют, когда неизвестна величина сопротивления проводника. Соответственно, она подходит для физ.величины А.
  3. Формула 3 – основа для нахождения удельного эл.сопротивления. Она выводится из формулы для сопротивления проводника через его длину и площадь поперечного сечения. Отсюда получаем, что формула 3 подходит для физ.величины В.
  4. Формула 4 – одна из основных для вычисления мощности тока. Но такой физ.величины в списке нет.
  5. Формула 5 является результатом преобразования ур-ния з-на Ома для участка цепи и часто используется для вычисления сопротивления. Т.о., она подходит для физ.величины Б.
  6. Итоговая таблица:

Ответ: 253

Третий вариант (Камзеева, № 12)

Установите соответствие между приборами и физическими величинами, которые они измеряют.

ПРИБОРЫ А) ареометр Б) мензурка В) манометрФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

  1. плотность жидкости
  2. давление внутри жидкости
  3. температура жидкости
  4. объем жидкости
  5. масса жидкости
Алгоритм решения:

1. Анализируем физ.величину 1 (во 2-й колонке) с точки зрения подбора устройства для ее измерения. Если находим такой в 1-й колонке, фиксируем пару значений (буква–цифра) для итоговой таблицы.

2–5. Производим аналогичные действия для остальных физ.величин.

6. Заполняем итоговую таблицу. Записываем ответ.

Решение:
  1. Плотность жидкости. Эта физ.величина измеряется с помощью аэрометра. Соответственно, в колонке А итоговой таблицы нужно будет записать цифру 1.
  2. Давление внутри жидкости. «Внутри жидкости» означает, что жидкость находится в каком-то сосуде. Для измерения давления в этом случае требуется манометр, в 1-й колонке присутствующий под буквой В. Таким образом, в колонке В итоговой таблицы следует записать цифру 2.
  3. Температура жидкости. Для ее измерения предназначен термометр, которого в списке приборов нет.
  4. Объем жидкости. Его можно измерить посредством мензурки. Т.е. для итоговой таблицы получаем пару: Б4.
  5. Масса жидкости. Массы веществ измеряются с помощью весов. Такого прибора в списке нет.
  6. Итоговая таблица:

Ответ: 142

Источник