Какое главное свойство электрического поля
Исследование взаимодействия заряженных легких алюминиевых гильз и электрических султанов.
Каким образом осуществляется взаимодействие зарядов?
Идея электрического поля была введена М. Фарадеем и теоретически обоснована Дж. Максвеллом.
Электрическое поле это вид материи посредством которого осуществляется взаимодействие электрических зарядов.
Электрическое поле неподвижных зарядов не меняется со временем и называется электростатическим полем.
Свойства электрического поля:
- Порождается электрическим зарядом.
- Обнаруживается по действию на заряд.
- Действует на заряд с некоторой силой.
- Распространяется в пространстве с конечной скоростью с=3·108 м/с.
Силовой характеристикой электрического поля является напряженность.
Напряженность электрического поля – векторная физическая величина, равная отношению силы , действующей на пробный точечный заряд q, к этому заряду:
Направление вектора напряженности совпадает с направлением вектора кулоновской силы.
Напряженность поля не зависит от значения пробного заряда q; определяется зарядами – источниками поля, является силовой характеристикой этого поля.
Единица в СИ – Н/Кл или В/м.
Поле, напряженность которого в любой точке одинакова (E = const), называют однородным.
Напряженность точечного электрического заряда в данной точке зависит от модуля заряда Q и от расстояния до этого заряда R.
Каждый электрический заряд создает в пространстве электрическое поле независимо от наличия других электрических зарядов. В этом заключается принцип суперпозиции электрических полей.
Электрические поля изображаются графически с помощью линий напряженности.
Неоднородное электрическое поле
Силовая линия (линия напряженности) электрического поля – линия, в каждой точке которой напряженность поля направлена по касательной. Силовые линии поля в электростатике начинаются на положительных зарядах и заканчиваются на отрицательных. Густота силовых линий пропорциональна модулю вектора напряженности.
Однородное электрическое поле
На электрический заряд помещенный в однородное электрическое поле действует кулоновская сила способная совершать работу по перемещению электрического заряда.
Работа электрического поля не зависит от формы траектории и на замкнутой траектории равна нулю. Такие поля называются потенциальными. Для этих поле характерна незамкнутость линий напряженности.
Энергетической характеристикой электрического поля является потенциал (разность потенциалов), скалярная физическая величина, выражаемая в вольтах (В); 1В = 1 Дж / 1 Кл.
Потенциал поля в данной точке, находящейся на расстоянии R от заряда Q:
Потенциал поля может быть как положительным, так и отрицательным. Следуя принципу суперпозиции полей, можно утверждать, что если в данной точке пространства известен потенциал поля, созданного отдельно каждым из N зарядов (тел), то потенциал суммарного поля равен алгебраической сумме потенциалов каждого из полей
На практике используют разность потенциалов:
В электрическом поле разность потенциалов между двумя любыми точками равна напряжению между этими точками.
Эквипотенциальная поверхность – поверхность, во всех точках которой потенциал имеет одно и то же значение.
На рисунке показаны эквипотенциальные поверхности точечных положительного и отрицательного зарядов и системы двух положительных зарядов.
Связь между напряженностью электрического поля и напряжением:
Опорный конспект:
Источник
Электростатическое поле и его характеристики
Электрический заряд, помещенный в некоторую точку пространства, изменяет свойства данного пространства. То есть заряд порождает вокруг себя электрическое поле. Электростатическое поле – особый вид материи.
Электростатическое поле существующий вокруг неподвижный заряженных тел, действует на заряд с некоторой силой, вблизи заряда – сильнее.
Электростатическое поле не изменяется во времени.
Силовой характеристикой электрического поля является напряженность
Напряженностью электрического поля в данной точке называется векторная физическая величина, численно равная силе, действующей на единичный положительный заряд, помещенный в данную точку поля.
За единицу измерения напряженности электрического поля в СИ принимают
Если на пробный заряд, действуют силы со стороны нескольких зарядов, то эти силы по принципу суперпозиции сил независимы, и результирующая этих сил равна векторной сумме сил. Принцип суперпозиции (наложения) электрических полей: Напряженность электрического поля системы зарядов в данной точке пространства равна векторной сумме напряженностей электрических полей, создаваемых в данной точке пространства, каждым зарядом системы в отдельности:
или
Электрическое поле удобно представлять графически с помощью силовых линий.
Силовыми линиями (линиями напряженности электрического поля) называют линии, касательные к которым в каждой точке поля совпадают с направлением вектора напряженности в данной точке.
Силовые линии начинаются на положительном заряде и заканчиваются на
отрицательном (Силовые линии электростатических полей точечных зарядов.).
Густота линий напряженности характеризует напряженность поля (чем
плотнее располагаются линии, тем поле сильнее).
Электростатическое поле точечного заряда неоднородно (ближе к заряду поле сильнее).
Силовые линии электростатических полей бесконечных равномерно заряженных плоскостей.
Электростатическое поле бесконечных равномерно заряженных плоскостей однородно. Электрическое поле, напряженность во всех точках которого одинакова, называется однородным.
Силовые линии электростатических полей двух точечных зарядов.
Потенциал – энергетическая характеристика электрического поля.
Потенциал – скалярная физическая величина, равная отношению потенциальной энергии, которой облает электрический заряд в данной точке электрического поля, к величине этого заряда.
Потенциал показывает какой потенциальной энергией будет обладать единичный положительный заряд, помещенный в данную точку электрического поля. φ = W / q
где φ – потенциал в данной точке поля, W- потенциальная энергия заряда в данной точке поля.
За единицу измерения потенциала в системе СИ принимают [φ] = В (1В = 1Дж/Кл )
За единицу потенциала принимают потенциал в такой точке, для перемещения в которую из бесконечности электрического заряда 1 Кл, требуется совершить работу, равную 1 Дж.
Рассматривая электрическое поле, созданное системой зарядов, следует для определения потенциала поля использовать принцип суперпозиции:
Потенциал электрического поля системы зарядов в данной точке пространства равен алгебраической сумме потенциалов электрических полей, создаваемых в данной точке пространства, каждым зарядом системы в отдельности:
Вектор напряженности в данной точке поля всегда направлен в область уменьшения потенциала.
Воображаемая поверхность, во всех точках которой потенциал принимает одинаковые значения, называется эквипотенциальной поверхностью. При перемещении электрического заряда от точки к точке вдоль эквипотенциальной поверхности энергия его не меняется. Эквипотенциальных поверхностей для заданного электростатического поля может быть построено бесконечное множество.
Вектор напряженности в каждой точке поля всегда перпендикулярен к эквипотенциальной поверхности, проведенной через данную точку поля.
Источник
Современные представления предполагают, что электрозаряды не действуют друг на друга непосредственным образом. Абсолютно любое заряженное тело создает вокруг себя ЭП, которое воздействует на окружающее этот объект пространство. Оно может появляться и создаться при прохождении через проводник электричества и оказывает силовое воздействие на все другие заряженные тела. Основное свойство как раз в этом и заключается. В этой статье будет подробно разобрано, какие свойства электрического поля есть и какова структура электрополя.
Что это такое
Электрическое поле — это особое векторная характеристика, которая действует на все обладающие электрозарядом частицы, находящиеся в ее радиусе действия. Это электрополе входит в состав электромагнитного, то есть для него характерно отсутствие визуальной составляющей. Это значит, что ЭП нельзя увидеть глазами и оно может быть зафиксировано только в результате воздействия за заряженные частицы.
Напряженность и потенциал ЭП
Важно! На последнее реагируют все заряженные электрочастицы и тела, обладающие другими (противоположными) полюсами.
Электрополе — особая форма состояния материи, которое проявляется в ускорении электрочастиц и определенных тел, которые обладают электро зарядом. К особенностям электрополя относятся:
- Оно действует только при наличии электро заряда;
- Оно не имеет определенных четких границ;
- ЭП обладает определенной величиной воздействия;
- Его определить только по результату его воздействия.
Принцип суперпозиции
Характеристика ЭП неразрывно связана с зарядами. Они находятся в определенной электрочастице или теле. Преобразование ЭП происходит в двух случаях:
- При появлении вокруг него электрозарядов;
- При перемещении волн электромагнитной природы, которые способствуют изменению электрополя.
Работа сил ЭП
Электрополе влияет на неподвижные относительно наблюдателя объекты в виде электро заряженных частиц или тел. В конечном итоге они получают силовое влияние. Пример воздействия ЭП можно наблюдать и в бытовой ситуации. Для этого достаточно создать электрозаряд достаточной мощности. Книги по теоретической физике предлагают для этого простейший эксперимент, когда диэлектрик натирается о шерстяное изделие. Получить электрополе вполне можно просто, взяв пластиковую шариковую ручку и потерев ее о волосы или шерсть. На ее поверхности образуется заряд, который приводит к появлению электрополя. Как следствие ручка притягивает мелкие электрочастицы в виде волос или бумаги. Если ее преподнести к мелко разорванным кусочкам бумаги, то они будут притягиваться к ней. Такой же результат можно достигнуть и при использовании пластмассовой расчески.
Манипуляции с магнитными свойствами ЭП на основе железной крошки
Также примером появления электрополя в быту является образование мелких световых вспышек при снятии одежды из синтетических материалов. В результате нахождения на теле диэлектрические волокна накапливают вокруг себя различные электрозаряды. При снятии такого предмета одежды с тела ЭП подвергается различным силам воздействия, которое приводит к образованию вспышек. Особенно это характерно для зимней одежды, в частности свитеров и шарфов, которые сделаны из синтетических материалов.
Сделал открытие и впервые подтвердил наличие электрополя Майкл Фарадей — английский физик и экспериментатор. Именно он внес в физику понятие «поля» и установил основы его концепции, его физическую реальность.
Важно! Фарадей ввел понятие ЭП при исследовании диамагнетизма и парамагнетизма, когда он обнаружил небольшое отталкивание специальным магнитом ряда веществ.
Напряженность электростатического поля
Свойства
Основные свойства ЭП:
- Источником самого ЭП являются заряженные частицы и переменные ЭП магнитного происхождения. ЭП неразрывно связано с магнетизмом. Источником поля электростатической природы являются неподвижные электростатические заряды;
- ЭП воздействует на внесенные в него электрозаряды с некоторой силой;
- Скорость распространения электрического поля равна конечность скорости света в вакууме, то есть константе C, которая равна 3 * 10 в 8 степени метров в секунду;
- Обнаружение электрополя происходит по его воздействию на другие электрически заряженные тела;
- ЭП подчиняются принципу суперпозиции, то есть наложения. Это означает, что в каждой точке, пространства, электрополя действуют, как будто других сил воздействия нет. В данной точке, их суммарное воздействие на пробный электрозаряд определяется как сумма воздействий действующих ЭП.
Виды
Различают несколько основных видов электрополей. Отличие зависит от того, где оно существует. Следует рассмотреть несколько примеров возникающих сил в различных ситуациях:
- Когда заряженные электрочастицы неподвижны. Это называется статическим ЭП;
- Когда заряженные электрочастицы находятся в движении по проводнику. Это называется магнитным полем, которое не следует отождествлять с электрическим;
- Стационарное ЭП возникает вокруг неподвижных проводников с неизменяющимся током.
В радиоволнах есть ЭП и МП. Они расположены в пространстве перпендикулярно друг другу. Это происходит, потому что любое изменение магнитного поля порождает возникновения электрополя с замкнутыми силовыми линиями.
Вихревые электромагнитные волны
Структура электрического поля
Для того чтобы понять структуру электрического вначале следует определить потенциал. Говоря просто, потенциал — это действие по переведению какого-либо тела или заряда из начального места в конкретный пункт размещения. Потенциал в сфере электрополя — это своеобразная энергия, которая двигает электрон. В результате движения он перемещается с точки так называемого нулевого потенциала в другую точку, имеющую ненулевой потенциал.
Чем выше потенциал, который потрачен на передвижение электрического заряда или тела, тем более значительной будет плотность потока на единице площади. Это явление сравнимо с законом гравитации: чем больше вес тела, тем выше энергия, действующая на него, а, значит, значительнее плотность гравитационной характеристики. В естественных условиях существуют заряды с незначительным потенциалом и с низкой степенью плотности, а также заряженные частицы и тела с высоким потенциалом и насыщенной плотностью потока. Такое явление, как работа по перемещению электрозаряда, наблюдается при грозе и молнии, когда в одном месте происходит истощение электронов, а в другом — их насыщение, образовывающее своеобразное электрически заряженное ЭП, когда происходит разряд в виде молнии.
Переменное МП
Как определить
Для количественного определения электрополя вводится значение силы напряженности электрического поля. Ею называют физическую величину, равную отношению силовых характеристик, с которыми ЭП воздействует на положительный пробный электрозаряд, находящийся в некоторой точке пространства, к величине этого заряда. Она равна E = F/q.
Течение жидкости под действием магнитных волн
Напряженность представляет собой векторную величина физического типа. Направление векторов силы в каждой точке конкретной области пространства соответствует направлением сил, воздействующих на положительный пробный заряд.
Формула напряженности поля между двумя зарядами
Электрополе неподвижных и не меняющихся со временем зарядов называется электростатическим. Во многих случаях для краткости это ЭП обозначают общим термином — электрическое поле
Если ЭП исследуется с помощью пробного заряда и создается сразу несколькими заряженными телами, то конечная силовая характеристика оказывается равной геометрической сумме сил, которые воздействуют на электрозаряд со стороны всех заряженных тел по отдельности. Следовательно, напряженность электрополя, которая создается набором зарядов в конкретной точке пространства, равна векторной сумме напряженностей ЭП, создаваемых в той же точке зарядами в отдельности: E = E1 + E2 + E3 +…
Напряженность точечного заряда
Таким образом, было определено, какими свойствами обладает электрическое поле и какова его структура. Все тела создают электрополя, если они заряжены. Понять, есть оно или нет нельзя визуальным путем. Для этого нужно подтвердить его воздействие на окружающие объекты.
Источник
Нас окружает материальный мир. Материю мы воспринимаем с помощью зрения и других органов чувств. Отдельным видом материи является электрическое поле, которое можно выявить только через его влияние на заряженные тела или с помощью приборов. Оно порождает магнитные поля и взаимодействует с ними. Эти взаимодействия нашли широкое практическое применение.
Определение
Электрическое поле неразрывно связано с магнитным полем, и возникает в результате его изменения. Эти два вида материи являются компонентами электромагнитных полей, заполняющих пространство вокруг заряженных частиц или заряженных тел.
Таким образом, данный термин означает особый вид материи, обладающий собственной энергией, являющийся составным компонентом векторного электромагнитного поля. У электрического поля нет границ, однако его силовое воздействие стремится к нулю, при удалении от источника – заряженного тела или точечных зарядов [1].
Важным свойством полевой формы материи является способность электрического поля поддерживать упорядоченное перемещение носителей зарядов.
Рис. 1. Определение понятия «электрическое поле»
Энергия электрического поля подчиняется действию закона сохранения. Её можно преобразовать в другие виды или направить на выполнение работы.
Силовой характеристикой полей выступает их напряжённость – векторная величина, численное значение которой определяется как отношение силы, действующей на пробный положительный заряд, к величине этого заряда.
Характерные физические свойства:
- реагирует на присутствие заряженных частиц;
- взаимодействует с магнитными полями;
- является движущей силой по перемещению зарядов – как положительных ионов, таки отрицательных зарядов в металлических проводниках;
- поддаётся определению только по результатам наблюдения за проявлением действия.
Оно всегда окружает неподвижные статичные (не меняющиеся со временем) заряды, поэтому получило название – электростатическое. Опыты подтверждают, что в электростатическом поле действуют такие же силы, как и в электрическом.
Электростатическое взаимодействие поля на заряженные тела можно наблюдать при поднесении наэлектризованной эбонитовой палочки к мелким предметам. В зависимости от полярности наэлектризованных частиц, они будут либо притягиваться, либо отталкиваться от палочки.
Сильные электростатические поля образуются вблизи мощных электрических разрядов. На поверхности проводника, оказавшегося в зоне действия разряда, происходит перераспределение зарядов.
Вследствие распределения зарядов проводник становится заряженным, что является признаком влияния электрического поля.
Классификация
Электрические поля бывают двух видов: однородные и неоднородные.
Однородное
электрическое поле
Состояние поля определяется пространственным расположением линий напряжённости. Если векторы напряжённости идентичны по модулю и они при этом сонаправлены во всех точках пространства, то электрическое поле – однородно. В нём линии напряжённости расположены параллельно.
В качестве примера является электрическое поле, образованное разноимёнными зарядами на участке плоских металлических пластин (см. рис. 2).
Рис. 2. Пример однородности
Неоднородное электрическое поле
Чаще встречаются поля, напряжённости которых в разных точках отличаются. Линии напряжённости у них имеют сложную конфигурацию. Простейшим примером неоднородности является электрический диполь, то есть система из двух разноимённых зарядов, влияющих друг на друга (см. рис. 3). Несмотря на то, что векторы напряжённости электрического диполя образуют красивые линии, но поскольку они не равны, то такое поле неоднородно. Более сложную конфигурацию имеют вихревые поля (рис 4). Их неоднородность очевидна.
Рис. 3. Электрический диполь Рис. 4. Вихревые поля
Характеристики
Основными характеристиками являются:
- потенциал;
- напряжённость;
- напряжение.
Потенциал
Термин означает отношение потенциальной энергии W, которой обладает пробный заряд q′ в данной точке к его величине. Выражение φ=W/q′. называется потенциалом электрического поля в этой точке.
Другими словами: количество накопленной энергии, которая потенциально может быть потрачена на выполнение работы, направленной на перемещение единичного заряда в бесконечность, или в другую точку с условно нулевой энергией, называется потенциалом рассматриваемого электрического поля в данной точке.
Энергия поля учитывается по отношению к данной точке. Её ещё называют потенциалом в данной точке. Общий потенциал системы равен сумме потенциалов отдельных зарядов. Это одна из важнейших характеристик поля. Потенциал можно сравнить с энергией сжатой пружины, которая при высвобождении способна выполнить определённую работу.
Единица измерения потенциала – 1 вольт. При бесконечном удалении точки от наэлектризованного тела, потенциал в этой точке уменьшается до 0: φ∞=0.
Напряжённость поля
Достоверно известно, что электрическое поле отдельно взятого заряда q действует с определённой силой F на точечный пробный заряд, независимо от того, на каком расстоянии он находится. Сила, действующая на изолированный положительный пробный заряд, называется напряжённостью и обозначается символом E.
Напряжённость – векторная величина. Значение модуля вектора напряжённости: E=F/q′.
Линиями напряжённости электрического поля (известные как силовые линии), называются касательные, которые в точках касания совпадают с ориентацией векторов напряжённости. Плотность силовых линий определяет величину напряжённости.
Рис. 5. Электрическое поле положительного и отрицательного вектора напряжённости
Напряженность вокруг точечного заряда Q на расстоянии r от него, определяется по закону Кулона: E = 14πε0⋅Qr2. Такие поля называют кулоновскими.
Векторы напряженности положительного точечного заряда направлены от него, а отрицательного – до центра (к заряду). Направления векторов кулоновского поля видно на рис. 6.
Рис. 6. Направление линий напряжённости положительных и отрицательных зарядов
Для кулоновских полей справедлив принцип суперпозиции. Суть принципа в следующем:вектор напряжённости нескольких зарядов может быть представлен в виде геометрической суммы напряжённостей, создаваемых каждым отдельно взятым зарядом, входящих в эту систему.
Для общего случая распределения зарядов имеем:
Линии напряжённости схематически изображены на рисунке 7. На картинке видно линии, характерные для полей:
- электростатического;
- дипольного;
- системы и одноимённых зарядов;
- однородного поля.
Рис. 7. Линии напряжённости различных полей
Напряжение
Поскольку силы электрического поля способны выполнять работу по перемещению носителей элементарных зарядов, то наличие поля является условием для существования электрического тока. Электроны и другие элементарные заряды всегда двигаются от точки, обладающей более высоким потенциалом, к точке с низшим потенциалом. При этом часть энергии расходуется на выполнение работы по перемещению.
Для поддержания постоянного тока (упорядоченного движения носителей элементарных зарядов) необходимо на концах проводника поддерживать разницу потенциалов, которую ещё называют напряжением. Чем больше эта разница, тем активнее выполняется работа, тем мощнее ток на этом участке. Функции по поддержанию разницы потенциалов возложены на источники тока.
Методы обнаружения
Органы чувств человека не воспринимают электрических полей. Поэтому мы не можем их увидеть, попробовать на вкус или определить по запаху. Единственное, что может ощутить человек – это выпрямление волос вдоль линий напряжённости. Наличие слабых воздействий мы просто не замечаем.
Обнаружить их можно через воздействие на мелкие кусочки бумаги, бузиновые шарики и т.п. Электрическое поле воздействует на электроскоп – его лепестки реагируют на такие воздействия.
Очень простой и эффективный метод обнаружения с помощью стрелки компаса. Она всегда располагается вдоль линий напряжённости.
Существуют очень чувствительные электронные приборы, с лёгкостью определяющие наличие электростатических полей.
Методы расчета электрического поля
Для расчётов параметров используются различные аналитические или численные методы:
- метод сеток или конечных разностей;
- метод эквивалентных зарядов;
- вариационные методы;
- расчёты с использованием интегральных уравнений и другие.
Выбор конкретного метода зависит от сложности задачи, но в основном используются численные методы, приведённые в списке.
Использование
Изучение свойств электрического поля открыло перед человечеством огромные возможности. Способность поля перемещать электроны в проводнике позволила создавать источники тока.
На свойствах электрических полей создано различное оборудование, применяемое в медицине, химической промышленности, в электротехнике. Разрабатываются приборы, применяемые в сфере беспроводной передачи энергии к потребителю. Примером могут послужить устройства беспроводной зарядки гаджетов. Это пока только первые шаги на пути к передачи электричества на большие расстояния.
Сегодня, благодаря знаниям о свойствах полевой формы материи, разработаны уникальные фильтры для очистки воды. Этот способ оказался дешевле, чем использование традиционных сменных картриджей.
К сожалению, иногда приходится нейтрализовать силы полей. Обладая способностью электризации предметов, оказавшихся в зоне действия, электрические поля создают серьёзные препятствия для нормальной работы радиоэлектронной аппаратуры. Накопленное статическое электричество часто является причиной выхода из строя интегральных микросхем и полевых транзисторов.
Источник