Какое азотистое основание не содержится в рнк

Нуклеиновые кислоты — это
природные высокомолекулярные соединения (полинуклеотиды), которые играют
огромную роль в хранении и передаче наследственной информации в живых
организмах.

Молекулярная масса нуклеиновых кислот
может меняться от сотен тысяч до десятков миллиардов. Они были открыты и
выделены из клеточных ядер еще в XIX в., однако их биологическая роль была
выяснена только во второй половине XX в.

В состав
нуклеотида – структурного звена нуклеиновых кислот – входят три составные
части:

1) азотистое основание – пиримидиновое или
пуриновое

Пиримидиновые
основания

– производные пиримидина, входящие в состав нуклеиновых кислот: урацил,
тимин, цитозин
.

Для оснований, содержащих группу –ОН, характерно подвижное равновесие
структурных изомеров, обусловленное переносом протона от кислорода к азоту и
наоборот:

Пуриновые
основания

— производные пурина, входящие в состав нуклеиновых кислот: аденин, гуанин.

Гуанин
существует в виде двух структурных изомеров:

2) моносахарид

Рибоза и 2-дезоксирибоза относятся к моносахаридам, содержащим пять углеродных
атомов. В состав нуклеиновых кислот они входят в циклических β-формах:

3) остаток фосфорной кислоты

ДНК и
РНК
 

В
зависимости от того, какой моносахарид содержится в структурном звене
полинуклеотида – рибоза или 2-дезоксирибоза, различают

·        
рибонуклеиновые кислоты (РНК) и

·        
дезоксирибонуклеиновые кислоты (ДНК)

В
главную (сахарофосфатную) цепь РНК входят остатки рибозы, а в ДНК – 2-дезоксирибозы.
Нуклеотидные звенья макромолекул ДНК могут содержать аденин, гуанин, цитозин
и тимин. Состав РНК отличается тем, что вместо тимина присутствует
урацил.

Молекулярная
масса ДНК достигает десятков миллионов а.е.м. Это самые длинные из известных
макромолекул. Значительно меньше молекулярная масса РНК (от нескольких сотен до
десятков тысяч). ДНК содержатся в основном в ядрах клеток, РНК – в рибосомах и
протоплазме клеток.

При
описании строения нуклеиновых кислот учитывают различные уровни организации
макромолекул: первичную и вторичную структуру.

·        
Первичная структура нуклеиновых
кислот – это нуклеотидный состав и определенная последовательность нуклеотидных
звеньев в полимерной цепи.

Например:

В
сокращённом однобуквенном обозначении эта структура записывается как 

…– А
– Г – Ц –…

·        
Под
вторичной структурой нуклеиновых кислот понимают пространственно
упорядоченные формы полинуклеотидных цепей.

Вторичная
структура ДНК

представляет собой две параллельные неразветвленные полинуклеотидные цепи,
закрученные вокруг общей оси в двойную спираль.

Такая
пространственная структура удерживается множеством водородных связей,
образуемых азотистыми основаниями, направленными внутрь спирали.

Водородные
связи возникают между пуриновым основанием одной цепи и пиримидиновым
основанием другой цепи. Эти основания составляют комплементарные пары (от лат. complementum
– дополнение).

Образование
водородных связей между комплементарными парами оснований обусловлено их пространственным
соответствием.

Пиримидиновое
основание комплементарно пуриновому основанию:

Водородные
связи между другими парами оснований не позволяют им разместиться в структуре
двойной спирали. Таким образом,

·        
ТИМИН
(Т) комплементарен АДЕНИНУ (А),

·        
ЦИТОЗИН
(Ц) комплементарен ГУАНИНУ (Г).

Комплементарность
оснований определяет комплементарность цепей в молекулах ДНК.

Комплементарность
полинуклеотидных цепей служит химической основой главной функции ДНК – хранения
и передачи наследственных признаков.

Способность
ДНК не только хранить, но и использовать генетическую информацию определяется
следующими ее свойствами:

·        
молекулы
ДНК способны к репликации (удвоению), т.е. могут обеспечить возможность синтеза
других молекул ДНК, идентичных исходным, поскольку последовательность оснований
в одной из цепей двойной спирали контролирует их расположение в другой цепи.

·        
молекулы
ДНК могут направлять совершенно точным и определенным образом синтез белков,
специфичных для организмов данного вида.

Вторичная
структура РНК

В
отличие от ДНК, молекулы РНК состоят из одной полинуклеотидной цепи и не имеют
строго определенной пространственной формы (вторичная структура РНК зависит от
их биологических функций).

Основная роль РНК – непосредственное участие в биосинтезе белка.

Известны
три вида клеточных РНК, которые отличаются по местоположению в клетке, составу,
размерам и свойствам, определяющим их специфическую роль в образовании белковых
макромолекул:

·        
информационные
(матричные) РНК передают закодированную в ДНК информацию о структуре белка от
ядра клетки к рибосомам, где и осуществляется синтез белка;

·        
транспортные
РНК собирают аминокислоты в цитоплазме клетки и переносят их в рибосому;
молекулы РНК этого типа “узнают” по соответствующим участкам цепи
информационной РНК, какие аминокислоты должны участвовать в синтезе белка;

·        
рибосомные
РНК обеспечивают синтез белка определенного строения, считывая информацию с
информационной (матричной) РНК.

Источник

всеобщность

Азотистые основания представляют собой ароматические гетероциклические органические соединения, содержащие атомы азота, которые принимают участие в образовании нуклеотидов.

Плоды объединения азотистого основания, пентозы (то есть сахара с 5 атомами углерода) и фосфатной группы, нуклеотидов являются молекулярными единицами, которые составляют нуклеиновые кислоты ДНК и РНК.

В ДНК азотистыми основаниями являются: аденин, гуанин, цитозин и тимин; в РНК они такие же, кроме тимина, в месте которого находится азотистое основание, называемое урацил.

В отличие от РНК, азотистые основания ДНК образуют пары или пары оснований. Наличие такого спаривания возможно, потому что ДНК имеет двухцепочечную нуклеотидную структуру.

Экспрессия генов зависит от последовательности азотистых оснований в сочетании с нуклеотидами ДНК.

Что такое азотистые основания?

Азотистые основания – это органические молекулы, содержащие азот, которые принимают участие в образовании нуклеотидов .

Каждый из образованных азотистых оснований, сахара с 5 атомами углерода (пентозы) и фосфатной группы, нуклеотиды являются молекулярными единицами, которые составляют нуклеиновые кислоты ДНК и РНК .

ДНК и РНК нуклеиновых кислот являются биологическими макромолекулами, от которых зависит развитие и правильное функционирование клеток живого существа.

Азотистые основы нуклеиновых кислот

Азотистые основания, из которых состоят нуклеиновые кислоты ДНК и РНК: аденин, гуанин, цитозин, тимин и урацил .

Аденин, гуанин и цитозин являются общими для обеих нуклеиновых кислот, то есть они являются частью как нуклеотидов ДНК, так и нуклеотидов РНК. Тимин является эксклюзивным для ДНК, а урацил – исключительно для РНК .

Если коротко, то азотистые основания, которые образуют нуклеиновую кислоту (будь то ДНК или РНК), относятся к 4 различным типам.

СОКРАЩЕНИЯ АЗОТНЫХ ОСНОВ

Химики и биологи сочли целесообразным сократить названия азотистых оснований одной буквой алфавита. Таким образом, они сделали представление и описание нуклеиновых кислот в текстах проще и быстрее.

Аденин совпадает с заглавными буквами A; гуанин с заглавной буквой G; цитозин с заглавной буквой С; тимин с заглавными буквами T; наконец, урацил с заглавной буквой U.

Классы и структура

Существует два класса азотистых оснований: класс азотистых оснований, которые происходят от пиримидина, и класс азотистых оснований, которые происходят от пурина .

Читайте также:  В каких продуктах содержится калий и кальций список продуктов

Рисунок: общая химическая структура пиримидина и пурина.

Азотистые основания, происходящие из пиримидина, также известны под альтернативными названиями: пиримидиновые или пиримидиновые азотистые основания ; в то время как азотистые основания, которые происходят из пурина, также известны с альтернативными словами: пуриновые или пуриновые азотистые основания .

Цитозин, тимин и урацил относятся к классу пиримидиновых азотистых оснований; аденин и гуанин, с другой стороны, составляют класс пуриновых азотистых оснований.

Примеры производных пурина, кроме азотистых оснований ДНК и РНК

Среди производных пурина есть также органические соединения, которые не являются азотистыми основаниями ДНК и РНК. Например, такие соединения, как кофеин, ксантин, гипоксантин, теобромин и мочевая кислота, попадают в эту категорию.

ЧТО ТАКОЕ ОСНОВЫ AZOTE ИЗ ХИМИЧЕСКОЙ ТОЧКИ ЗРЕНИЯ?

Химики-органики определяют азотистые основания и все производные пурина и пиримидина как гетероциклические ароматические соединения .

  • Гетероциклическое соединение представляет собой органическое кольцевое (или циклическое) соединение, которое в вышеупомянутом кольце имеет один или несколько атомов, отличных от углерода. В случае пуринов и пиримидинов атомы, отличные от углерода, являются атомами азота.
  • Ароматическое соединение представляет собой органическое соединение в форме кольца, имеющее структурные и функциональные характеристики, сходные с характеристиками бензола.

СТРУКТУРА

Рисунок: химическая структура бензола.

Химическая структура азотистых оснований, полученных из пиримидина, состоит, главным образом, в одном кольце с 6 атомами, 4 из которых представляют собой атомы углерода и 2 из которых представляют собой азот.

Фактически, азотистое основание пиримидина представляет собой пиримидин с одним или несколькими заместителями (т.е. одним атомом или группой атомов), связанными с одним из атомов углерода кольца.

Напротив, химическая структура азотистых оснований, полученных из пурина, состоит, главным образом, из двойного кольца с 9 полными атомами, 5 из которых являются атомами углерода и 4 из которых являются азотом. Вышеупомянутое двойное кольцо с 9 суммарными атомами происходит из слияния пиридиминового кольца (то есть пиримидинового кольца) с имидазольным кольцом (то есть кольцом имидазола, другого органического гетероциклического соединения).

Рисунок: структура имидазола.

Как известно, пиримидиновое кольцо содержит 6 атомов; в то время как имидазольное кольцо содержит 5. При слиянии два кольца имеют по два атома углерода в каждом, и это объясняет, почему конечная структура содержит, в частности, 9 атомов.

РАСПОЛОЖЕНИЕ АТОМОВ АЗОТА В ПУРИНЕ И ПИРИМИДИНЕ

Чтобы упростить изучение и описание органических молекул, химики-органики решили назначить идентификационный номер для углей и всех других атомов несущих структур. Нумерация всегда начинается с 1, она основана на очень специфических критериях присвоения (которые здесь лучше не указывать) и служит для определения положения каждого атома в молекуле.

Для пиримидинов числовые критерии назначения устанавливают, что 2 атома азота занимают положение 1 и положение 3, тогда как 4 атома углерода находятся в положениях 2, 4, 5 и 6.

Для пуринов, с другой стороны, числовые критерии назначения утверждают, что 4 атома азота занимают позиции 1, 3, 7 и 9, тогда как 5 атомов углерода находятся в позициях 2, 4, 5, 6 и 8.

Положение в нуклеотидах

Азотистое основание нуклеотида всегда присоединяется к углероду в положении 1 соответствующей пентозы через ковалентную N-гликозидную связь .

В частности,

  • Азотистые основания, происходящие из пиримидина, образуют N-гликозидную связь через азот в положении 1 ;
  • В то время как азотистые основания, которые происходят из пурина, образуют N-гликозидную связь через азот в положении 9 .

В химической структуре нуклеотидов пентоза представляет собой центральный элемент, с которым связываются азотистое основание и фосфатная группа.

Химическая связь, которая объединяет фосфатную группу с пентозой, относится к фосфодиэфирному типу и включает кислород фосфатной группы и углерод в положении 5 пентозы.

КОГДА АЗОТ БАЗЫ ФОРМЫ НУКЛЕОЗИД?

Комбинация азотистого основания и пентозы образует органическую молекулу, которая называется нуклеозидом .

Таким образом, именно добавление фосфатной группы превращает нуклеозиды в нуклеотиды.

Более того, согласно конкретному определению нуклеотидов, эти органические соединения могут быть «нуклеозидами, которые имеют одну или несколько фосфатных групп, связанных с углеродом 5 составляющей пентозы».

Организация в ДНК

ДНК, или дезоксирибонуклеиновая кислота, представляет собой большую биологическую молекулу, образованную двумя очень длинными цепями нуклеотидов (или полинуклеотидными филаментами ).

Эти полинуклеотидные филаменты имеют некоторые характеристики, которые заслуживают особого упоминания, поскольку они также тесно связаны с азотистыми основаниями:

  • Они объединены.
  • Они ориентированы в противоположных направлениях («антипараллельные нити»).
  • Они обертывают друг друга, как будто они две спирали.
  • Нуклеотиды, которые их составляют, имеют такое расположение, что азотистые основания ориентированы по направлению к центральной оси каждой спирали, тогда как пентозы и фосфатные группы образуют внешние каркасы последних.

    Сингулярное расположение нуклеотидов приводит к тому, что каждое азотистое основание одной из двух полинуклеотидных нитей объединяется посредством водородных связей с азотистым основанием, присутствующим на другой ниточке. Следовательно, этот союз создает комбинацию оснований, комбинаций, которые биологи и генетики называют спариванием, или пару оснований .

    Выше было сказано, что две нити соединены вместе: именно связи между различными азотистыми основаниями двух полинуклеотидных нитей определяют их соединение.

КОНЦЕПЦИЯ ДОПОЛНИТЕЛЬНЫХ ОСНОВ

Изучив структуру ДНК, исследователи поняли, что спаривание азотистых оснований очень специфично . Фактически, они заметили, что аденин присоединяется только к тимину, а цитозин – только к гуанину.

В свете этого открытия они создали термин « комплементарность азотистых оснований », чтобы обозначить однозначное связывание аденина с тимином и цитозина с гуанином.

Идентификация комплементарного спаривания между азотистыми основаниями была ключом к объяснению физических размеров ДНК и особой стабильности, которой обладают два полинуклеотидных филамента.

В 1953 году американский биолог Джеймс Уотсон и английский биолог Фрэнсис Крик внесли решающий вклад в открытие структуры ДНК (от спиральной обмотки двух цепей полинуклеотидов до спаривания комплементарных азотистых оснований).

С формулировкой так называемой « модели двойной спирали » Уотсон и Крик обладали невероятной интуицией, которая представляла собой эпохальный поворотный момент в области молекулярной биологии и генетики.

Фактически, открытие точной структуры ДНК сделало возможным изучение и понимание биологических процессов, которые рассматривают дезоксирибонуклеиновую кислоту как главного героя: от того, как РНК реплицируется или формируется, до того, как она генерирует белки.

Галстуки, которые держат пары легких базисов вместе

Соединение двух азотистых оснований в молекуле ДНК, образующих комплементарное спаривание, представляет собой серию химических связей, известных как водородные связи .

Аденин и тимин взаимодействуют друг с другом с помощью двух водородных связей, а гуанин и цитозин – с помощью трех водородных связей.

СКОЛЬКО ПАР АЗОТАТОВЫХ ОСНОВ СОДЕРЖИТ МОЛЕКУЛУ ДНК ЧЕЛОВЕКА?

Общая молекула ДНК человека содержит около 3, 3 миллиарда основных азотных пар, что составляет около 3, 3 миллиарда нуклеотидов на нить.

Читайте также:  Микроэлемент фтор в каких продуктах содержится

Рисунок: химическое взаимодействие между аденином и тимином, а также между гуанином и цитозином. Читатель может отметить положение и количество водородных связей, которые удерживают вместе азотистые основания двух полинуклеотидных нитей.

Организация в РНК

В отличие от ДНК, РНК или рибонуклеиновая кислота представляет собой нуклеиновую кислоту, обычно состоящую из одной цепи нуклеотидов.

Следовательно, составляющие его азотистые основания являются «непарными».

Однако следует отметить, что отсутствие комплементарной цепи азотистых оснований не исключает возможности того, что азотистые основания РНК могут выглядеть как основания ДНК.

Другими словами, азотистые основания одной нити РНК могут соответствовать, согласно законам взаимодополняемости азотистых оснований, точно так же, как азотистые основания ДНК.

Комплементарное спаривание между азотистыми основаниями двух различных молекул РНК является основой важного процесса синтеза белка (или синтеза белка ).

URACILE ЗАМЕНИТ ТИМИНУ

В РНК урацил заменяет ДНК тимина не только по структуре, но и по комплементарному спариванию: фактически именно азотистое основание специфически связывается с аденином, когда две функциональные молекулы РНК появляются по функциональным причинам.

Биологическая роль

Экспрессия генов зависит от последовательности азотистых оснований, соединенных с нуклеотидами ДНК. Гены представляют собой более или менее длинные сегменты ДНК (то есть нуклеотидные сегменты), которые содержат информацию, необходимую для синтеза белка. Состоящие из аминокислот белки являются биологическими макромолекулами, которые играют фундаментальную роль в регуляции клеточных механизмов организма.

Последовательность азотистых оснований данного гена указывает аминокислотную последовательность родственного белка.

Источник

К нуклеиновым кислотам относят высокополимерные соединения, распадающиеся при гидролизе на пуриновые и пиримидиновые основания, пентозу и фосфорную кислоту. Нуклеиновые кислоты содержат углерод, водород, фосфор, кислород и азот. Различают два класса нуклеиновых кислот: рибонуклеиновые кислоты (РНК) и дезоксирибонуклеиновые кислоты (ДНК).

Строение и функции ДНК

ДНК — полимер, мономерами которой являются дезоксирибонуклеотиды. Модель пространственного строения молекулы ДНК в виде двойной спирали была предложена в 1953 г. Дж. Уотсоном и Ф. Криком (для построения этой модели они использовали работы М. Уилкинса, Р. Франклин, Э. Чаргаффа).

Молекула ДНК образована двумя полинуклеотидными цепями, спирально закрученными друг около друга и вместе вокруг воображаемой оси, т.е. представляет собой двойную спираль (исключение — некоторые ДНК-содержащие вирусы имеют одноцепочечную ДНК). Диаметр двойной спирали ДНК — 2 нм, расстояние между соседними нуклеотидами — 0,34 нм, на один оборот спирали приходится 10 пар нуклеотидов. Длина молекулы может достигать нескольких сантиметров. Молекулярный вес — десятки и сотни миллионов. Суммарная длина ДНК ядра клетки человека — около 2 м. В эукариотических клетках ДНК образует комплексы с белками и имеет специфическую пространственную конформацию.

Мономер ДНК — нуклеотид (дезоксирибонуклеотид) — состоит из остатков трех веществ: 1) азотистого основания, 2) пятиуглеродного моносахарида (пентозы) и 3) фосфорной кислоты. Азотистые основания нуклеиновых кислот относятся к классам пиримидинов и пуринов. Пиримидиновые основания ДНК (имеют в составе своей молекулы одно кольцо) — тимин, цитозин. Пуриновые основания (имеют два кольца) — аденин и гуанин.

строение ДНК

Моносахарид нуклеотида ДНК представлен дезоксирибозой.

Название нуклеотида является производным от названия соответствующего основания. Нуклеотиды и азотистые основания обозначаются заглавными буквами.

Азотистое основаниеНазвание нуклеотидаОбозначение
АденинАдениловыйА (A)
ГуанинГуаниловыйГ (G)
ТиминТимидиловыйТ (T)
ЦитозинЦитидиловыйЦ (C)

Полинуклеотидная цепь образуется в результате реакций конденсации нуклеотидов. При этом между 3′-углеродом остатка дезоксирибозы одного нуклеотида и остатком фосфорной кислоты другого возникает фосфоэфирная связь (относится к категории прочных ковалентных связей). Один конец полинуклеотидной цепи заканчивается 5′-углеродом (его называют 5′-концом), другой — 3′-углеродом (3′-концом).

Против одной цепи нуклеотидов располагается вторая цепь. Расположение нуклеотидов в этих двух цепях не случайное, а строго определенное: против аденина одной цепи в другой цепи всегда располагается тимин, а против гуанина — всегда цитозин, между аденином и тимином возникают две водородные связи, между гуанином и цитозином — три водородные связи. Закономерность, согласно которой нуклеотиды разных цепей ДНК строго упорядоченно располагаются (аденин — тимин, гуанин — цитозин) и избирательно соединяются друг с другом, называется принципом комплементарности. Следует отметить, что Дж. Уотсон и Ф. Крик пришли к пониманию принципа комплементарности после ознакомления с работами Э. Чаргаффа. Э. Чаргафф, изучив огромное количество образцов тканей и органов различных организмов, установил, что в любом фрагменте ДНК содержание остатков гуанина всегда точно соответствует содержанию цитозина, а аденина — тимину («правило Чаргаффа»), но объяснить этот факт он не смог.

Из принципа комплементарности следует, что последовательность нуклеотидов одной цепи определяет последовательность нуклеотидов другой.

Цепи ДНК антипараллельны (разнонаправлены), т.е. нуклеотиды разных цепей располагаются в противоположных направлениях, и, следовательно, напротив 3′-конца одной цепи находится 5′-конец другой. Молекулу ДНК иногда сравнивают с винтовой лестницей. «Перила» этой лестницы — сахарофосфатный остов (чередующиеся остатки дезоксирибозы и фосфорной кислоты); «ступени» — комплементарные азотистые основания.

Функция ДНК — хранение и передача наследственной информации.

Репликация (редупликация) ДНК

Репликация ДНК — процесс самоудвоения, главное свойство молекулы ДНК. Репликация относится к категории реакций матричного синтеза, идет с участием ферментов. Под действием ферментов молекула ДНК раскручивается, и около каждой цепи, выступающей в роли матрицы, по принципам комплементарности и антипараллельности достраивается новая цепь. Таким образом, в каждой дочерней ДНК одна цепь является материнской, а вторая — вновь синтезированной. Такой способ синтеза называется полуконсервативным.

«Строительным материалом» и источником энергии для репликации являются дезоксирибонуклеозидтрифосфаты (АТФ, ТТФ, ГТФ, ЦТФ), содержащие три остатка фосфорной кислоты. При включении дезоксирибонуклеозидтрифосфатов в полинуклеотидную цепь два концевых остатка фосфорной кислоты отщепляются, и освободившаяся энергия используется на образование фосфодиэфирной связи между нуклеотидами.

Репликация ДНК

В репликации участвуют следующие ферменты:

  1. геликазы («расплетают» ДНК);
  2. дестабилизирующие белки;
  3. ДНК-топоизомеразы (разрезают ДНК);
  4. ДНК-полимеразы (подбирают дезоксирибонуклеозидтрифосфаты и комплементарно присоединяют их к матричной цепи ДНК);
  5. РНК-праймазы (образуют РНК-затравки, праймеры);
  6. ДНК-лигазы (сшивают фрагменты ДНК).

С помощью геликаз в определенных участках ДНК расплетается, одноцепочечные участки ДНК связываются дестабилизирующими белками, образуется репликационная вилка. При расхождении 10 пар нуклеотидов (один виток спирали) молекула ДНК должна совершить полный оборот вокруг своей оси. Чтобы предотвратить это вращение ДНК-топоизомераза разрезает одну цепь ДНК, что дает ей возможность вращаться вокруг второй цепи.

ДНК-полимераза может присоединять нуклеотид только к 3′-углероду дезоксирибозы предыдущего нуклеотида, поэтому данный фермент способен передвигаться по матричной ДНК только в одном направлении: от 3′-конца к 5′-концу этой матричной ДНК. Так как в материнской ДНК цепи антипараллельны, то на ее разных цепях сборка дочерних полинуклеотидных цепей происходит по-разному и в противоположных направлениях. На цепи 3’–5′ синтез дочерней полинуклеотидной цепи идет без перерывов; эта дочерняя цепь будет называться лидирующей. На цепи 5’–3′ — прерывисто, фрагментами (фрагменты Оказаки), которые после завершения репликации ДНК-лигазами сшиваются в одну цепь; эта дочерняя цепь будет называться запаздывающей (отстающей).

Читайте также:  Какие витамины содержаться в гречневой каше

Купить проверочные работы
по биологии

Биология. Растения. Бактерии. Грибы. Лишайники. Работаем по новым стандартам. Проверочные работы   Биология. Животные. Работаем по новым стандартам. Проверочные работы

Биология. Человек. Работаем по новым стандартам. Проверочные работы   Биология. Общие закономерности. Работаем по новым стандартам. Проверочные работы

Особенностью ДНК-полимеразы является то, что она может начинать свою работу только с «затравки» (праймера). Роль «затравок» выполняют короткие последовательности РНК, образуемые при участи фермента РНК-праймазы и спаренные с матричной ДНК. РНК-затравки после окончания сборки полинуклеотидных цепочек удаляются.

Репликация протекает сходно у прокариот и эукариот. Скорость синтеза ДНК у прокариот на порядок выше (1000 нуклеотидов в секунду), чем у эукариот (100 нуклеотидов в секунду). Репликация начинается одновременно в нескольких участках молекулы ДНК. Фрагмент ДНК от одной точки начала репликации до другой образует единицу репликации — репликон.

Репликация происходит перед делением клетки. Благодаря этой способности ДНК осуществляется передача наследственной информации от материнской клетки дочерним.

Репарация («ремонт»)

Репарацией называется процесс устранения повреждений нуклеотидной последовательности ДНК. Осуществляется особыми ферментными системами клетки (ферменты репарации). В процессе восстановления структуры ДНК можно выделить следующие этапы: 1) ДНК-репарирующие нуклеазы распознают и удаляют поврежденный участок, в результате чего в цепи ДНК образуется брешь; 2) ДНК-полимераза заполняет эту брешь, копируя информацию со второй («хорошей») цепи; 3) ДНК-лигаза «сшивает» нуклеотиды, завершая репарацию.

Наиболее изучены три механизма репарации: 1) фоторепарация, 2) эксцизная, или дорепликативная, репарация, 3) пострепликативная репарация.

Изменения структуры ДНК происходят в клетке постоянно под действием реакционно-способных метаболитов, ультрафиолетового излучения, тяжелых металлов и их солей и др. Поэтому дефекты систем репарации повышают скорость мутационных процессов, являются причиной наследственных заболеваний (пигментная ксеродерма, прогерия и др.).

Строение и функции РНК

РНК

РНК — полимер, мономерами которой являются рибонуклеотиды. В отличие от ДНК, РНК образована не двумя, а одной полинуклеотидной цепочкой (исключение — некоторые РНК-содержащие вирусы имеют двухцепочечную РНК). Нуклеотиды РНК способны образовывать водородные связи между собой. Цепи РНК значительно короче цепей ДНК.

Мономер РНК — нуклеотид (рибонуклеотид) — состоит из остатков трех веществ: 1) азотистого основания, 2) пятиуглеродного моносахарида (пентозы) и 3) фосфорной кислоты. Азотистые основания РНК также относятся к классам пиримидинов и пуринов.

Пиримидиновые основания РНК — урацил, цитозин, пуриновые основания — аденин и гуанин. Моносахарид нуклеотида РНК представлен рибозой.

Выделяют три вида РНК: 1) информационная (матричная) РНК — иРНК (мРНК), 2) транспортная РНК — тРНК, 3) рибосомная РНК — рРНК.

Все виды РНК представляют собой неразветвленные полинуклеотиды, имеют специфическую пространственную конформацию и принимают участие в процессах синтеза белка. Информация о строении всех видов РНК хранится в ДНК. Процесс синтеза РНК на матрице ДНК называется транскрипцией.

транспортная РНК

Транспортные РНК содержат обычно 76 (от 75 до 95) нуклеотидов; молекулярная масса — 25 000–30 000. На долю тРНК приходится около 10% от общего содержания РНК в клетке. Функции тРНК: 1) транспорт аминокислот к месту синтеза белка, к рибосомам, 2) трансляционный посредник. В клетке встречается около 40 видов тРНК, каждый из них имеет характерную только для него последовательность нуклеотидов. Однако у всех тРНК имеется несколько внутримолекулярных комплементарных участков, из-за которых тРНК приобретают конформацию, напоминающую по форме лист клевера. У любой тРНК есть петля для контакта с рибосомой (1), антикодоновая петля (2), петля для контакта с ферментом (3), акцепторный стебель (4), антикодон (5). Аминокислота присоединяется к 3′-концу акцепторного стебля. Антикодон — три нуклеотида, «опознающие» кодон иРНК. Следует подчеркнуть, что конкретная тРНК может транспортировать строго определенную аминокислоту, соответствующую ее антикодону. Специфичность соединения аминокислоты и тРНК достигается благодаря свойствам фермента аминоацил-тРНК-синтетаза.

Рибосомные РНК содержат 3000–5000 нуклеотидов; молекулярная масса — 1 000 000–1 500 000. На долю рРНК приходится 80–85% от общего содержания РНК в клетке. В комплексе с рибосомными белками рРНК образует рибосомы — органоиды, осуществляющие синтез белка. В эукариотических клетках синтез рРНК происходит в ядрышках. Функции рРНК: 1) необходимый структурный компонент рибосом и, таким образом, обеспечение функционирования рибосом; 2) обеспечение взаимодействия рибосомы и тРНК; 3) первоначальное связывание рибосомы и кодона-инициатора иРНК и определение рамки считывания, 4) формирование активного центра рибосомы.

Информационные РНК разнообразны по содержанию нуклеотидов и молекулярной массе (от 50 000 до 4 000 000). На долю иРНК приходится до 5% от общего содержания РНК в клетке. Функции иРНК: 1) перенос генетической информации от ДНК к рибосомам, 2) матрица для синтеза молекулы белка, 3) определение аминокислотной последовательности первичной структуры белковой молекулы.

Строение и функции АТФ

Аденозинтрифосфорная кислота (АТФ) — универсальный источник и основной аккумулятор энергии в живых клетках. АТФ содержится во всех клетках растений и животных. Количество АТФ в среднем составляет 0,04% (от сырой массы клетки), наибольшее количество АТФ (0,2–0,5%) содержится в скелетных мышцах.

АТФ состоит из остатков: 1) азотистого основания (аденина), 2) моносахарида (рибозы), 3) трех фосфорных кислот. Поскольку АТФ содержит не один, а три остатка фосфорной кислоты, она относится к рибонуклеозидтрифосфатам.

Для большинства видов работ, происходящих в клетках, используется энергия гидролиза АТФ. При этом при отщеплении концевого остатка фосфорной кислоты АТФ переходит в АДФ (аденозиндифосфорную кислоту), при отщеплении второго остатка фосфорной кислоты — в АМФ (аденозинмонофосфорную кислоту). Выход свободной энергии при отщеплении как концевого, так и второго остатков фосфорной кислоты составляет по 30,6 кДж. Отщепление третьей фосфатной группы сопровождается выделением только 13,8 кДж. Связи между концевым и вторым, вторым и первым остатками фосфорной кислоты называются макроэргическими (высокоэнергетическими).

Запасы АТФ постоянно пополняются. В клетках всех организмов синтез АТФ происходит в процессе фосфорилирования, т.е. присоединения фосфорной кислоты к АДФ. Фосфорилирование происходит с разной интенсивностью при дыхании (митохондрии), гликолизе (цитоплазма), фотосинтезе (хлоропласты).

АТФ является основным связующим звеном между процессами, сопровождающимися выделением и накоплением энергии, и процессами, протекающими с затратами энергии. Кроме этого, АТФ наряду с другими рибонуклеозидтрифосфатами (ГТФ, ЦТФ, УТФ) является субстратом для синтеза РНК.

  • Перейти к лекции №3 «Строение и функции белков. Ферменты»

  • Перейти к лекции №5 «Клеточная теория. Типы клеточной организации»

  • Смотреть оглавление (лекции №1-25)

Источник