Какими свойствами обладают волны
Естествознание, 10 класс
Урок 39. Свойства волн
Перечень вопросов, рассматриваемых в теме:
- Что понимают под волнами;
- Какие бывают волны;
- Где в природе наблюдаются волны;
- Что такое электромагнитные волны;
- Как проявляются в жизни ЭМВ различных диапазонов;
Глоссарий по теме:
Волна – распространение колебаний в пространстве
Длина волны – расстояние, пройденное волной за время равное периоду
Частота – число колебаний за единицу времени
Период – время одного полного колебания
Амплитуда – максимальное смещение от положения равновесия
Монохроматические волны – «Одноцветные» – волна, изменяющаяся во времени и пространстве по синусоидальному закону
Интерференция – наложение волн, за счет которого происходит взаимоусиление или взаимогашение их.
Дифракция – огибание волнами препятствий
Основная и дополнительная литература по теме урока (точные библиографические данные с указанием страниц):
Список литературы
- Естествознание. 10 класс [Текст]: учебник для общеобразоват. организаций: базовый уровень / И.Ю. Алексашина, К.В. Галактионов, И.С. Дмитриев, А.В. Ляпцев и др. / под ред. И.Ю. Алексашиной. – 3-е изд., испр. – М.: Просвещение, 2017. – §55, С. 166-168.
- Физика. 11 класс [Текст]: учебник для общеобразоват. учреждений: базовый уровень; профильный уровень/А.В. Грачев, В.А. Погожев, А.М. Салецкий и др.- Вентана-Граф, 2011
Открытые электронные ресурсы по теме урока (при наличии);
Теоретический материал для самостоятельного изучения
Каждый человек хоть раз в жизни кидал камешки в воду, не обращая внимания на круги, которые они оставляют. Так давайте с помощью этой «забавы» понаблюдаем за волнами и попытаемся разобраться в их природе и свойствах.
Наблюдая за волной от брошенного камня, можно сделать вывод, что форма волны изменяется по мере распространения волны, на большом расстоянии волна сглаживается и пропадает. Это свойство характерно для волн любой природы.
Рассматривая на прошлом уроке шкалу электромагнитных волн, мы говорили, что видимый свет это полихроматическая волна, которая включает в себя спектр цветов от красного к фиолетовому.
Сегодня мы рассмотрим монохроматические волны. И начнем с таких их характеристик, как период, частота, амплитуда и длина волны.
Период – это время одного полного колебания. Период колебаний вычисляется по формуле
;
[T] = секунда.
Частота – число колебаний за единицу времени. Частота вычисляется по формуле
;
[ν] = Герц.
Амплитуда – максимальное смещение от положения равновесия.
Длина волны – расстояние, пройденное волной за время, равное периоду.
[λ] = метр.
А теперь, рассмотрим свойства волн: интерференцию и дифракцию.
Интерференция – это явление взаимоусиления либо взаимогашения двух или более волн. Условием интерференции является когерентность и синфазность волн. То есть, у волн должна быть одинаковая длина волны и одинаковая во времени разность фаз.
Дифракция – это явление огибания волнами препятствий, которое происходит только тогда, когда препятствие меньше или равно длине волны. Длину световой волны можно определить с помощью дифракционной решетки.
Волны и частицы обладают некоторыми общими свойствами. Волна любой природы переносит энергию и импульс через пространство.
В заключении отметим, что энергией обладают любые волны. В последнее время, например, ведутся активные работы по использованию энергии морских волн для производства электроэнергии.
Текст задания 1:
Установите последовательность по возрастанию длины волны электромагнитных волн:
Варианты ответов:
- Рентгеновское излучение
- Видимый свет
- Гамма-излучение
- Радиоволны
Правильные варианты:
- Гамма-излучение
- Рентгеновское излучение
- Видимый свет
- Радиоволны
Текст задания 2:
Вставьте пропущенные слова, выбирая из списка правильные ответы:
Волна любой природы переносит __________ и ________ через пространство
Варианты ответов:
частицы, импульс, поля, энергию.
Правильный вариант: импульс, энергию или энергию, импульс
Источник
Понятие “волна” знакомо нам с самого детства. Первый же выход на пляж с родителями и вы уже “по уши знаете”, что такое волна 🙂 Волны – это красиво, прекрасно, весело…Иногда волны имеют разрушительный характер и несут смерти и наводнения. Увы, такова природа. Но всё это обычно является “житейским приложением” волн.
Наверняка многие из вас слышали, что волны встречаются не только на море. Кто-то даже помнит из школьной физики, что есть электромагнитные волны или даже гравитационные волны!
Но что такое волна с точки зрения физики? Когда и из-за чего появляются волны? И почему волны именно такой формы? Из-за чего они подчиняются закону синуса или косинуса? Попробуем ответить на все эти вопросы в нашей статье!
Волна в физике
Волны встречаются в физике повсеместно. Это и звуковые волны, и электромагнитные волны, и механические волны, и даже “химические” волны, ну и относительно “спорные” гравитационные волны.
Разновидностей можно насчитать огромное количество! Ведь классифицировать волны можно по самым разным признакам. Везде, где идёт изменение некоторых характеристик по определенному закону и с некоторой периодичностью уместно сказать про волну.
Интересно обозначить тот факт, что большая часть процессов в нашей жизни подчиняются именно законам, связанным с волновой физикой. Звук, который мы слышим есть волна. Радиоприемник ловит волну. И примеров просто миллион! Любая физическая величина может вести себя как волна при некоторых условиях.
С точки зрения физики, волна есть перенос энергии без переноса вещества. Вы сразу вспомните морскую волну и скажите, что как же так…Ведь перенос вещества там имеет место быть! Гребни волны накрывают берег и не особенно похоже, что переноса вещества нет. Но всё не совсем так. Перенос вещества в этом случае есть явление побочное. Сама же волна остается переносом энергии без переноса вещества.
Можно сформулировать определение немного иначе. Волна в физике есть изменяющееся со временем пространственное чередование максимумов и минимумов любой физической величины (или возмущения физической величины).
Но если маятник качается на подвесе, это ведь, наверное, тоже волна? Вовсе нет. Главное отличие волн от колебаний – это перенос энергии. Представьте себе маятник, который вы держите в руках и представьте себе веревку, на которой вы можете воссоздать механическую волну. Чувствуете разницу?
Так когда же появляется волна и почему она существует. Почему в одном случае уместно говорить о волне, а в другом случае нет?
Условия появления и существования волны
Так уж повелось, что некоторые моменты нужно воспринимать как данность. Например, изучая биологию, мы не пытаемся объяснить, а почему же у лягушки именно такая форма тела. Мы можем найти причины эволюционного становления такого тела, как фактора выживания. Но именно что форму тела мы видим просто как дорожный знак. Она просто есть. Так и некоторые процессы подчиняются именно волновому механизму. Например, привычный нам всем звук, представляет собой волну.
Но почему волна появляется далеко не в каждом случае и почему, например, скорость тела при прямолинейном движении не является волной в классическом случае? Наверняка есть какое-то условие существования волны?
Необходимым условием для появления любой волны является возникновение в момент возмущения среды препятствующих ему сил.
Например, для механической волны, силы упругости стараются сблизить соседние частицы, когда они отдаляются, и оттолкнуть их сближении. Силы упругости начинают выводить из равновесия удаленные от источника частички. Все частицы вовлекаются в одно колебательное движение. Получается волна, подчиняющаяся закону синуса.
Т.е. для волны нужно, как минимум, существование некоторой упругой среды.
Вот мы и вывели, собственно, главный принцип формирования волны и описали её физическую модель. Легко увидеть всё это это, глядя на ту же веревочку, эксперимент с которой мы проводили для создания механической волны. Средой для колебания тут является сама веревочка. Она упругая. Мы дергаем за край, создавая источник колебания. Растягивающие напряжение встречают противодействие в виде силы упругости веревки. Тянут частички обратно, в направлении, противоположно направленном нашему дерганию. Но, дойдя до максимума, до верхней точки амплитуды колебания, начинают отталкивать частички обратно. Получилась волна. Написать проще, чем представить. Но нужно, всего лишь, понаблюдать за процессом и вы увидите явление зарождения волны во всей красе!
Очевидно, что в реальных условиях волна будет затухать при отдалении от источника колебаний. Конечно же, если среда будет эту волну гасить. Амплитуда колебания будет уменьшаться. Скажутся внешние силы. Подойдет пример и с веревочкой, и с морской гладью. Идеальный вариант без затухания так и останется идеальным. На практике встретить его не получится.
Радиоволны как ещё один пример
Хорошо, когда можно представить всё механически. Звуковую волну или волну в море представить не сложно! Даётся это намного проще и воспринимается всегда легче. Но что делать, например, с радиоволнами или световыми волнами?
Радиоволны – это колебания электромагнитного поля, распространяющиеся в пространстве со скоростью света. Напомним, что и свет относится к электромагнитным волнам.
Радиоволны переносят через пространство энергию, излучаемую генератором электромагнитных колебаний. А средой является поле. И тут, казалось бы, всё также просто и понятно.
Но перенесемся в космос. Тут нет как таковой среды! Значит волне распространяться негде 🙂 Не выполняется условие существования волны.
П.с. Отметим, что это касается всех случаев, когда мы имеем дело с “невидимыми средами”.
Что будет с волнами в космосе?
Вот, вроде бы, и нет там ничего. Сплошной вакуум. А радиосвязь работает и свет передается! Ведь мы видим свет от звёзд сквозь миллионы километров. Почему?
Здесь мы ступаем на тернистый путь.
Это сложная научная проблема, а как такового правильного ответа нет.
Чуть выше мы сказали, что для волны, в первую очередь, нужна среда, которая сможет колебаться. Для волны в море такой средой является вода. Наличие среды есть одно из условий существования как таковой волны в классическом её понимании.
Поэтому, первая теория возможности распространения волны в космосе строится на том, что вакуум в космическом пространстве вовсе не пуст. По мнению некоторых ученых, средой, заполняющей это пространство, является эфир.
Эфир в космосе
Эфир – это особый род пространства. Вопрос его существования спорный и далеко не все разделяют теорию существования эфира. Многие учёные её жестоко критикуют. Но и утверждать, что вакуум – есть абсолютная пустота, готовы далеко не все. Эйнштейн, по сути дела, “запретил” эфир 🙂
Из экспериментальных данных следует, что вакуум заполнен электрическими зарядами, находящимися в связанном состоянии. Этакая кристаллическая решетка пространства.
Вот вам и среда для колебаний. Это и есть эфир в широком смысле этого слова.
Физический вакуум
Ещё есть так называемый физический вакуум или современный вариант эфира. Это понятие переходит в теорию квантового поля. Что такое физический вакуум? Это некая среда, насыщенная виртуальными частицами. Они, вроде как, и могут являться носителем волны. Правда вот виртуальные частицы представить себе очень сложно.
Корпускулярно-волновой дуализм
Ещё одной теорией передачи волны в вакууме является наличие так называемого корпускулярно-волнового дуализм. Это означает, что волна может вести себя и как волна, и как частица. Например, такими свойствами обладает световая волна. Ну а если есть частицы, то что мешает им колебаться.
Колебания потока энергии
Ещё одной средой для распространения волны является поток энергии. По одной из теорий, энергия может неограниченно передаваться из одной точки в другую. Это направление активно прорабатывал Тесла. Предполагается, что такой поток может быть “носителем” волны.
Подведем итог
Получается, что волна – это процесс передачи энергии без передачи самого вещества, существующая в том случае, если есть среда для колебания.
Когда мы говорим про космическое пространство и про те же радиоволны, скорее всего, правильно будет использовать классическое определение волны.
Это будет тоже самое распространение энергии без распространения вещества. Правда вот среда для его распространения – это физический вакуум, определение которого само требует написания отдельной статьи.
Очень надеюсь, что материал вам понравился! 🙂 Подписывайтесь на канал, нажимайте лайк и всем спасибо. Обязательно смотрите Инженерные знания!
—————–
Обязательно прочитайте на нашем канале:
Источник
Волна – это процесс распространения колебания в среде с течением времени
Для существования волны необходим источник колебания и материальная среда или поле, в которых эта волна распространяется. Волны бывают самой разнообразной природы, но они подчиняются аналогичным закономерностям.
По физической природе различают:
Механические волны упругие, звуковые, волны на поверхности жидкости
| Электромагнитные волны свет, радиоволны, излучения |
По ориентации возмущений различают:
Продольные волны – Смещение частиц происходит вдоль направления распространения; могут распростаняться только в упругих средах; необходимо наличие в среде силы упругости при сжатии; могут распространяться в любых средах. Примеры:звуковые волны
| Поперечные волны – Смещение частиц происходит поперек направления распространения; могут распростаняться только в упругих средах; необходимо наличие в среде силы упругости при сдвиге; могут распространяться только в твердых средах (и на границе двух сред). Примеры: упругие волны в струне, волны на воде |
По характеру зависимости от времени различают:
Упругие волны – механические возмещения (деформации), распространяющиеся в упругой среде. Упругая волна называется гармонической (синусоидальной), если соответствующие ей колебания среды являются гармоническими.
Бегущие волны – волны, переносящие энергию в пространстве.
По форме волновой поверхности: плоская, сферическая, цилиндрическая волна.
Волновой фронт – геометрическое место точек, до которых дошли колебания к данному моменту времени.
Волновая поверхность – геометрическое место точек, колеблющихся в одной фазе.
Характеристики волны
Длина волны λ – расстояние, на которое волна распространяется за время, равное периоду колебаний
Амплитуда волны А – амплитуда колебаний частиц в волне
Скорость волны v – скорость распространения возмущений в среде
Период волны Т – период колебаний
Частота волны ν – величина, обратная периоду
Уравнение бегущей волны
В процессе распространения бегущей волны возмущения среды доходят до следующих точек пространства, при этом волна переносит энергию и импульс, но не переносит вещество (частицы среды продолжают колебаться в том же месте пространства).
где v – скорость, φ0 – начальная фаза, ω – циклическая частота, A – амплитуда
Свойства механических волн
1. Отражение волн – механические волны любого происхождения обладают способностью отражаться от границы раздела двух сред. Если механическая волна, распространяющаяся в среде, встречает на своем пути какое-либо препятствие, то она может резко изменить характер своего поведения. Например, на границе раздела двух сред с разными механическими свойствами волна частично отражается, а частично проникает во вторую среду.
2. Преломление волн – при распространении механических волн можно наблюдать и явление преломления: изменение направления распространения механических волн при переходе из одной среды в другую.
3. Дифракция волн – отклонение волн от прямолинейного распространения, то есть огибание ими препятствий.
4. Интерференция волн – сложение двух волн. В пространстве, где распространяются несколько волн, их интерференция приводит к возникновению областей с минимальным и максимальным значениями амплитуды колебаний
Интерференция и дифракция механических волн.
Волна, бегущая по резиновому жгуту или струне отражается от неподвижно закрепленного конца; при этом появляется волна, бегущая во встречном направлении.
При наложении волн может наблюдаться явление интерференции. Явление интерференции возникает при наложении когерентных волн.
Когерентными называют волны, имеющие одинаковые частоты, постоянную разность фаз, а колебания происходят в одной плоскости.
Интерференцией называется постоянное во времени явление взаимного усиления и ослабления колебаний в разных точках среды в результате наложения когерентных волн.
Результат суперпозиции волн зависит от того, в каких фазах накладываются друг на друга колебания.
Если волны от источников А и Б придут в точку С в одинаковых фазах, то произойдет усиление колебаний; если же – в противоположных фазах, то наблюдается ослабление колебаний. В результате в пространстве образуется устойчивая картина чередования областей усиленных и ослабленных колебаний.
Условия максимума и минимума
Если колебания точек А и Б совпадают по фазе и имеют равные амплитуды, то очевидно, что результирующее смещение в точке С зависит от разности хода двух волн.
Условия максимума
Если разность хода этих волн равна целому числу волн (т. е. четному числу полуволн) Δd = kλ, где k = 0, 1, 2, …, то в точке наложения этих волн образуется интерференционный максимум.
Условие максимума:
Амплитуда результирующего колебания А = 2×0.
Условие минимума
Если разность хода этих волн равна нечетному числу полуволн, то это означает, что волны от точек А и Б придут в точку С в противофазе и погасят друг друга.
Условие минимума:
Амплитуда результирующего колебания А = 0.
Если Δd не равно целому числу полуволн, то 0 < А < 2х0.
Дифракция волн.
Явление отклонения от прямолинейного распространения и огибание волнами препятствий называется дифракцией.
Соотношение между длиной волны (λ) и размерами препятствия (L) определяет поведение волны. Дифракция наиболее отчетливо проявляется, если длина набегающей волны больше размеров препятствия. Опыты показывают, что дифракция существует всегда, но становится заметной при условии d<<λ, где d – размер препятствия.
Дифракция – общее свойство волн любой природы, которая происходит всегда, но условия её наблюдения разные.
Волна на поверхности воды распространяется в сторону достаточно большого препятствия, за которым образуется тень, т.е. волнового процесса не наблюдается. Такое свойство используется при устройстве волноломов в портах. Если же размеры препятствия сравнимы с длиной волны, то за препятствием будет наблюдаться волнение. Позади него волна распространяется так, как будто препятствия не было вовсе, т.е. наблюдается дифракция волны.
Примеры проявления дифракции. Слышимость громкого разговора за углом дома, звуки в лесу, волны на поверхности воды.
Стоячие волны
Стоячие волны образуются при сложении прямой и отраженной волны, если у них одинаковая частота и амплитуда.
В струне, закрепленной на обоих концах, возникают сложные колебания, которые можно рассматривать как результат наложения (суперпозиции) двух волн, распространяющихся в противоположных направлениях и испытывающих отражения и переотражения на концах. Колебания струн, закрепленных на обоих концах, создают звуки всех струнных музыкальных инструментов. Очень похожее явление возникает при звучании духовых инструментов, в том числе органных труб.
Колебания струны. В закрепленной с обоих концов натянутой струне при возбуждении поперечных колебаний устанавливаются стоячие волны, причем в местах закрепления струны должны располагаться узлы. Поэтому в струне возбуждаются с заметной интенсивностью только такие колебания, половина длины волны которых укладывается на длине струны целое число раз.
Отсюда вытекает условие
Длинам волн соответствуют частоты
n = 1, 2, 3…Частоты vn называются собственными частотами струны.
Гармонические колебания с частотами vn называются собственными или нормальными колебаниями. Их называют также гармониками. В общем случае колебание струны представляет собой наложение различных гармоник.
Уравнение стоячей волны:
В точках, где координаты удовлетворяют условию (n = 1, 2, 3, …), суммарная амплитуда равна максимальному значению – это пучности стоячей волны. Координаты пучностей:
В точках, координаты которых удовлетворяют условию (n = 0, 1, 2,…), суммарная амплитуда колебаний равна нулю – это узлы стоячей волны. Координаты узлов:
Образование стоячих волн наблюдают при интерференции бегущей и отраженных волн. На границе, где происходит отражение волны, получается пучность, если среда, от которой происходит отражение, менее плотная (a), и узел – если более плотная (б).
Если рассматривать бегущую волну, то в направлении ее распространения переносится энергия колебательного движения. В случае же стоячей волны переноса энергии нет, т.к. падающая и отраженная волны одинаковой амплитуды несут одинаковую энергию в противоположных направлениях.
Стоячие волны возникают, например, в закреплённой с обоих концов натянутой струне при возбуждении в ней поперечных колебаний. Причём в местах закреплений располагаются узлы стоячей волны.
Если стоячая волна устанавливается в воздушном столбе, открытом с одного конца (звуковая волна), то на открытом конце образуется пучность, а на противоположном – узел.
Источник