Какими свойствами обладают твердые жидкие и газообразные вещества
Естественные науки, включающая химию и физику, обычно рассматриваются как науки, изучающие природу и свойства вещества и энергии в неживых системах. Вещество во Вселенной – атомы, молекулы и ионы, которые составляют все физические тела, все, что имеет массу и занимает пространство. Энергия — это способность вызывать изменения. Энергия не может быть создана или уничтожена; он может быть только сохранена и преобразована из одной формы в другую. Потенциальная энергия — это энергия, хранящаяся в объекте из-за его положения – например, ведро с водой, повешенное над дверью, может упасть. Кинетическая энергия — это энергия, движения, любой объект или частица, находящаяся в движении, обладает кинетической энергией, зависящей от массы и скорости тела. Кинетическая энергия может быть преобразована в другие виды энергии, такие как электрическая энергия и тепловая энергия.
Существует пять известных фаз или состояний вещества: твердое тело, жидкость, газ, плазма и бозе-эйнштейновский конденсат. Основное различие в структурах каждого состояния находится в плотностях частиц.
ТВЕРДОЕ ТЕЛО
В твердом теле частицы плотно упакованы, поэтому они не могут двигаться очень сильно. Частицы твердого вещества имеют очень низкую кинетическую энергию. Электроны каждого атома находятся в движении, поэтому атомы имеют небольшую вибрацию, но они фиксируются в своем положении. Твердые тела имеют определенную форму, и могут длительное время ее сохранять. У них также есть определенный объем. Частицы твердого тела уже настолько плотно упакованы вместе, что увеличивающееся давление не будет сжимать твердое тело до меньшего объема.
ЖИДКОСТИ
В жидкой фазе частицы вещества имеют большую кинетическую энергию, чем частицы в твердом теле. Частицы жидкости не удерживаются в регулярном расположении, но все еще очень близки друг к другу, поэтому жидкости имеют определенный объем. Жидкости, как и твердые тела, трудно сжимаемы. Частицы жидкости имеют достаточно места для обтекания друг друга, поэтому жидкости имеют неопределенную форму. Жидкость принимает форму емкости, в которую она помещена. Сила распределяется равномерно по всей жидкости, поэтому, когда объект помещается в жидкость, частицы жидкости перемещаются за объектом.
Величина восходящей плавучей силы равна весу жидкости, в объеме тела. Когда плавучая сила равна силе тяжести, объект будет плавать. Этот принцип плавучести был обнаружен греческим математиком Архимедом, который, согласно легенде, выпрыгнул из своей ванны и побежал обнаженным по улицам, крича «Эврика!», после того, как догадался о выталкивающих силах в жидкости. Эту силу еще называют силой Архимеда, как дань уважения и признания древнему ученому.
Частицы жидкости, как правило, удерживаются слабым межмолекулярным притяжением, а не свободно перемещаются, как частицы газа. Эта сила сцепления соединяет частицы вместе, образуя капли или потоки.
Ученые сообщили, что в апреле 2016 года они создали странное состояние материи, которое, как предполагалось, существовало, но никогда не было видно в реальной жизни. Хотя этот тип материи можно держать в руке, как если бы он был сплошным, увеличение материала выявило бы беспорядочные взаимодействия его электронов, более характерные для жидкости. Это тип материи называют квантовой спиновой жидкостью Китаева, в ней электроны входят в своеобразный квантовый танец, в котором они взаимодействуют или «разговаривают» друг с другом. Обычно, когда вещество остывает, спин его электронов имеет тенденцию выстраиваться в линию. Но в этой квантовой спиновой жидкости электроны взаимодействуют так, что они влияют на то, как другие вращаются и никогда не выравниваются независимо от того, насколько материал холодный. Материал будет вести себя так, как будто его электроны, считающиеся неделимыми, разрушались.
ГАЗЫ
Частицы газа находятся на большом расстоянии друг от друга и имеют высокую кинетическую энергию. Если пространство не ограничено, частицы газа будут разбросаны бесконечно; если оно ограничено, газ будет расширяться, чтобы заполнить весь объем. Когда газ оказывается под давлением, то есть уменьшается объем емкости, пространство между частицами уменьшается, а давление, оказываемое их столкновениями, увеличивается. Если объем сосуда поддерживается постоянным, но температура газа увеличивается, то давление также увеличивается. Частицы газа обладают достаточной кинетической энергией для преодоления межмолекулярных сил, которые удерживают твердые частицы и жидкости вместе, поэтому газ не имеет определенного объема и формы.
ПЛАЗМА
Плазма не является общим состоянием материи здесь, на Земле, но может быть самым распространенным состоянием материи во Вселенной. Плазма состоит из сильно заряженных частиц с чрезвычайно высокой кинетической энергией. Благородные газы (гелий, неон, аргон, криптон, ксенон и радон) часто используются для создания светильников, используя электричество для их ионизации в плазменное состояние. Звезды, по сути, являются перегретыми шарами плазмы.
КОНДЕНСАТ БОЗЕ-ЭЙНШТЕЙНА
В 1995 году технология позволила ученым создать новое состояние материи – конденсат Бозе-Эйнштейна (КБЭ). Используя комбинацию лазеров и магнитов, Эрик Корнелл и Карл Вейман охладили образец рубидия с точностью до нескольких градусов до абсолютного нуля. При этой чрезвычайно низкой температуре молекулярное движение очень близко к остановке. Так как кинетическая энергия почти не передается от одного атома к другому, атомы начинают сжиматься вместе. Уже не тысячи отдельных атомов, а один «супер атом». КБЭ используется для изучения квантовой механики на макроскопическом уровне. Свет, кажется, замедляется, когда он проходит через КБЭ, что позволяет изучать парадокс частиц/волн. КБЭ также обладает многими свойствами сверхтекучей жидкости без трения, также используются для моделирования условий, которые могут выполняться в черных дырах.
СМЕНА ФАЗЫ
Добавление энергии к веществу приводит к физическому изменению – материя переходит из одного состояния в другое. Например, добавление тепловой энергии – тепла – к жидкой воде приводит к тому, что она становится паром или газом. Извлечение энергии также приводит к физическим изменениям, например, когда жидкая вода становится льдом – твердой – при удалении тепла. Физическое изменение фазы также может быть вызвано движением и давлением.
ПЛАВЛЕНИЕ И ОТВЕРДЕВАНИЕ
Когда тепло прикладывается к твердому веществу, его частицы начинают быстрее вибрировать и склонны двигаться дальше друг от друга. Когда вещество при стандартном давлении достигает определенной точки, называемой точкой плавления, твердое вещество начинает превращаться в жидкость. Точку плавления чистого вещества часто можно определить с точностью до 0,1 градуса Цельсия, точкой, в которой твердая и жидкая фазы находятся в равновесии. Если вы продолжаете нагревать образец, температура не будет повышаться выше точки плавления, пока весь образец не будет сжижен. Тепловая энергия используется для преобразования твердого вещества в жидкую форму. Как только весь образец станет жидким, температура снова начнет расти. Соединения, которые в остальном очень похожи, могут иметь разные точки плавления, поэтому точка плавления может быть полезным способом различения среди них. Например, сахароза имеет точку плавления 186,1 градусов Цельсия, тогда как температура плавления глюкозы составляет 146 градусов Цельсия. Твердая смесь, такая как металлический сплав, часто может быть разделена на ее составные части путем нагревания смеси и извлечения жидкостей по мере достижения ими различных точек плавления.
Точка замерзания – это температура, при которой жидкое вещество достаточно охлаждается для образования твердого вещества. По мере охлаждения жидкости движение частиц замедляется. Во многих веществах частицы выравниваются точными геометрическими узорами для образования кристаллических твердых веществ. Большинство жидкостей сжимаются, когда они замерзают. Одной из важных характеристик воды является то, что она расширяется при замерзании, поэтому лед плавает. Если бы лед не плавал, не было бы жидкой воды под замерзшим льдом, и многие формы водной жизни были бы невозможны.
Температура замерзания часто близка к той же температуре, что и температура плавления, но не считается характерной для вещества, поскольку несколько факторов могут ее изменить. Например, добавление растворенных веществ в жидкость приведет к снижению температуры замерзания. Примером этого является использование суспензии соли для снижения температуры, при которой вода замерзает на наших дорогах. Другие жидкости можно охлаждать до температур, значительно ниже их температуры плавления, до того, как они начнут затвердевать. Такие жидкости называются суперохлаждаемыми и часто требуют наличия пылевой частицы или затравочного кристалла для начала процесса кристаллизации.
СУБЛИМАЦИЯ
Когда твердое вещество превращается непосредственно в газ без прохождения жидкой фазы, процесс известен как сублимация. Сублимация происходит, когда кинетическая энергия частиц больше атмосферного давления, окружающего образец. Это может произойти, когда температура образца быстро увеличивается за точку кипения (испарение вспышки). Чаще всего вещество может быть «высушено в замороженном состоянии» путем его охлаждения в условиях вакуума, так что вода в веществе подвергается сублимации и удаляется из образца. Несколько летучих веществ будут подвергаться сублимации при нормальной температуре и давлении. Наиболее известным из этих веществ является CO2 или сухой лед.
ПАРООБРАЗОВАНИЕ
Испарение представляет собой превращение жидкости в газ. Испарение может происходить путем испарения или кипения.
Поскольку частицы жидкости находятся в постоянном движении, они часто сталкиваются друг с другом, передавая при этом энергию. Этот перенос энергии имеет малое влияние внутри жидкости, но когда достаточная энергия передается частице вблизи поверхности, она может получить достаточную энергию, чтобы полностью удалиться из образца в виде частицы свободного газа. Этот процесс называется испарением, и он продолжается до тех пор, пока остается жидкость. Энергия, передаваемая поверхностным молекулам, вызывающая их вылет, уносится от оставшегося жидкого образца.
Когда к жидкости добавляется достаточно тепла, образуя пузырьки пара ниже поверхности, мы говорим, что жидкость кипит. Температура, при которой жидкость кипит, является переменной. Точка кипения зависит от давления вещества. Жидкость под более высоким давлением будет требовать больше тепла до того, как в ней могут образоваться пузырьки пара. На больших высотах атмосферном давлении ниже, чем при нормальных условиях, поэтому жидкость будет кипеть при более низкой температуре. Такое же количество жидкости на уровне моря находится под большим атмосферным давлением и будет кипеть при более высокой температуре.
КОНДЕНСАЦИЯ И ДЕСУБЛИМАЦИЯ
Конденсация – это когда газ превращается в жидкость. Конденсация происходит, когда газ охлаждается или сжимается до такой степени, что кинетическая энергия частиц больше не может преодолевать межмолекулярные силы. Первоначальный кластер частиц инициирует процесс, который имеет тенденцию дополнительно охлаждать газ, так что конденсация продолжается. Когда газ превращается непосредственно в твердое вещество, не проходя через жидкую фазу, процесс называется осаждением или десублимацией. Примером этого является то, как при пониженных температурах преобразуется водяной пар в атмосфере в иней и лед. Иней имеет тенденцию обрисовывать сплошные листья травы и веток, потому что воздух, касающийся этих твердых веществ, охлаждается быстрее, чем воздух, который не касается твердой поверхности.
Источник
Основная цель урока: выяснить особенности строения веществ в различных агрегатных состояниях и объяснить их. Сравнить физические свойства веществ в различных агрегатных состояниях.
Конспект урока
Рассмотрим следующие вещества: вода, камень, воздух, олово, спирт, сахар, природный газ, лед, кислород, растительное масло, алюминий, молоко, азот (данные вещества даны при комнатной температуре).
Многие из них мы привыкли видеть в каком-либо одном состоянии. Например, железо – в твердом, растительное масло – в жидком, водород – в газообразном. Однако есть и такие, которые в нашей жизни встречаются сразу в трех состояниях, например, вода: твердое состояние воды – лед, жидкое – вода, газообразное – водяной пар.
В природе вещества встречаются в трех состояниях: твердом, жидком и газообразном (лед, вода, водяной пар) Такое состояние вещества называется агрегатным.
Газы. Расстояние между молекулами во много раз больше самих молекул, они почти не притягиваются и свободно движутся во всех направлениях. Поэтому газы заполняют весь предоставленный объём, не имеют формы и легко сжимаются. Они принимают форму сосуда и полностью заполняют предоставленный им объём. Но если газы сильно сжать или охладить они переходят в жидкое состояние.
Жидкости. Молекулы расположены близко друг к другу, расстояние между ними сравнимо с размером молекул. Они скачками меняют свое место – «прыгают». Поэтому жидкости не сохраняют форму, они могут течь, их легко перелить. Молекулы жидкости не расходятся на большие расстояния и жидкость в обычных условиях сохраняет свой объём. Но сжать их трудно, так как при этом молекулы сближаются и между ними возникает отталкивание.
Твердые тела. Молекулы расположены в строгом порядке расстояние между молекулами сравнимо с размером молекул. В твёрдых телах притяжение между молекулами ещё больше чем у жидкостей. Молекулы колеблются около определенной точки, не могут перемещаться далеко от неё. Поэтому твердые тела сохраняют форму и объем.
Тест для самоконтроля
Вопрос №1. В скольких агрегатных состояниях могут вообще находиться вещества?
А. В двух: твёрдом и жидком
Б. В двух: твёрдом и газообразном
С. В трех: в виде твёрдого тела, жидкости и пара
Д. В трех: твёрдом, жидком и газообразном
Вопрос № 2. Может ли какое-либо вещество быть в разных состояниях?
А. Не может
Б. Нет: любое вещество или твердое, или жидкое, или газообразное
С. Может: оно изменит свое состояние, если изменятся условия
Вопрос № 3. Какими общими свойствами обладают твёрдые тела?
А. Собственным объёмом и изменчивостью формы
Б. Собственными объёмом и формой
Д. Собственной формой и легко изменяемым объёмом
Вопрос № 4. Каковы общие свойства жидкостей?
А. Наличие у них собственного объёма и текучести, следовательно, изменчивости формы
Б. Обладание собственным объёмом и формой
С. Отсутствие собственного объёма и формы
Д. Трудность изменения объёма и формы
Вопрос № 5. Какие общие свойства присущи газам?
А. Сохранение газом своего объёма и формы
Б. Неизменность объёма газа при приобретении им любой формы
С. Заполнение газом всего предоставленного ему пространства
Д. Трудность сжатия, изменения формы и объёма
Вопрос № 6. Как расположены, взаимодействуют и движутся молекулы в газах?
А. Молекулы расположены на расстояниях, сравнимых с размерами самих молекул, и перемещаются свободно друг относительно друга
Б. Молекулы находятся на больших расстояниях (по сравнению с размерами молекул) друг от друга, практически не взаимодействуют и движутся беспорядочно
С. Они расположены в строгом порядке, сильно взаимодействуют и колеблются около определённых положений
Д. Молекулы находятся на больших расстояниях друг от друга в определенном порядке, слабо взаимодействуют друг с другом и движутся в разные стороны
Источник
Агрега́тное состоя́ние вещества (от лат. aggrego «присоединяю») — физическое состояние вещества, зависящее от соответствующего сочетания температуры и давления.
Изменение агрегатного состояния может сопровождаться скачкообразным изменением свободной энергии, энтропии, плотности и других физических величин.[1]
Традиционно выделяют три агрегатных состояния: твёрдое, жидкое и газообразное. К агрегатным состояниям принято причислять также плазму[2], в которую переходят газы при повышении температуры и фиксированном давлении. Отличительной особенностью является отсутствие резкой границы перехода к плазменному состоянию. Существуют и другие агрегатные состояния.
Определения агрегатных состояний не всегда являются строгими. Так, существуют аморфные тела, сохраняющие структуру жидкости и обладающие небольшой текучестью и способностью сохранять форму; жидкие кристаллы текучи, но при этом обладают некоторыми свойствами твёрдых тел, в частности, могут поляризовать проходящее через них электромагнитное излучение.
Для описания различных состояний в физике используется более широкое понятие термодинамической фазы. Явления, описывающие переходы от одной фазы к другой, называют критическими явлениями.
Основным термодинамическим (феноменологическим) признаком различия видов агрегатного состояния вещества является наличие энергетической границы между фазами: теплота испарения как граница между жидкостью и её паром и теплота плавления как граница между твёрдым веществом и жидкостью[3].
Четыре основных состояния[править | править код]
Твёрдое тело[править | править код]
Кристаллические вещества: атомное разрешение изображения титаната стронция. Яркие атомы — Sr, темнее их Ti.
В твёрдом состоянии вещество сохраняет как форму, так и объём. При низких температурах все вещества замерзают — превращаются в твёрдые тела. Температура затвердевания может быть несколько повышена при увеличении давления. Твёрдые тела делятся на кристаллические и аморфные. С микроскопической точки зрения твёрдые тела характерны тем, что молекулы или атомы в них в течение длительного времени сохраняют своё среднее положение неизменным, только совершая колебания с небольшой амплитудой вокруг них. В кристаллах средние положения атомов или молекул строго упорядочены. Кристаллы характеризуются пространственной периодичностью в расположении равновесных положений атомов, которая достигается наличием дальнего порядка и носит название кристаллической решётки. Естественная форма кристаллов — правильные многогранники.
В аморфных телах атомы колеблются вокруг хаотически расположенных точек, у них отсутствует дальний порядок, но сохраняется ближний, при котором молекулы расположены согласованно на расстоянии, сравнимом с их размерами. Согласно классическим представлениям, устойчивым состоянием (с минимумом потенциальной энергии) твёрдого тела является кристаллическое. Частным случаем аморфного состояния является стеклообразное состояние. Аморфное тело находится в метастабильном состоянии и с течением времени должно перейти в кристаллическое состояние, однако время кристаллизации часто столь велико, что метастабильность вовсе не проявляется. Аморфное тело можно рассматривать как жидкость с очень большой (часто бесконечно большой) вязкостью. Кристаллические твёрдые тела имеют анизотропные свойства, то есть их отклик на приложенные внешние силы зависит от ориентации сил относительно кристаллографических осей. В твердотельном состоянии вещества могут иметь много фаз, которые отличаются составлением атомов или другими характеристиками, такими как упорядочение спинов в ферромагнетиках.
Жидкость[править | править код]
Структура классической одноатомной жидкости.
В жидком состоянии вещество сохраняет объём, но не сохраняет форму. Это означает, что жидкость может занимать только часть объёма сосуда, но также может свободно перетекать по всей поверхности сосуда. Жидкое состояние обычно считают промежуточным между твёрдым телом и газом.
Форма жидких тел может полностью или отчасти определяться тем, что их поверхность ведёт себя как упругая мембрана. Так, вода может собираться в капли. Но жидкость способна течь даже под своей неподвижной поверхностью, и это тоже означает изменение формы (внутренних частей жидкого тела).
Молекулы жидкости не имеют определённого положения, но в то же время им недоступна полная свобода перемещений. Между ними существует притяжение, достаточно сильное, чтобы удержать их на близком расстоянии.
Вещество в жидком состоянии существует в определённом интервале температур, ниже которого переходит в твёрдое состояние (происходит кристаллизация либо превращение в твердотельное аморфное состояние — стекло), выше — в газообразное (происходит испарение). Границы этого интервала зависят от давления.
Как правило, вещество в жидком состоянии имеет только одну модификацию. (Наиболее важные исключения — это квантовые жидкости и жидкие кристаллы.) Поэтому в большинстве случаев жидкость является не только агрегатным состоянием, но и термодинамической фазой (жидкая фаза).
Все жидкости принято делить на чистые жидкости и смеси. Некоторые смеси жидкостей имеют большое значение для жизни: кровь, морская вода и др. Жидкости могут выполнять функцию растворителей.
Как и газ, жидкости тоже в основном изотропные. Однако, существуют жидкости с анизотропными свойствами — жидкие кристаллы. Кроме изотропной, так называемой нормальной фазы, эти вещества, мезогены, имеют одну или несколько упорядоченных термодинамических фаз, которые называют мезофазы. Составление в мезофазы происходит благодаря особой форме молекул жидких кристаллов. Обычно это длинные узкие молекулы, которым выгодно укладываться так, чтобы их оси совпадали.
Газ[править | править код]
Основная статья: Газ
Промежутки между молекулами газа очень большие. Молекулы газа обладают очень слабыми связями. Молекулы в газе могут перемещаться свободно и быстро.
Газообразное состояние характерно тем, что оно не сохраняет ни форму, ни объём. Причем заполняет весь доступный ему объём. Это состояние, свойственное веществам с малой плотностью. Переход из жидкого в газообразное состояние называют испарением, а противоположный ему переход из газообразного состояния в жидкое — конденсацией. Переход из твёрдого состояния в газообразное, минуя жидкое, называют сублимацией или возгонкой. С микроскопической точки зрения газ — это состояние вещества, в котором его отдельные молекулы взаимодействуют слабо и движутся хаотически. Взаимодействие между ними сводится к спорадическим столкновениям. Кинетическая энергия молекул превышает потенциальную. Подобно жидкостям, газы обладают текучестью и сопротивляются деформации. В отличие от жидкостей, газы не имеют фиксированного объёма и не образуют свободной поверхности, а стремятся заполнить весь доступный объём (например, сосуда). По химическим свойствам газы и их смеси весьма разнообразны — от малоактивных инертных газов до взрывчатых газовых смесей. Понятие «газ» иногда распространяют не только на совокупности атомов и молекул, но и на совокупности других частиц — фотонов, электронов, броуновских частиц, а также плазму. Некоторые вещества не имеют газообразного состояния. Это вещества со сложным химическим строением, которые при повышении температуры распадаются вследствие химических реакций раньше, чем становятся газом. Не существует различных газообразных термодинамических фаз одного вещества. Газам свойственна изотропия, то есть независимость характеристик от направления. В привычных для человека земных условиях, газ имеет одинаковую плотность в любой точке, однако это не является универсальным законом, во внешних полях, например в поле тяготения Земли, или в условиях различных температур плотность газа может меняться от точки к точке. Газообразное состояние вещества в условиях, когда возможно существование устойчивой жидкой или твёрдой фазы этого же вещества, обычно называется паром.
Плазма[править | править код]
Плазменная декоративная лампа.
Четвёртым агрегатным состоянием вещества часто называют плазму. Плазма является частично или полностью ионизированным газом и в равновесном состоянии обычно возникает при высокой температуре, от нескольких тысяч К[1] и выше. В земных условиях плазма образуется в газовых разрядах. Её свойства напоминают свойства газообразного состояния вещества, за исключением того факта, что для плазмы принципиальную роль играет электродинамика, то есть равноправной с ионами и электронами составляющей плазмы является электромагнитное поле.
Плазма — самое распространённое во Вселенной агрегатное состояние вещества. В этом состоянии находится вещество звёзд и вещество, наполняющее межпланетное, межзвёздное и межгалактическое пространство. Бо́льшая часть барионного вещества (по массе около 99,9 %) во Вселенной находится в состоянии плазмы.[4].
Фазовый переход[править | править код]
Фазовый переход по фазовой диаграмме при изменении её интенсивных параметров (температуры, давления и тому подобное) происходит, когда система пересекает линию, разделяющую две фазы. Поскольку разные термодинамические фазы описываются различными уравнениями состояния, всегда можно найти величину, которая скачкообразно меняется при фазовом переходе.
При фазовом переходе первого рода скачкообразно изменяются самые главные, первичные экстенсивные параметры: удельный объём, количество запасённой внутренней энергии, концентрация компонентов и т. п. Фазовые переходы второго рода происходят в тех случаях, когда меняется симметрия строения вещества (симметрия может полностью исчезнуть или понизиться).
Низкотемпературные состояния[править | править код]
Сверхтекучесть[править | править код]
Способность вещества в особом состоянии (квантовой жидкости), возникающем при понижении температуры к абсолютному нулю (термодинамическая фаза), протекать через узкие щели и капилляры без трения. До недавнего времени сверхтекучесть была известна только у жидкого гелия, однако в последние годы сверхтекучесть была обнаружена и в других системах: в разреженных атомных бозе-конденсатах, твёрдом гелии.
Сверхтекучесть объясняется следующим образом. Поскольку атомы гелия являются бозонами, квантовая механика допускает нахождение в одном состоянии произвольного числа частиц. Вблизи абсолютного нуля температур все атомы гелия оказываются в основном энергетическом состоянии. Поскольку энергия состояний дискретна, атом может получить не любую энергию, а только такую, которая равна энергетическому зазору между соседними уровнями энергии. Но при низкой температуре энергия столкновений может оказаться меньше этой величины, в результате чего рассеяния энергии попросту не будет происходить. Жидкость будет течь без трения.
Конденсат Бозе — Эйнштейна[править | править код]
Получается в результате охлаждения бозе-газа до температур, близких к абсолютному нулю. В таком сильно охлаждённом состоянии достаточно большое число атомов оказывается в своих минимально возможных квантовых состояниях и квантовые эффекты начинают проявляться на макроскопическом уровне. Конденсат Бозе — Эйнштейна проявляет ряд квантовых свойств, таких как сверхтекучесть и резонанс Фешбаха[en].
Фермионный конденсат[править | править код]
Представляет собой Бозе-конденсацию в режиме БКШ «атомных куперовских пар» в газах состоящих из атомов-фермионов.
(В отличие от традиционного режима бозе-эйнштейновской конденсации составных бозонов).
Такие фермионные атомные конденсаты являются «родственниками» сверхпроводников, но с критической температурой порядка комнатной и выше.
[5]
Вырожденный газ[править | править код]
Газ, на свойства которого существенно влияют квантовомеханические эффекты, возникающие вследствие тождественности его частиц. Вырождение наступает в условиях, когда расстояния между частицами газа становятся соизмеримыми с длиной волны де Бройля; в зависимости от спина частиц выделяются два типа вырожденных газов — ферми-газ, образованный фермионами (частицами с полуцелым спином) и бозе-газ, образованный бозонами (частицами с целым спином).
Сверхтекучее твёрдое тело[править | править код]
Термодинамическая фаза квантовой жидкости, представляющей собой твёрдое тело со свойствами сверхтекучей жидкости.
Высокоэнергетические состояния[править | править код]
Глазма[править | править код]
Состояние адронного поля[6], предшествующее при столкновениях кварк-глюонной плазме. Состоит из цветных токовых трубок.[7] Глазма является особенностью теоретической модели «конденсата цветового стекла» (англ. color glass condensate) — подхода к описанию сильного взаимодействия в условиях высоких плотностей[8].
Глазма образуется при столкновении адронов друг с другом (например, протонов с протонами, ионов с ионами, ионов с протонами). Считается также, что в эволюции Вселенной состояние глазмы предшествовало кварк-глюонной плазме, которая существовала в первые миллионные доли секунды сразу после Большого взрыва. Время существования глазмы — несколько иоктосекунд[9].
Кварк-глюонная плазма[править | править код]
Состояние вещества в физике высоких энергий и физике элементарных частиц, при котором адронное вещество переходит в состояние, аналогичное состоянию, в котором находятся электроны и ионы в обычной плазме. Ему предшествует состояние глазмы[10] (глазма термализуется, то есть разрушается, порождая множество хаотично движущихся кварков, антикварков и глюонов: кварк-глюонную плазму[11]).
Состояния при большом давлении[править | править код]
Нейтронное состояние[править | править код]
Принципиально отличное от других состояние вещества, состоящее только из нейтронов. В нейтронное состояние вещество переходит при сверхвысоком давлении, недоступном пока в лаборатории, но которое существует внутри нейтронных звезд. При переходе в нейтронное состояние, электроны вещества объединяются с протонами и превращаются в нейтроны. Для этого необходимо, чтобы силы гравитации сжали вещество настолько, чтобы преодолеть отталкивание электронов, обусловленное принципом Паули. В результате в нейтронном состоянии вещество полностью состоит из нейтронов и имеет плотность порядка ядерной. Температура вещества при этом не должна быть очень высокой (в энергетическом эквиваленте, в пределах от сотни МэВ).
Другие состояния[править | править код]
Тёмная материя[править | править код]
Форма материи, которая не испускает электромагнитного излучения и не взаимодействует с ним. Это свойство данной формы вещества делает невозможным её прямое наблюдение. Однако возможно обнаружить присутствие тёмной материи по создаваемым ею гравитационным эффектам.
Обнаружение природы тёмной материи поможет решить проблему скрытой массы, которая, в частности, заключается в аномально высокой скорости вращения внешних областей галактик.
Сверхкритический флюид[править | править код]
Состояние вещества, при котором исчезает различие между жидкой и газовой фазой. Любое вещество, находящееся при температуре и давлении выше критической точки, является сверхкритической жидкостью. Свойства вещества в сверхкритическом состоянии промежуточные между его свойствами в газовой и жидкой фазе. Так, СКФ обладает высокой плотностью, близкой к жидкости, низкой вязкостью и при отсутствии межфазных границ поверхностное натяжение также исчезает. Коэффициент диффузии при этом имеет промежуточное между жидкостью и газом значение. Вещества в сверхкритическом состоянии могут применяться в качестве заменителей органических растворителей в лабораторных и промышленных процессах. Наибольший интерес и распространение в связи с определёнными свойствами получили сверхкритическая вода и сверхкритический диоксид углерода.
Вырожденная материя[править | править код]
- Ферми-газ — 1-я стадия: электронно-вырожденный газ, наблюдается в белых карликах, играет важную роль в эволюции звёзд.
- 2-я стадия — нейтронное состояние: в него вещество переходит при сверхвысоком давлении, недостижимом пока в лаборатории, но существующем внутри нейтронных звёзд. При переходе в нейтронное состояние электроны вещества взаимодействуют с протонами и превращаются в нейтроны. В результате вещество в нейтронном состоянии полностью состоит из нейтронов и обладает плотностью порядка ядерной. Температура вещества при этом должна быть ниже триллиона градусов (в энергетическом эквиваленте не более сотни МэВ).
- При повышении температуры выше сотни МэВ в нейтронном состоянии начинают рождаться и аннигилировать разнообразные мезоны. При дальнейшем повышении температуры происходит деконфайнмент, и вещество переходит в состояние кварк-глюонной плазмы. Оно состоит уже не из адронов, а из постоянно рождающихся и исчезающих кварков и глюонов. Возможно[12], деконфайнмент происходит в два этапа.
- При дальнейшем неограниченном повышении давления без повышения температуры вещество коллапсирует в чёрную дыру
- При одновременном повышении и давления, и температуры к кваркам и глюонам добавляются иные частицы. Что происходит с веществом, пространством и временем при температурах, близких к планковской, пока неизвестно.
См. также[править | править код]
- Тройная точка
- Нормальные и стандартные условия
Примечания[править | править код]
Литература[править | править код]
- Шульц М. М., Мазурин О. В. Современное представление о строении стёкол и их свойствах. — Л.: Наука, 1988. — ISBN 5-02-024564-X.
Источник