Какими свойствами обладают силы удерживающие нуклоны в ядре
«Другого ничего в природе нет….
Ни здесь, ни там – в космических глубинах.
Все: от песчинок малых до планет
из элементов состоит единых»
Степан Щипачёв
Ранее изучалось строение атома. С помощью опытов Резерфорда, было установлено, что почти вся масса и весь положительный заряд атома сосредоточены в атомном ядре, вокруг которого вращаются отрицательно заряженные электроны. После этого открытия возникал резонный вопрос: а из чего состоит ядро? Ещё в 1913 году, Резерфорд предположил, что в состав любого атомного ядра входит ядро атома водорода. Это предположение было обусловлено тем, что масса ядра любого химического элемента была в целое число раз больше массы ядра атома водорода. Это дало основание рассматривать ядро атома водорода как элементарную частицу. Такая частица была названа протоном.
В 1919 году Резерфорд провел следующий опыт: он обстреливал ядро атома азота a-частицами. При попадании a-частицы в ядро азота, образовались два совершенно новых ядра: по предварительным оценкам, это были ядра атомов кислорода и водорода.
Однако полной уверенности в этом не было до тех пор, пока эксперимент не был повторен в камере Вильсона. На фотографии видны расходящиеся прямые линии – это следы a-частиц, которые не испытали соударений с ядрами атомов азота.
Тем не менее, на фотографии ясно видно, что след одной a-частицы раздваивается. Это говорит о том, что именно эта a-частица столкнулась с ядром атома азота. По характеру искривления треков было установлено (на этот раз точно), что образовавшиеся ядра действительно являются ядрами атомов кислорода и водорода. Таким образом, Резерфордом фактически была получена первая искусственная ядерная реакция.
В уравнении, описывающем данную реакцию, символом
обозначено ядро атома водорода, масса которого составляет приблизительно одну атомную единицу массы (1 а.е.м.), а заряд равен модулю элементарного заряда. Ядро атома водорода также обозначается символом
(то есть символом протона, поскольку это одно и то же). Впоследствии были проведены подобные эксперименты и с другими элементами, такими как натрий, алюминий, магний и многими другими. Из всех этих ядер a-частицы выбивали протоны, что подтверждало гипотезу Резерфорда.
Тем не менее, очень скоро стало ясно, что ядра не состоят только из протонов. Дело в том, что это противоречило опытным данным. Для примера возьмем ядро бериллия, заряд которого равен четырем элементарным зарядам . Это говорит нам о том, что в ядре бериллия находится 4 протона. Если бы ядро состояло только из протонов, то масса ядра бериллия была бы равна 4 а.е.м. В действительности же, масса ядра бериллия составляет 9 а.е.м. Следовательно, в ядро входят еще какие-то частицы, причем не обладающие электрическим зарядом. Именно на основании этого, в 1929 году Резерфорд высказал предположение о существовании электрически нейтральной частицы, масса которой приблизительно равна массе протона.
В 1930 году Вальтер Боте и его студент Герберт Беккер обнаружили следующее: при бомбардировке a-частицами ядра атома бериллия, из ядра исходит какое-то неизвестное излучение. Сначала было выдвинуто предположение о том, что это гамма-лучи, поскольку они имели высокую проникающую способность и никак не отклонялись в магнитном поле. Однако, от этой идеи пришлось отказаться, поскольку данное излучение обладало слишком большой энергией для гамма-лучей. В 1932 году изучением нового излучения занялся ученик Резерфорда – Джеймс Чедвик.
Он доказал, что неизвестное излучение – это на самом деле поток нейтральных частиц, масса которых приблизительно равна массе протона. Эту массу удалось определить по характеру взаимодействия с другими частицами. То, что частица электрически нейтральна, следовало из того, что она не отклонялась ни в электрическом, ни в магнитном поле. Такую частицу назвали нейтроном. Итак, нейтрон обозначается символом
(поскольку не имеет заряда и обладает массой приблизительно равной 1 а.е.м.). Впоследствии точные измерения показали, что масса нейтрона чуть больше массы протона.
Практически сразу после открытия нейтрона физиками Дмитрием Иваненко и Вернером Гейзенбергом была предложена протонно-нейтронная модель строения ядра.
Работая независимо друг от друга, они пришли к выводу, что ядра атомов всех элементов состоят из двух видов частиц: протонов и нейтронов. Эти частицы стали называть нуклонами. Общее число нуклонов в ядре называется массовым числом (поскольку это число определяет массу ядра). Массовое число обозначается буквой А. Число протонов в ядре называется зарядовым числом (поскольку это число определяет заряд ядра). Зарядовое число обозначается буквой Z. Нетрудно догадаться, что число нейтронов в ядре равно разности общего числа нуклонов и числа протонов. То есть, чтобы найти число нейтронов, нужно из массового числа вычесть зарядовое число. Это число обозначается буквой N.
Итак, в общем случае, ядро любого химического элемента обозначается следующим образом:
где Х – это символ элемента, Z – зарядовое число и А – массовое число. Еще раз уточним, что массовое число равно массе, выраженной в атомных единицах и округленной до целых. Зарядовое число равно заряду, выраженному в единицах элементарного электрического заряда. Для примера рассмотрим ядро натрия.
В таблице Менделеева, натрий имеет порядковый номер 11 – это и есть зарядовое число. Значит, в ядре натрия содержится 11 протонов. Поскольку атом в целом электрически нейтрален, можно заключить, что в атоме содержится 11 электронов. В таблице Менделеева также указана масса натрия – 23. Значит, в ядре натрия содержится 12 нейтронов. Итак, чтобы определить количество протонов, нейтронов и электронов в атоме, нужно сделать следующее:
– Посмотреть в таблице Менделеева порядковый номер интересующего вас элемента. Таким образом, определяется зарядовое число – то есть число протонов и число электронов.
– Посмотреть массу этого элемента в таблице Менделеева и округлить её до целых (она почти всегда очень близка к целому числу). Таким образом, определяется массовое число, то есть общее число нуклонов. Для нахождения числа нейтронов, нужно из массового числа вычесть зарядовое число.
Необходимо отметить, что существуют атомы, которые ничем не отличаются друг от друга по своим химическим свойствам, но обладают различным массовым числом. Впервые, на существование таких атомов обратил внимание Фредерик Содди, который работал вместе с Резерфордом. Содди предложил называть такие атомы изотопами. С помощью опытов было установлено, что изотопы одинаково вступают в химические реакции и образуют одинаковые соединения. Это говорило о том, что число электронов в электронных оболочках (а, значит, и заряд ядра) у изотопов одинаковы. Стало быть, в ядрах изотопов содержалось различное число нейтронов.
На сегодняшний день найдены изотопы всех химических элементов. Например, водород имеет три изотопа: протий, дейтерий и тритий.
Ядро протия состоит только из одного протона (это самый распространенный изотоп водорода). То есть, заряд ядра протия равен элементарному заряду, а масса равна одной атомной единице. Ядро дейтерия включает в себя один протон и один нейтрон. Таким образом, заряд ядра дейтерия тоже равен элементарному, но масса уже равна двум атомным единицам. Наконец, ядро трития содержит один протон и два нейтрона. Заряд ядра трития опять-таки равен элементарному заряду, а вот масса равна трем массовым единицам.
Другие химические элементы могут иметь значительно больше изотопов: например у урана их насчитывается 26. Наиболее распространенные изотопы урана – это уран 235 и уран 238 (поскольку зарядовое число изотопов одинаковое, имеет смысл упоминать только массовое число, чтобы понять, о каком изотопе идет речь).
Надо сказать, что некоторые изотопы могут являться радиоактивными. В связи с этим, изотопы делятся на стабильные и нестабильные. Стабильные изотопы сохраняются неизменными сколь угодно долго, а нестабильные изотопы со временем превращаются в другие химические элементы в результате радиоактивного распада.
Именно из-за существования изотопов, для большинства элементов в таблице Менделеева указана дробная масса. Дело в том, что эта масса вычисляется как средняя масса всех изотопов с учетом степени распространения каждого изотопа. Например, как мы уже убедились, водород имеет три изотопа с массовыми числами один, два и три. Но протий распространен гораздо больше: его содержание в природе составляет почти 99,99%. Поэтому в таблице Менделеева масса водорода практически равна единице.
Возникает важнейший вопрос: как же ядра многих изотопов остаются стабильными? Что удерживает нуклоны в ядре? Ведь между положительно заряженными протонами должны возникать силы электростатического отталкивания. Силы, удерживающие протоны и нейтроны в ядре называются ядерными силами. Нетрудно догадаться, что раз протоны не разлетаются в разные стороны, значит, ядерные силы значительно мощнее, чем электростатические силы. Но ядерные силы действуют на очень малом расстоянии, то есть в пределах атомного ядра. Эти силы фундаментально отличаются от гравитационного или электромагнитного взаимодействия и относятся к сильному взаимодействию, о котором упоминалось в девятом и десятом классах. Также к свойствам ядерных сил можно отнести то, что они не являются центральными (то есть не действуют вдоль прямой, соединяющей частицы). Кроме того, ядерные силы не зависят от величины заряда частиц (поскольку они действуют и на незаряженные частицы – нейтроны).
Основные выводы:
– После открытия протона и нейтрона была предложена протонно-нейтронная модель ядра.
– Согласно этой модели все ядра атомов состоят из протонов и нейтронов. Частицы, входящие в состав ядра назвали нуклонами.
– Общее число нуклонов в ядре называется массовым числом, а число протонов в ядре называется зарядовым числом.
– Массовое число А численно равно массе ядра данного химического элемента, выраженной в атомных единицах массы и округленной до целого.
– Зарядовое число Z численно равно заряду ядра, выраженному в единицах элементарного электрического заряда.
– Число нейтронов в ядре определяется как разность массового и зарядового чисел.
– В результате исследований было открыто существование разновидностей каких-либо химических элементов, которые обладали одинаковыми химическими свойствами, но имели различную массу. Такие разновидности назвали изотопами.
– Ядерные силы – это силы, удерживающие нуклоны в ядре в течение длительного времени. Тем не менее, ядерные силы не распространяются за пределы атомных ядер.
Тест
Источник
Атомное ядро, состоящее из определенного числа протонов и нейтронов, является единым целым благодаря специфическим силам, которые действуют между нуклонами ядра и называются ядерными. Экспериментально доказано, что ядерные силы имеют очень большие значения, намного превышающие силы электростатического отталкивания между протонами. Это проявляется в том, что удельная энергия связи нуклонов в ядре намного больше работы сил кулоновского отталкивания. Рассмотрим основные особенности ядерных сил.
1. Ядерные силы являются короткодействующими силами притяжения. Они проявляются лишь на весьма малых расстояниях между нуклонами в ядре порядка 10–15 м. Расстояние порядка (1,5 – 2,2)·10–15 м называется радиусом действия ядерных сил, с его увеличением ядерные силы быстро уменьшаются. На расстоянии порядка (2-3) м ядерное взаимодействие между нуклонами практически отсутствует.
2. Ядерные силы обладают свойством насыщения,т.е. каждый нуклон взаимодействует только с определенным числом ближайших соседей. Такой характер ядерных сил проявляется в приближенном постоянстве удельной энергии связи нуклонов при зарядовом числе А >40. Действительно, если бы насыщения не было, то удельная энергия связи возрастала бы с увеличением числа нуклонов в ядре.
3. Особенностью ядерных сил является также их зарядовая независимость, т.е. они не зависят от заряда нуклонов, поэтому ядерные взаимодействия между протонами и нейтронами одинаковы. Зарядовая независимость ядерных сил видна из сравнения энергий связи зеркальных ядер. Так называются ядра, в которых одинаково общее число нуклонов, но число протонов в одном равно числу нейтронов другом. Например, энергии связи ядер гелия и тяжелого водорода – трития составляют соответственно 7,72 МэВ и 8,49 МэВ. Разность энергий связи этих ядер, равная 0,77 МэВ, соответствует энергии кулоновского отталкивания двух протонов в ядре . Полагая эту величину равной , можно найти, что среднее расстояние r между протонами в ядре равно 1,9·10–15 м, что согласуется с величиной радиуса действия ядерных сил.
4. Ядерные силы не являются центральнымии зависят от взаимной ориентации спинов взаимодействующих нуклонов. Это подтверждается различным характером рассеяниянейтронов молекулами орто- и параводорода. В молекуле ортоводорода спины обоих протонов параллельны друг другу, а в молекуле параводорода они антипараллельны. Опыты показали, что рассеяние нейтронов на параводороде в 30 раз превышает рассеяние на ортоводороде.
Сложный характер ядерных сил не позволяет разработать единую последовательную теорию ядерного взаимодействия, хотя было предложено много различных подходов. Согласно гипотезе японского физика Х. Юкавы (1907-1981), которую он предложил в 1935 г., ядерные силы обусловлены обменом – мезонами, т.е. элементарными частицами, масса которых приблизительно в 7 раз меньше массы нуклонов . По этой модели нуклон за время m– масса мезона) испускает мезон, который, двигаясь со скоростью, близкой к скорости света, проходит расстояние , после чего поглощается вторым нуклоном. В свою очередь второй нуклон также испускает мезон, который поглощается первым. В модели Х. Юкавы, таким образом, расстояние, на котором взаимодействуют нуклоны, определяется длиной пробега мезонов, что соответствует расстоянию около м и по порядку величины совпадает с радиусом действия ядерных сил.
Обратимся к рассмотрению обменного взаимодействия между нуклонами. Существуют положительный , отрицательный и нейтральный мезоны. Модуль заряда – или – мезонов численно равен элементарному заряду e. Масса заряженных – мезонов одинакова и равна (140 МэВ), масса – мезона равна 264 (135 МэВ). Спин как заряженных, так и нейтральных – мезонов равен 0. Все три частицы нестабильны. Время жизни – и – мезонов составляет 2,6 с, – мезона – 0,8·10-16 с. Взаимодействие между нуклонами осуществляется по одной из следующих схеме:
(22.6)
(22.7)
1. Нуклоны обмениваются мезонами: . (22.8)
В этом случае протон испускает – мезон, превращаясь в нейтрон. Мезон поглощается нейтроном, который вследствие этого превращается в протон, затем такой же процесс протекает в обратном направлении. Таким образом, каждый из взаимодействующих нуклонов часть времени проводит в заряженном состоянии, а часть в нейтральном.
2. Нуклоны обмениваются – мезонами:
. (22.9)
3. Нуклоны обмениваются – мезонами:
, (22.10)
Все эти процессы доказаны экспериментально. В частности, первый процесс подтверждается при прохождении пучка нейтронов через водород. В пучке появляются движущиеся протоны, а соответствующее число практически покоящихся нейтронов обнаруживается в мишени.
Модели ядра. Под моделью ядра в ядерной физике понимают совокупность физических и математических предположений с помощью которых можно рассчитать характеристики ядерной системы, состоящей из А нуклонов.
Гидродинамическая (капельная) модель ядраВ ее основу положено предположение о том, что благодаря большой плотности нуклонов в ядре и чрезвычайно сильному взаимодействию между ними независимое движение отдельных нуклонов является невозможным и ядро представляет собой каплю заряженной жидкости плотностью .
Оболочечная модель ядра В ней предполагается, что каждый нуклон движется независимо от других в некотором среднем потенциальном поле (потенциальной яме , создаваемом остальными нуклонами ядра.
Обобщённая модель ядра, объединяет основные положения создателей гидродинамической и оболочечной моделей. В обобщенной модели предполагается, что ядро состоит из внутренней устойчивой части – остова, который образован нуклонами заполненных оболочек, и внешних нуклонов, движущихся в поле, создаваемом нуклонами остова. В связи с этим движение остова описывается гидродинамической моделью, а движение внешних нуклонов – оболочечной. За счет взаимодействия с внешними нуклонами остов может деформироваться, а ядро – вращаться вокруг оси, перпендикулярной оси деформации.
26. Реакции деления атомных ядер. Ядерная энергетика.
Ядерными реакциями называются превращения атомных ядер, вызванные их взаимодействием друг с другом или с другими ядрами или элементарными частицами. Первое сообщение о ядерной реакции принадлежит Э.Резерфорду. В 1919г он обнаружил, что когда – частицы проходят через газообразный азот, некоторые из них поглощаются, причем одновременно происходит испускание протонов. Резерфорд пришел к выводу, что ядра азота превращались в ядра кислорода в результате ядерной реакции вида:
, (22.11)
где − – частица; − протон ( водород).
Важным параметром ядерной реакции является ее энергетический выход , который определятся по формуле:
(22.12)
Здесь и – суммы масс покоя частиц до реакции и после нее. При ядерные реакции протекают с поглощением энергии, поэтому они называются эндотермическими,а при − с выделением энергии. В этом случае они называются экзотермическими.
В любой ядерной реакции всегда выполняются законы сохранения:
− электрического заряда;
− числа нуклонов;
− энергии;
− импульса.
Первые два закона позволяют правильно записывать ядерные реакции даже в тех случаях, когда одна из частиц, участвующих в реакции, или один из его продуктов неизвестны. С помощью законов сохранения энергии и импульса можно определить кинетические энергии частиц, которые образуются в процессе реакции, а также направления их последующего движения.
Для характеристики эндотермических реакций вводится понятие пороговая кинетическая энергия, или порог ядерной реакции , т.е. наименьшая кинетическая энергия налетающей частицы (в системе отсчета, где ядро-мишень покоится), при которой ядерная реакция становится возможной. Из закона сохранения энергии и импульса следует, что пороговая энергия ядерной реакции рассчитывается по формуле:
. (22.13)
Здесь – энергия ядерной реакции (7.12); -масса неподвижного ядра – мишени; − масса налетающей на ядро частицы.
Реакции деления.В 1938г немецкие ученые О. Ган и Ф. Штрассман обнаружили, что при бомбардировке урана нейтронами иногда возникают ядра приблизительно вдвое меньшие, чем исходное ядро урана. Это явление было названо делением ядра.
Оно представляет собой первую экспериментально наблюдаемую реакцию ядерных превращений. Примером может служить одна из возможных реакций деления ядра урана-235:
. (22.14)
Процесс деления ядер протекает очень быстро за время ~10-12 с. Энергия, которая выделяется в процессе реакции типа (22.14), составляет примерно 200 МэВ на один акт деления ядра урана-235.
В общем случае реакцию деления ядра урана–235 можно записать в виде:
+нейтроны. (22.15)
Объяснить механизм реакции деления можно в рамках гидродинамической модели ядра. Согласно этой модели при поглощении нейтрона ядром урана оно переходит в возбужденное состояние (рис. 22.2).
Избыточная энергия, которую получает ядро вследствие поглощения нейтрона, вызывает более интенсивное движение нуклонов. В результате ядро деформируется, что приводит к ослаблению короткодействующего ядерного взаимодействия. Если энергия возбуждения ядра больше некоторой энергии, называемой энергией активации, то под влиянием электростатического отталкивания протонов ядро расщепляется на две части, с испусканием нейтронов деления. Если энергия возбуждения при поглощении нейтрона меньше энергии активации, то ядро не доходит до
критической стадии деления и, испустив – квант, возвращается в основное
состояние.
Рис. 22.2
Важной особенностью ядерной реакции деления является возможность реализовать на ее основе самоподдерживающуюся цепную ядерную реакцию. Это обусловлено тем, что при каждом акте деления выделяется в среднем больше одного нейтрона. Масса, заряд и кинетическая энергия осколков Х и У, образующихся в процессе реакции деления типа (22.15), различны. Эти осколки быстро тормозятся средой, вызывая ионизацию, нагревание и нарушение ее структуры. Использование кинетической энергии осколков деления за счет нагревания ими среды является основой превращения ядерной энергии в тепловую. Осколки деления ядра находятся после реакции в возбужденном состоянии и переходят в основное состояние путем испускания β – частиц и –квантов.
Управляемая ядерная реакция осуществляется в ядерном реакторе и сопровождается выделением энергии. Первый ядерный реактор был построенв 1942 г в США под руководством физика Э.Ферми. В СССР первый ядерный реактор создан в 1946 г под руководством И. В. Курчатова. Затем, после накопления опытов управления ядерными реакциями, начали строить атомные электростанции.
Источник