Какими свойствами обладают нервные центры
Учение о рефлекторной деятельности ЦНС привело к развитию представления о нервном центре.
Нервным центром называют совокупность нейронов, необходимых для осуществления определенного рефлекса или регуляции той или иной функции.
Не следует понимать нервный центр как что-то узко локализованное в одном участке ЦНС. Понятие анатомическое по отношению к нервному центру рефлекса неприменимо потому, что в осуществлении любого сложного рефлекторного акта принимает участие всегда целая констелляция нейронов, расположенных на разных этажах нервной системы. Опыты с раздражением или перерезкой ЦНС показывают лишь, что отдельные нервные образования обязательны для осуществления того или иного рефлекса, а другие необязательны, хотя и участвуют при обычных условиях в рефлекторной деятельности. Примером служит дыхательный центр, в который в настоящее время включают не только “центр дыхания” продолговатого мозга, но и пневмотаксический центр моста, нейроны ретикулярной формации, коры и мотонейроны дыхательных мышц.
Нервные центры обладают рядом характерных свойств, определяемых свойствами составляющих его нейронов, особенностями синаптической передачи нервных импульсов и структурой нейронных цепей, образующих этот центр.
Свойства эти следующие:
1.Одностороннее проведение в нервных центрах можно доказать при раздражении передних корешков и отведении потенциалов от задних. В этом случае осциллограф не зарегистрирует импульсов. Если поменять электроды – импульсы будут поступать нормально.
2.Задержка проведения в синапсах. По рефлекторной дуге проведение возбуждения происходит медленнее, чем по нервному волокну. Это определяется тем, что в одном синапсе переход медиатора к постсинаптической мембране происходит за 0,3-0,5 мсек. (т.н. синаптическая задержка). Чем больше синапсов в рефлекторной дуге, тем больше время рефлекса, т.е. интервал от начала раздражения до начала деятельности. С учетом синаптической задержки проведение раздражения через один синапс требует около 1,5-2 мсек.
У человека наименьшую продолжительность имеет время сухожильных рефлексов (оно равно 20-24 мсек). У мигательного рефлекса оно больше – 50-200 мсек. Время рефлекса складывается из:
а) времени возбуждения рецепторов;
б) времени проведения возбуждения по центростремительным нервам;
в) времени передачи возбуждения в центре через синапсы;
г) времени проведения возбуждения по центробежным нервам;
д) времени передачи возбуждения на рабочий орган и латентного периода его деятельности.
Время “в” носит название центрального времени рефлекса.
Для упомянутых выше рефлексов оно составляет соответственно 3 мсек. и 36-180 мсек. Зная центральное время рефлекса, и учитывая, что через один синапс возбуждение проходит за 2 мсек., можно определить число синапсов в рефлекторной дуге. Например, коленный рефлекс считают моносинаптическим.
3. Суммация возбуждений. Впервые Сеченов показал, что в целостном организме рефлекторный акт может осуществляться при действии подпороговых стимулов, если они действуют на рецепторное поле достаточно часто. Такое явление получило название временной (последовательной) суммацией. Пример – рефлекс чесания у собаки можно вызвать, если подать в одну точку подпороговые стимулы с частотой 18 гц. Суммация подпороговых стимулов можно получить и тогда, когда они прикладываются на разные точки кожи, но одновременно – это пространственная суммация.
В основе этих явлений лежит процесс суммации возбуждающих постсинаптических потенциалов на теле и дендритах нейронов. При этом происходит накопление медиатора в синаптической щели. В естественных условиях оба вида суммации сосуществуют.
4. Центральное облегчение. Возникновение временной и особенно пространственной суммации способствуют и особенности организации синаптического аппарата в нервных центрах. Каждый аксон, поступая в ЦНС, ветвится и образует синапсы на большой группе нейронов (нейронный пул, или нейронная популяция). В такой группе принято условно различать центральную (пороговую) зону, и периферическую (подпороговую) кайму. Нейроны, находящиеся в центральной зоне, получают от каждого рецепторного нейрона достаточное количество синаптических окончаний для того, чтобы ответить разрядом ПД на приходящие импульсы. На нейронах же подпороговой каймы каждый аксон образует лишь небольшое число синапсов, возбуждение которых не способно возбудить нейрон. Нервные центры состоят из большого числа нейронных групп, причем отдельные нейроны могут входить в разные нейронные пулы. Это объясняется тем, что на одних и тех же нейронах оканчиваются разные афферентные волокна. При совместном раздражении этих афферентных волокон возбуждающие постсинаптические потенциалы в нейронах подпороговой каймы суммируются друг с другом и достигают критической величины. В результате в процесс возбуждения оказываются вовлеченными и клетки периферической каймы. При этом сила рефлекторной реакции суммарного раздражения нескольких “входов” в центр оказывается больше арифметической суммы раздельных раздражений. Этот эффект и носит название центрального облегчения.
5. Центральная окклюзия (закупорка). Может наблюдаться в деятельности нервного центра и обратный эффект, когда одновременное раздражение двух афферентных нейронов вызывает не суммацию возбуждения, а задержку, уменьшение силы раздражения. В этом случае суммарная реакция меньше арифметической суммы раздельных эффектов. Происходит это потому, что отдельные нейроны могут входить в центральные зоны разных нейронных популяций. В таком случае появление возбуждающих постсинаптических потенциалов на телах нейронов не приводят к увеличению числа
возбужденных одновременно клеток. Если суммация лучше проявляется при действии слабых афферентных раздражений, то явления окклюзии хорошо выражены с случае применения сильных афферентных раздражений, каждое их которых активирует большое число нейронов. Более наглядно эти эффекты видны на схемах.
6.Трансформация ритма возбуждений. Частота и ритм импульсов, поступающих к нервным центрам, и посылаемых ими на периферию, могут не совпадать. Это явление носит название трансформации. В ряде случаев на одиночный импульс, приложенный к афферентному волокну, мотонейрон отвечает серией импульсов. Образно говоря, в ответ на одиночный выстрел нервная клетка отвечает очередью. Чаще это бывает при длительном постсинаптическом потенциале и зависит от триггерных свойств аксонного холмика.
Центральное облегчение
Окклюзия
Рисунок 8. Схема возникновения центрального облегчения или окклюзии в нейронных популяциях.
Объяснение: Вверху- две нейронные популяции, у которых общими для разных аксонов является нейрон периферической каймы (3-й). При раздельном возбуждении 1 и 2-го аксонов возбуждается по 2 нейрона популяции (1,2 и 4.5 соответственно). При одновременно возбуждении этих аксонов возбуждается еще и 3 нейрон. Внизу- две нейронные популяции, у которых общими является нейрон центральной части (3). В этом случае и при раздельном возбуждении аксонов будут возбуждаться по 3 нейрона (1.2.3 и 3,4,5 соответственно), т.е. сумма отдельных возбуждений равна 6 нейронам. Однако при их одновременном возбуждении будут активироваться лишь те же 5 нейронов (1,2.3,4. и 5).
Другой механизм трансформации связан с эффектами сложения фаз двух или более волн возбуждения на нейроне – тут возможны эффекты как увеличения , так и снижения частоты выходящих из центра стимулов.
7. Последействие. Рефлекторные акты, в отличие от потенциалов действия, заканчиваются не одновременно с прекращением вызвавшего их раздражения, а через некоторый, иногда сравнительно длинный период времени. Продолжительность последействия может во много раз превышать продолжительность раздражения. Последействие обычно бывает больше при сильном и длительном раздражении.
Имеются два основных механизма, обусловливающих эффект последействия. Первый связан с суммацией следовой деполяризации мембраны при частых раздражениях (посттетаническая потенциация), когда нервная клетка продолжает давать разряды импульсов, несмотря на то, что кончилась серия раздражений. Второй механизм связывает последействие с циркуляцией нервных импульсов по замкнутым нейронным сетям рефлекторного центра.
8. Утомление нервных центров. В отличие от нервных волокон нервные центры легко утомляемы. Утомление нервного центра проявляется в постепенном снижении и в конечном итоге полном прекращении рефлекторного ответа при продолжительном раздражении афферентных нервных волокон. Если после этого приложить раздражение в эфферентному волокну – эффект возникает вновь.
Утомление в нервных центрах связано прежде всего с нарушением передачи возбуждения в межнейронных синапсах. Такое нарушение зависит от уменьшения запасов синтезированного медиатора, уменьшением чувствительности к медиатору постсинаптической мембраны, уменьшением энергетических ресурсов нервной клетки. Не все рефлекторные акты утомляются быстро (например, мало утомляемы проприоцептивные тонические рефлексы).
9. Рефлекторный тонус нервных центров. В его поддержании участвуют как афферентные импульсы, поступающие непрерывно от периферических рецепторов в ЦНС, так и различные гуморальные раздражители (гормоны, углекислота, и др.)
10. Высокая чувствительность к гипоксии. Показано, что 100 г. нервной ткани в единицу времени потребляет кислорода в 22 раза больше, чем 100 г. мышечной ткани. Поэтому нервные центры очень чувствительны к его недостатку. При этом чем выше центр, тем больше он страдает от гипоксии. Для коры мозга 5-6 минут достаточно, чтобы без кислорода произошли необратимые изменения, клетки ствола мозга выдерживают 15-20 минут полного прекращения кровообращения, а клетки спинного мозга – 20-30 минут. При гипотермии, когда снижается обмен веществ, ЦНС дольше переносит гипоксию.
11. Избирательная чувствительность к химическим веществам. Объясняется особенностями обменных процессов и позволяет находить фармпрепараты направленного действия.
Источник
Строение нервного центра
Нервный центр — это совокупность нейронов, необходимых для осуществления определенного рефлекса или регуляции определенной функции.
Основными клеточными элементами нервного центра являются многочисленные нейроны, скопление которых формирует нервные ядра. В состав центра могут входить нейроны, рассеянные за пределами ядер. Нервный центр может быть представлен структурами мозга, располагающимися на нескольких уровнях центральной нервной системы (например, центры регуляции дыхания, кровообращения, пищеварения).
Любой нервный центр состоит из ядра и периферии.
Ядерная часть нервного центра представляет собой функциональное объединение нейронов, в которое поступает основная информация от афферентных путей. Повреждение этого участка нервного центра приводит к повреждению или существенному нарушению осуществления данной функции.
Периферическая часть нервного центра получает небольшую порцию афферентной информации, и ее повреждение вызывает ограничение или уменьшение объема выполняемой функции (рис. 1).
Функционирование центральной нервной системы осуществляется благодаря деятельности значительного числа нервных центров, представляющих собой ансамбли нервных клеток, объединенных с помощью синаптических контактов и отличающихся огромным разнообразием и сложностью внутренних и внешних связей.
Рис. 1. Схема общего строения нервного центра
В нервных центрах выделяют следующие иерархические отделы: рабочие, регуляторные и исполнительные (рис. 2).
Рис. 2. Схема иерархического подчинения разных отделов нервных центров
Рабочий отдел нервного центра ответствен за осуществление данной функции. Например, рабочий отдел дыхательного центра представлен центрами вдоха, выдоха и пневмотаксиса, расположенными в продолговатом мозге и варолиевом мосту; нарушение этого отдела вызывает остановку дыхания.
Регуляторный отдел нервного центра — это центр, расположенный в коре больших полушарий мозга и регулирующий активность рабочего отдела нервного центра. В свою очередь, активность регуляторного отдела нервного центра зависит от состояния рабочего отдела, который получает афферентную информацию, и от внешних стимулов среды. Так, регуляторный отдел дыхательного центра расположен в лобной доле коры больших полушарий и позволяет произвольно регулировать легочную вентиляцию (глубину и частоту дыхания). Однако эта произвольная регуляция небезгранична и зависит от функциональной активности рабочего отдела, афферентной им пульсации, отражающей состояние внутренней среды (в данном случае рН крови, концентрации углекислого газа и кислорода в крови).
Исполнительный отдел нервного центра — это двигательный центр, расположенный в спинном мозге и передающий информацию от рабочего отдела нервного центра к рабочим органам. Исполнительный отдел дыхательного нервного центра расположен в передних рогах грудного отдела спинного мозга и транслирует приказы рабочего центра к дыхательным мышцам.
С другой стороны, одни и те же нейроны головного и спинного мозга могут участвовать в регуляции разных функций. Например, клетки центра глотания участвуют в регуляции не только акта глотания, но и акта рвоты. Этот центр обеспечивает все последовательные стадии акта глотания: движение мышц языка, сокращение мышц мягкого неба и его поднятие, последующее сокращение мышц глотки и пищевода при прохождении пищевого комка. Эти же нервные клетки обеспечивают сокращение мышц мягкого нёба и его поднятие во время акта рвоты. Следовательно, одни и те же нервные клетки входят и в центр глотания, и в центр рвоты.
Свойства нервных центров
Свойства нервных центров зависят от их строения и механизмов передачи возбуждения в синапсах. Выделяются следующие свойства нервных центров:
- Односторонность проведения возбуждения
- Синаптическая задержка
- Суммация возбуждения
- Трансформация ритма
- Утомляемость
- Конвергенция
- Дивергенция
- Иррадиация возбуждения
- Концентрация возбуждения
- Тонус
- Пластичность
- Облегчение
- Окклюзия
- Реверберация
- Пролонгирование
Одностороннее проведение возбуждение в нервном центре. Возбуждение в ЦНС проводится в одном направлении с аксона на дендрит или тело клетки следующего нейрона. Основу этого свойства составляют особенности морфологической связи между нейронами.
Одностороннее проведение возбуждения зависит от строения синапса и гуморальной природы передачи в нем импульса: медиатор, осуществляющий передачу возбуждения, выделяется только в пресинаптическом окончании, а рецепторы, воспринимающие медиатор, расположены на постсинаптической мембране;
Замедление проведения возбуждения (центральная задержка). В системе рефлекторной дуги медленнее всего проводится возбуждение в синапсах ЦНС. В связи с этим центральное время рефлекса зависит от количества вставочных нейронов.
Чем сложнее рефлекторная реакция, тем больше центральное время рефлекса. Его величина связана со сравнительно медленным проведением возбуждения через последовательно включенные синапсы. Замедление проведения возбуждения создается вследствие относительной длительности осуществляющихся в синапсах процессов: выделения медиатора через пресинаптическую мембрану, его диффузии через синаптическую щель, возбуждения постсинаптической мембраны, возникновения возбуждающего постсинаптического потенциала и его перехода в потенциал действия;
Трансформация ритма возбуждения. Нервные центры способны изменять ритм поступающих к ним импульсов. Они могут отвечать на одиночные раздражители серией импульсов или на раздражители небольшой частоты — возникновением более частых потенциалов действия. В результате ЦНС посылает к рабочему органу количество импульсов, относительно независимое от частоты раздражений.
Это связано с тем, что нейрон является изолированной единицей нервной системы, к нему в каждый момент приходит множество раздражений. Под их влиянием происходит изменение мембранного потенциала клетки. Если создается небольшая, но продолжительная деполяризация (длительный возбуждающий постсинаптический потенциал), то один стимул вызывает серию импульсов (рис. 3);
Рис. 3. Схема трансформации ритма возбуждения
Последействие — способность сохранять возбуждение после окончания действия раздражителя, т.е. афферентных импульсов нет, а эфферентные продолжают действовать еще некоторое время.
Последействие объясняется наличием следовой деполяризации. Если следовая деполяризация длительна, то на ее фоне в течение нескольких миллисекунд могут возникать потенциалы действия (ритмическая активность нейрона), вследствие чего сохраняется ответная реакция. Но это дает сравнительно короткий эффект последействия.
Более длительное последействие связано с наличием кольцевых связей между нейронами. В них возбуждение как бы само себя поддерживает, возвращаясь по коллатералям к первоначально возбужденному нейрону (рис. 4);
Рис. 4. Схема кольцевых связей в нервном центре (по Лоренто де Но): 1 — афферентный путь; 2-промежуточные нейроны; 3 — эфферентный нейрон; 4 — эфферентный путь; 5 — возвратная ветвь аксона
Облегчение проведения или проторение пути. Установлено, что после возбуждения, возникшего в ответ на ритмическое раздражение, следующий стимул вызывает больший эффект, или для поддержания прежнего уровня ответной реакции требуется меньшая сила последующего раздражения. Это явление получило название «облегчение».
Его можно объяснить тем, что при первых стимулах ритмического раздражителя происходит перемещение пузырьков медиатора ближе к пресинаптической мембране и при последующем раздражении медиатор быстрее выделяется в синаптическую щель. Это, в свою очередь, приводит к тому, что вследствие суммации возбуждающего постсинаптического потенциала быстрее достигается критический уровень деполяризации и возникает распространяющийся потенциал действия (рис. 5);
Рис. 5. Схема облегчения проведения
Суммация, впервые описанная И.М. Сеченовым (1863) и заключающаяся в том, что слабые по силе раздражители, не вызывающие видимой реакции, при частом повторении могут суммироваться, создавать надпороговую силу и вызывать эффект возбуждения. Различают два вида суммации — последовательную и пространственную.
- Последовательная суммация в синапсах возникает в том случае, когда по одному и тому же афферентному пути к центрам поступает несколько подпороговых импульсов. В результате суммации местного возбуждения, вызванного каждым подпороговым стимулом, возникает ответная реакция.
- Пространственная суммация заключается в появлении рефлекторной реакции в ответ на два или несколько подпороговых стимулов, приходящих в нервный центр по разным афферентным путям (рис. 6);
Рис. 6. Свойство нервного центра — суммация пространственная (Б) и последовательная (А)
Пространственную суммацию, как и последовательную, можно объяснить тем, что при подпороговом раздражении, пришедшем по одному афферентному пути, выделяется недостаточное количество медиатора для того, чтобы вызвать деполяризацию мембраны до критического уровня. Если же импульсы приходят одновременно несколькими афферентными путями к одному и тому же нейрону, в синапсах выделяется достаточное количество медиатора, необходимое для пороговой деполяризации и возникновения потенциала действия;
Иррадиация. При возбуждении нервного центра нервные импульсы распространяются на соседние центры и приводят их в деятельное состояние. Это явление получило название иррадиации. Степень иррадиации зависит от количества вставочных нейронов, степени их миелинизации, силы раздражителя. Со временем в результате афферентной стимуляции только одного нервного центра зона иррадиации уменьшается, происходит переход к процессу концентрации, т.е. ограничению возбуждения только в одном нервном центре. Это является следствием уменьшения синтеза медиаторов во вставочных нейронах, в результате чего биотоки не передаются из данного нервного центра на соседние (рис. 7 и 8).
Рис. 7. Процесс иррадиации возбуждения в нервных центрах: 1, 2, 3 — нервные центры
Рис. 8. Процесс концентрации возбуждения в нервном центре
Выражением данного процесса является точная координированная двигательная реакция в ответ на раздражение рецептивного поля. Формирование любых навыков (трудовых, спортивных и т.д.) обусловлено тренировкой двигательных центров, основу которых составляет переход от процесса иррадиации к концентрации;
Индукция. Основой взаимосвязи между нервными центрами является процесс индукции — наведение (индуцирование) противоположного процесса. Сильный процесс возбуждения в нервном центре вызывает (наводит) торможение в соседних нервных центрах (пространственная отрицательная индукция), а сильный тормозной процесс индуцирует в соседних нервных центрах возбуждение (пространственная положительная индукция). При смене этих процессов в пределах одного центра говорят о последовательной отрицательной или положительной индукции. Индукция ограничивает распространение (иррадиацию) нервных процессов и обеспечивает концентрацию. Способность к индукции в значительной степени зависит от функционирования тормозных вставочных нейронов — клеток Реншоу.
От степени развития индукции зависят подвижность нервных процессов, возможность выполнения движений скоростного характера, требующих быстрой смены возбуждения и торможения.
Индукция является основой доминанты — образования нервного центра повышенной возбудимости. Это явление впервые было описано А.А. Ухтомским. Доминантный нервный центр подчиняет себе более слабые нервные центры, притягивает их энергию и за счет этого еще более усиливается. В результате этого раздражение различных рецепторных полей начинает вызывать рефлекторный ответ, характерный для деятельности этого доминантного центра. Доминантный очаг в ЦНС может возникать под влиянием разных факторов, в частности сильной афферентной стимуляции, гормональных воздействий, мотиваций и т.д. (рис. 9);
Дивергенция и конвергенция. Способность нейрона устанавливать многочисленные синаптические связи с различными нервными клетками в пределах одного или разных нервных центров называется дивергенциеи. Например, центральные окончания аксонов первичного афферентного нейрона образуют синапсы на многих вставочных нейронах. Благодаря этому одна и та же нервная клетка может участвовать в различных нервных реакциях и контролировать большое число других нейронов, что приводит к иррадиации возбуждения.
Рис. 9. Формирование доминанты за счет пространственной отрицательной индукции
Схождение различных путей проведения нервных импульсов к одному и тому же нейрону получило название конвергенции. Простейшим примером конвергенции является замыкание на одном двигательном нейроне импульсов от нескольких афферентных (чувствительных) нейронов. В ЦНС большинство нейронов получают информацию от разных источников благодаря конвергенции. Это обеспечивает пространственную суммацию импульсов и усиление конечного эффекта (рис. 10).
Рис. 10. Дивергенция и конвергенция
Явление конвергенции было описано Ч. Шеррингтоном и получило название воронки Шеррингтона, или эффекта общего конечного пути. Данный принцип показывает, как при активации различных нервных структур формируется конечная реакция, что имеет первостепенное значение для анализа рефлекторной деятельности;
Окклюзия и облегчение. В зависимости от взаимного расположения ядерных и периферических зон разных нервных центров может проявиться при взаимодействии рефлексов явление окклюзии (закупорки) или облегчения (суммации) (рис. 11).
Рис. 11. Окклюзия и облегчение
Если происходит взаимное перекрывание ядер двух нервных центров, то при раздражении афферентного поля первого нервного центра условно возникают два двигательных ответа. При активации только второго центра также возни каст два двигательных ответа. Однако при одновременной стимуляции обоих центров суммарный двигательный ответ равен только трем единицам, а не четырем. Это обусловлено тем, что один и тот же мотонейрон относится одновременно к обоим нервным центрам.
Если происходит перекрывание периферических отделов разных нервных центров, то при раздражении одного центра возникает одна ответная реакция, то же наблюдается и при раздражении второго центра. При одновременном возбуждении двух нервных центров возникает три ответных реакции. Потому что мотонейроны, находящиеся в зоне перекрывания и не дающие ответа при изолированном раздражении нервных центров, получают при одновременной стимуляции обоих центров суммарную дозу медиатора, что приводит к пороговому уровню деполяризации;
Утомляемость нервного центра. Нервный центр обладает малой лабильностью. Он постоянно получает от множества высоколабильных нервных волокон большое количество стимулов, превышающих его лабильность. Поэтому нервный центр работает с максимальной загрузкой и легко утомляется.
Исходя из синаптических механизмов передачи возбуждения утомление в нервных центрах может объясняться тем, что но мере работы нейрона истощаются запасы медиатора и становится невозможной передача импульсов в синапсах. Кроме того, в процессе деятельности нейрона наступает постепенное снижение чувствительности его рецепторов к медиатору, что называется десенситизацией;
Чувствительность нервных центров к кислороду и некоторым фармакологическим веществам. В нервных клетках осуществляется интенсивный обмен веществ, для чего необходимы энергия и постоянный приток нужного количества кислорода.
Особенно чувствительны к недостатку кислорода нервные клетки коры больших полушарий головного мозга, после пяти-шести минут кислородного голодания они погибают. У человека даже кратковременное ограничение мозгового кровообращения приводит к потере сознания. Недостаточное снабжение кислородом легче переносят нервные клетки мозгового ствола, их функция восстанавливается через 15-20 мин после полного прекращения кровоснабжения. А функция клеток спинного мозга восстанавливаются даже после 30 мин отсутствия кровообращения.
По сравнению с нервным центром нервное волокно малочувствительно к недостатку кислорода. Помешенное в атмосферу азота, оно только через 1,5 ч прекращает проведение возбуждения.
Нервные центры обладают специфической реакцией на различные фармакологические вещества, что свидетельствует об их специфичности и своеобразии протекающих в них процессов. Например, никотин, мускарин блокируют проведение импульсов в возбуждающих синапсах; их действие приводит к падению возбудимости, уменьшению двигательной активности и полному ее прекращению. Стрихнин, столбнячный токсин выключают тормозящие синапсы, что приводит к повышению возбудимости ЦНС и увеличению двигательной активности вплоть до общих судорог. Некоторые вещества блокируют проведение возбуждения в нервных окончаниях: кураре — в концевой пластинке; атропин — в окончаниях парасимпатической нервной системы. Есть вещества, действующие на определенные центры: апоморфин — на рвотный; лобелии — на дыхательный; кардиазол — на двигательную зону коры; мескалин — на зрительные центры коры и др.;
Пластичность нервных центров. Под пластичностью понимают функциональную изменчивость и приспособляемость нервных центров. Это особенно ярко проявляется при удалении разных отделов мозга. Нарушенная функция может восстанавливаться, если были частично удалены какие-то отделы мозжечка или коры больших полушарий. О возможности полной перестройки центров свидетельствуют опыты по сшиванию функционально различных нервов. Если перерезать двигательный нерв, иннервирующий мышцы конечностей, и его периферический конец сшить с центральным концом перерезанного блуждающего нерва, регулирующего внутренние органы, то через некоторое время периферические волокна двигательного нерва перерождаются (вследствие их отделения от тела клетки), а волокна блуждающего нерва прорастают к мышце. Последние образуют в мышце синапсы, свойственные соматическому нерву, что приводит к постепенному восстановлению двигательной функции. В первое время после восстановления иннервации конечности раздражение кожи вызывает свойственную блуждающему нерву реакцию — рвоту, гак как возбуждение от кожи по блуждающему нерву поступает в соответствующие центры продолговатого мозга. Через некоторое время раздражение кожи начинает вызывать обычную двигательную реакцию, поскольку происходит полная перестройка деятельности центра.
Источник