Какими свойствами обладают клетки сердечной ткани

Какими свойствами обладают клетки сердечной ткани thumbnail

Содержание статьи:

  1. Что такое сердечно мышечная ткань
  2. Работа сердечной мышечной ткани
  3. Структура сердечно мышечной ткани

Сердечная мышечная ткань, или миокард, является специализированным типом мышечной ткани, которая формирует сердце. Эта мышечная ткань, которая сокращается и высвобождается непроизвольно, отвечает за поддержание сердечной перекачки крови по всему телу.

Человеческое тело содержит три различных вида мышечной ткани: скелетную, гладкую и сердечную. В сердце присутствует только ткань сердечной мышцы, содержащая клетки, называемые миоцитами.

В этой статье мы обсудим структуру и функцию ткани сердечной мышцы. Мы также покрываем медицинские условия которые могут повлиять на ткань сердечной мышцы.

Что такое сердечно мышечная ткань

Мышца-это волокнистая ткань, которая сокращается, чтобы произвести движение. Существует три типа мышечной ткани в организме: скелетная, гладкая и сердечная. Сердечная мышца высокоорганизована и содержит много типов клеток, включая фибробласты, гладкомышечные клетки и кардиомиоциты.

Сердечная мышца существует только в сердце. Он содержит клетки сердечной мышцы, которые выполняют высоко скоординированные действия, которые поддерживают сердечный насос и кровь, циркулирующую по всему телу.

В отличие от скелетной мышечной ткани, такой как та, что присутствует в руках и ногах, движения, которые производит сердечная мышечная ткань, непроизвольны. Это означает, что они автоматические, и человек не может их контролировать.

Работа сердечной мышечной ткани

Сердце также содержит специализированные типы сердечной ткани, содержащие клетки “кардиостимулятора”. Они сжимаются и расширяются в ответ на электрические импульсы от нервной системы.

Клетки кардиостимулятора генерируют электрические импульсы, или потенциалы действия, которые говорят клеткам сердечной мышцы сокращаться и расслабляться. Клетки кардиостимулятора контролируют частоту сердечных сокращений и определяют, насколько быстро сердце перекачивает кровь.

Структура сердечно мышечной ткани

Ткань сердечной мышцы получает свои прочность и гибкость от своих соединенных клеток сердечной мышцы, или волокон.

Большинство клеток сердечной мышцы содержат одно ядро, но некоторые имеют два. Ядро содержит весь генетический материал клетки.

Клетки сердечной мышцы также содержат митохондрии, которые многие люди называют “энергетическими домами клеток”. Это органеллы, которые преобразуют кислород и глюкозу в энергию в виде аденозинтрифосфата (АТФ).

Клетки сердечной мышцы кажутся полосатыми под микроскопом. Эти полосы возникают из-за чередующихся нитей, которые содержат миозин и актиновые белки. Темные полосы указывают на толстые нити, которые содержат белки миозина. Тонкие, более легкие нити содержат актин.

Когда сердечная мышечная клетка сокращается, миозиновая нить притягивает актиновые нити друг к другу, что заставляет клетку сжиматься. Клетка использует АТФ для питания этого сокращения.

Одна миозиновая нить соединяется с двумя актиновыми нитями с каждой стороны. Это образует единый блок мышечной ткани.

Интеркалированные диски соединяют клетки сердечной мышцы. Переходы зазора внутри интеркалированных дисков передают электрические импульсы от одной клетки сердечной мышцы к другой.

Десмосомы-это другие структуры, присутствующие в интеркалированных дисках. Они помогают удерживать сердечные мышечные волокна вместе.

Кардиомиопатия относится к группе заболеваний, которые влияют на ткани сердечной мышцы и ухудшают способность сердца качать кровь или нормально расслабляться.

Некоторые общие симптомы кардиомиопатии включают:

  • затрудненное дыхание или одышка
  • усталость
  • припухлость ног, лодыжек и ступней
  • воспаление в области живота или шеи
  • нерегулярное сердцебиение
  • шум в сердце
  • головокружение

Факторы, которые могут увеличить риск развития кардиомиопатии у человека включают в себя:

  • диабет
  • заболевание щитовидной железы
  • ишемическая болезнь сердца
  • сердечный приступ
  • хроническое высокое кровяное давление
  • вирусные инфекции, поражающие сердечную мышцу
  • клапанная болезнь сердца
  • потребление алкоголя
  • семейный анамнез кардиомиопатии

Сердечный приступ из-за закупорки артерии может прервать кровоснабжение определенных участков сердца. В конечном счете, ткань сердечной мышцы в этих областях начнет умирать.

Смерть ткани сердечной мышцы может также произойти когда потребность сердца в кислороде превышает поставку кислорода. Это вызывает высвобождение сердечных белков, таких как тропонин, в кровоток.

Некоторые примеры кардиомиопатии включают в себя:

Дилатационная кардиомиопатия

Дилатационная кардиомиопатия вызывает растяжение сердечной мышечной ткани левого желудочка и расширение камер сердца.

Гипертрофическая кардиомиопатия

Гипертрофическая кардиомиопатия (ГКМ) – это генетическое состояние, при котором кардиомиоциты не расположены скоординированным образом и вместо этого дезорганизованы. ГКМ может прервать кровоток из желудочков, вызвать аритмии (аномальные электрические ритмы) или привести к застойной сердечной недостаточности.

Рестриктивная кардиомиопатия

Рестриктивная кардиомиопатия (РМК) относится к тем случаям, когда стенки желудочков становятся жесткими. Когда это происходит, желудочки не могут расслабиться достаточно, чтобы заполнить достаточным количеством крови.

Аритмогенная дисплазия правого желудочка

Эта редкая форма кардиомиопатии вызывает жировую инфильтрацию в ткани сердечной мышцы в правом желудочке.

Транстиретиновая амилоидная кардиомиопатия

Транстиретиновая амилоидная кардиомиопатия (АТР-км) развивается тогда, когда амилоидные белки накапливаются и образуют отложения в стенках левого желудочка. Отложения амилоида вызывают застывание стенок желудочка, что препятствует наполнению желудочка кровью и снижает его способность откачивать кровь из сердца. Это форма RCM.

Некоторые советы для поддержания здоровья сердечной мышцы.

Выполнение регулярных аэробных упражнений может помочь укрепить ткани сердечной мышцы и сохранить сердце и легкие здоровыми.

Аэробная деятельность включает в себя перемещение больших скелетных мышц, что заставляет человека дышать быстрее, а их сердцебиение учащаться.

Некоторые примеры аэробных упражнений включают в себя:

  • бег или бег трусцой
  • прогулка или пеший туризм
  • езда на велосипеде
  • плавание
  • скакалка
  • танцы
  • подъем по лестнице

Министерство здравоохранения дает следующие рекомендации в своих руководящих принципах физической активности:

  • Детям в возрасте 6-17 лет следует ежедневно выполнять 60 минут умеренной – и высокоинтенсивной физической нагрузки.
  • Взрослые в возрасте 18 лет и старше должны выполнять 150 минут аэробных упражнений средней интенсивности или 75 минут аэробных упражнений высокой интенсивности каждую неделю.
  • Беременные женщины должны стараться делать не менее 150 минут аэробной активности средней интенсивности в неделю.

Также предполагают, что человек должен стараться распространять аэробную активность в течение всей недели. Взрослые с хроническими заболеваниями или инвалидностью могут заменить аэробные упражнения по крайней мере двумя сеансами укрепления мышц в неделю.

Краткие сведения

Сердечная мышечная ткань-это специализированный, организованный тип ткани, который существует только в сердце. Он отвечает за поддержание сердечного ритма и циркуляции крови в теле.

Ткань сердечной мышцы, или миокард, содержит клетки, которые расширяются и сокращаются в ответ на электрические импульсы от нервной системы. Эти сердечные клетки работают вместе, чтобы произвести ритмичные, волнообразные сокращения, которые являются сердцебиением.

Регулярные аэробные упражнения могут помочь укрепить ткань сердечной мышцы и снизить риск сердечного приступа, инсульта и других сердечно-сосудистых заболеваний.

Источник

Сердечная мышечная ткань. Строение сердечной мышечной ткани.

Гистогенез сердечной мышечной ткани. Источники развития сердечной мышечной ткани находятся в прекардиальной мезодерме. В гистогенезе возникают парные складчатые утолщения висцерального листка спланхнотома — миоэпикардиальные пластинки, содержащие стволовые клетки сердечной мышечной ткани. Последние путем дивергентной дифференцировки дают начало следующим клеточным дифферонам: рабочим, ритмзадающим (пейсмекерным), проводящим и секреторным кардиомиоцитам.

Исходные клетки сердечной мышечной ткани — кардиомиобласты характеризуются рядом признаков: клетки уплощены, содержат крупное ядро, светлую цитоплазму, бедную рибосомами и митохондриями. В дальнейшем происходит развитие комплекса Гольджи, гранулярной эндоплазматической сети. В кардиомиобластах обнаруживаются фибриллярные структуры, но миофибрилл нет. Клетки обладают высоким пролиферативным потенциалом. После ряда митотических циклов кардиомиобласты дифференцируются в кардиомиоциты, в которых начинается саркомерогенез. В цитоплазме кардиомиоцитов увеличивается число полисом, канальцев гранулярной эндоплазматической сети, накапливаются гранулы гликогена, возрастает объем актомиозинового комплекса. Кардиомиоциты сокращаются, но не теряют способность к дальнейшей пролиферации и дифференцировке. Развитие сократительного аппарата в позднем эмбриональном и постнатальном периодах происходит путем надставки новых саркомеров и наслоения вновь синтезированных миофиламентов. Дифференцировка кардиомиоцитов сопровождается увеличением числа митохондрий, распределением их у полюсов ядер и между миофибриллами и протекает параллельно со специализацией контактирующих поверхностей клеток. Кардиомиоциты путем контактов “конец в конец”, “конец в бок” формируют клеточные комплексы — сердечные мышечные волокна, и в целом ткань представляет собой сетевидную структуру.

Строение сердечной мышечной ткани.

Структурно-функциональные единицы волокон — кардиомиоциты — это клетки, имеющие вытянутую прямоугольную форму. Длина рабочих кардиомиоцитов составляет 50-120 мкм, а ширина — 15-20 мкм. Одно-два ядра располагаются в центре клетки. Периферическую часть цитоплазмы кардиомиоцитов занимают поперечноисчерченные миофибриллы, аналогичные таковым в симпластах скелетномышечного волокна. Однако каналы саркоплазматической сети и Т-системы менее отчетливо выражены. Кардиомиоциты отличаются большим количеством митохондрий, расположенных тесными рядами между миофибриллами. Снаружи миоциты покрыты сарколеммой, в составе которой выделяются плазмолемма и базальная мембрана. Характерной особенностью ткани является наличие вставочных дисков на границе между контактирующими кардиомиоцитами. Вставочные диски пересекают волокно в виде волнистой или ступенчатой линии и включают межклеточные контакты от простых, по типу десмо-сом и до щелевых (нексусов).

сердечная мышечная ткань

Часть кардиомиоцитов на ранних этапах кардиомиогенеза являются сократительно-секреторными. В дальнейшем в результате дивергентной дифференцировки возникают “темные” (сократительные) и “светлые” (проводящие) миоциты, в которых исчезают секреторные гранулы, тогда как в предсердных миоцитах они сохраняются. Так формируется дифферон эндокринных кардиомиоцитов. Эти клетки содержат центрально расположенное ядро с диспергированным хроматином,

1-2 ядрышками. В цитоплазме хорошо развиты гранулярная эндоплазматическая сеть, диктиосомы комплекса Гольджи, в тесной связи с элементами которого находятся многочисленные секреторные гранулы диаметром около 2 мкм, содержащие электронноплотный материал. В дальнейшем секреторные гранулы обнаруживаются под сарколеммой и выделяются в межклеточное пространство путем экзоцитоза. Выделенный пептидный гормон кардиодилатин циркулирует в крови в виде кардионатрина, который вызывает сокращение гладких миоцитов артериол, увеличение почечного кровотока, ускоряет клубочковую фильтрацию и выделение натрия из организма.

Кардиомиоциты проводящей системы гетероморфны. В них слабо развит мио-фибриллярный аппарат, расположение миофиламентов в составе миофибрилл рыхлое, Z-линии имеют неправильную конфигурацию, эндоплазматическая сеть слабо развита, находится на периферии миоцитов, число митохондрий незначительное. По мере расположения этих кардиомиоцитов в проксимо-дистальном направлении соответственно движению импульсов от синусно-предсердного узла, через предсердно-желудочковый узел, пучок Гиса, его ножки и клетки Пуркиня к рабочим миоцитам проводящие кардиомиоциты по своей ультраструктуре приближаются к рабочим кардиомиоцитам.

Регенерация сердечной мышечной ткани.

В гистогенезе сердечной мышечной ткани специализированный камбий не возникает. Поэтому регенерация ткани протекает на основе внутриклеточных гиперпластических процессов. Вместе с тем для кардиомиоцитов млекопитающих, приматов и человека характерен процесс полиплоидизации. Например, у обезьян ядра до 50% терминально дифференцированных кардиомиоцитов становятся тетра- и октоплоидными. Полиплоидные кардиомиоциты возникают за счет ацитокинетического митоза, что приводит к многоядерности.

В условиях патологии сердечно-сосудистой системы человека (ревматизм, врожденные пороки сердца, инфаркт миокарда и другие) важная роль в компенсации повреждений кардиомиоцитов принадлежит внутриклеточной регенерации, полиплоидизации как ядер, так и кардиомиоцитов.

– Также рекомендуем “Гладкая мышечная ткань. Строение гладкой мышечной ткани.”

Оглавление темы “Костные ткани. Мышечные ткани.”:

1. Воспаление в соединительной ткани. Процессы воспаления в соединительной ткани.

2. Ткани с опорно-механической функцией. Плотные волокнистые соединительные ткани.

3. Костные ткани. Остеогистогенез.

4. Развитие костной ткани на месте хряща. Остеокласты. Пластинчатая костная ткань.

5. Ткани с двигательной функцией. Скелетная мышечная ткань. Гистогенез скелетной мышечной ткани.

6. Строение скелетной мышечной ткани. Регенерация скелетной мышечной ткани.

7. Сердечная мышечная ткань. Строение сердечной мышечной ткани.

8. Гладкая мышечная ткань. Строение гладкой мышечной ткани.

9. Мионевральная ткань. Миоидные клетки.

10. Ткани нервной системы. Гистогенез нервной системы.

Источник

 “Биология. Человек. 8 класс”. Д.В. Колесова и др.

Вопрос 1. Что называют тканью?
Ткань – система клеток и неклеточных образований, имеющих общее происхождение, строение и выполняющих в организме сходные функции.

Вопрос 2 Какие виды тканей вы знаете?.
Выделяют четыре основных группы тканей: эпителиальную, соединительную, мышечную и нервную.

Вопрос 3. Чем соединительная ткань отличается от эпителиальной?
Эпителиальные ткани состоят из тесно прилегающих друг к другу клеток. Межклеточного вещества мало. Эпителиальные ткани (эпителий) образуют покровы тела, а также слизистые оболочки всех внутренних органов и полостей. Эпителий образует также большинство желез. Он обладает высокой способностью к регенерации.
Соединительные ткани состоят из клеток и большого количества межклеточного вещества. Межклеточное вещество представлено основным веществом и волокнами коллагена или элластина. Соединительные ткани хорошо регенерируют.

Вопрос 4. Какие виды эпителиальной и соединительной ткани вы знаете?
К эпителиальным тканям относятся: плоский эпителий, кубический эпителий, мерцательный эпителий, цилиндрический эпителий, а также железистая ткань, вырабатывающая различные секреты (пот, слюну, желудочный сок, сок поджелудочной железы). К соединительным тканям относятся: опорные ткани хрящевая и костная, жидкая ткань — кровь, эластичная рыхлая соединительная ткань, разделяющая мышечные волокна, жировая ткань, плотная соединительная ткань, входящая в состав сухожилий.

Вопрос 5. Какими свойствами обладают клетки мышечной ткани — гладкой, поперечнополосатой, сердечной?
Мышечная ткань любого вида обладает такими свойствами, как возбудимость и сократимость.
Гладкая (неисчерченная) мышечная ткань обеспечивает работу кровеносных сосудов и внутренних органов, например желудка, кишечника, бронхов, т. е. органов, работающих помимо нашей воли, автоматически. С помощью гладких мышц изменяются размеры зрачка, кривизна хрусталика глаза и т.д.
Поперечнополосатая (исчерченная) мышечная ткань входит в состав скелетной мускулатуры, которая работает как рефлекторно, так и по нашей воле (произвольно), образует мышцы языка, глотки, верхней части пищевода.
Сердечная (слабоисчерченная) мышечная ткань тоже состоит из мышечных волокон, но они имеют ряд особенностей. Во-первых, здесь соседние мышечные волокна соединены между собой в сеть. Во-вторых, они имеют небольшое число ядер, расположенных в центре волокна. Благодаря такому строению возбуждение, возникшее в одном месте, быстро охватывает всю мышечную ткань, участвующую в сокращении.

Вопрос 6. Какие функции выполняют клетки нейроглии?
Нейроглия выполняет несколько функций. Одна из них барьерная. Все вещества из кровеносного сосуда поступают сначала в клетки нейроглии, которые пропускают к нейронам необходимые вещества и задерживают токсичные. Кроме этого, клетки нейроглии выполняют и опорную роль, механически поддерживая нейроны.

Вопрос 7. Каково строение и свойства нейронов?
Нейрон имеет тело, от которого отходят отростки — короткие, ветвящиеся дендриты и длинный отросток, разветвляющийся на конце, — аксон. Дендриты проводят нервные импульсы к телу нейрона, а аксон — от тела нейрона на другой нейрон или на рабочий орган. По количеству отростков нейроны делятся на мультиполярные — многоотростчатые нейроны (более трех отростков), биполярные — клетки с двумя отростками, униполярные нейроны — с одним отростком, который на некотором расстоянии от клетки раздваивается.

Вопрос 8. Каковы различия по строению и функциям между дендритами и аксонами?
Дендрит — отросток, передающий возбуждение к телу нейрона. Чаще всего у нейрона несколько коротких разветвленных дендритов. Однако бывают нейроны, у которых имеется только один длинный дендрит. Дендрит, как правило, не имеет белой миелиновой оболочки.
Аксон — это единственный длинный отросток нейрона, который передает информацию от тела нейрона к следующему нейрону или к рабочему органу. Аксон ветвится только на конце, образуя короткие веточки — терминали. Аксон обычно покрыт белой миелиновой оболочкой.

Вопрос 9. Что такое синапс?
Синапсами называются места контактов нервных клеток.

Источник

Мышечные ткани составляют активную часть опорно-двигательного аппарата (пассивной частью являются кости, соединения костей). Важнейшие
свойства мышечной ткани: сократимость и возбудимость. К данной группе тканей относятся гладкая, поперечно-полосатая (скелетная) и сердечная
мышечные ткани.

Мышцы человека

Гладкая (висцеральная) мускулатура

Эта мышечная ткань встречается в стенках внутренних органах (кишечник, мочевой пузырь), в стенках сосудов, протоках
желез. Эволюционно является наиболее древним видом мускулатуры.

Состоит из веретенообразных миоцитов – коротких одноядерных клеток. Слабо выражено межклеточное вещество, клетки сближены друг с другом: благодаря этому возбуждение, возникшее в одной клетке, волнообразно распространяется на все
остальные клетки.

Гладкие миоциты, гладкая мышечная ткань

Гладкая мышечная ткань отличается своей способностью к длительному тоническому напряжению, что очень важно для работы
внутренних органов (к примеру мочевого пузыря), практически не утомляется. Скелетная мышечная ткань, которую мы изучим чуть позже, такой способностью не обладает и утомляется быстро.

Осуществляется сокращение с помощью клеточных органоидов – миофиламентов, которые расположены в клетке хаотично и не имеют
такой упорядоченной структуры, как миофибриллы в скелетной мускулатуре (все познается в сравнении, уже скоро мы их тоже изучим.)

Работа гладких мышц обеспечивается вегетативной (автономной) нервной системой: человек не может управлять ей произвольно.
К примеру, невозможно по желанию сузить или расширить зрачок.

Гладкая мускулатура

Скелетная поперечно-полосатая мускулатура

Скелетная ткань образует мышцы туловища, конечностей и головы.

В отличие от гладкой мускулатуры, скелетная образована не отдельными одноядерными клетками, а длинными многоядерными
волокнами, имеющими до 100 и более ядер – миосимпластами. Миосимпласт представляет совокупность слившихся клеток, имеет длину
от нескольких миллиметров до нескольких сантиметром.

Внутри миосимпласта находится саркоплазма, снаружи миосимпласт покрыт сарколеммой.

Скелетная мышечная ткань, миосимпласт

Характерная черта данной ткани – поперечная исчерченность, выражающаяся в равномерном чередовании светлых и темных полос
на мышечном волокне. Это происходит потому, что границы саркомеров в соседних миофибриллах совпадают, вследствие чего
все волокно приобретает поперечную исчерченность. Теперь самое время изучить микроскопическую основу мышцы – саркомер.

Саркомер (от греч. sarco – мясо (мышца) + mere – маленький)

Сократимость мышечной ткани обусловлена наличием в клетках миофиламентов. Саркомер – элементарная сократительная единица
мышцы. Состоит из тонкого белка – актина, и толстого – миозина. Сокращение осуществляется благодаря трению нитей актина о
нити миозина, в результате чего саркомер укорачивается.

Строение саркомера

Источником энергии для сокращения служат молекулы АТФ. К тому же невозможно представить сокращение мышц без участия ионов кальция: именно они
связываются с тропонином (белком между нитями актина), что обуславливает соединение актина и миозина. При сокращении мышц выделяется тепло.

Замечу, что трупное окоченение – посмертное затвердевание мышц – связано именно с ионами кальция, которые устремляются в область
низкой концентрации (мышцы), способствуя связыванию актина и миозина. Мертвый организм не способен разорвать цикл, возникший в мышцах,
в связи с чем наблюдается стойкая мышечная контрактура (лат. contractura – стягивание, сужение): конечности очень сложно разогнуть или согнуть.

Сокращение мышц

Вернемся к скелетным мышцам. Имеется еще ряд важных моментов, о которых нужно знать.

В процесс возбуждения вовлекается изолированно один миосимпласт, соседние волокна не возбуждают друг друга, в отличие
от гладких миоцитов. Скелетные мышцы сокращаются мгновенно (у гладких мышц фазы сокращения и расслабления
растянуты во времени) и быстро утомляются.

Скелетные мышцы подконтрольны нашему сознанию: их сокращение регулируется произвольно. К примеру, по желанию мы можем изменить
скорость движения руки, темп бега, силу прыжка. Мышцы покрыты фасцией, крепятся к костям сухожилиями, и, сокращаясь, приводят в движение
суставы.

Строение мышцы

Сердечная мышечная ткань

Мышечная ткань сердца – миокард (от др.-греч. μῦς «мышца» + καρδία – «сердце») – средний слой сердца, составляющий основную
часть его массы.

Миокард

Этот тип мышечной ткани удивительным образом сочетает свойства двух предыдущих, изученных нами, тканей (возбудимость, сократимость) и имеет одно новое
уникальное свойство. Сердечная мышечная ткань состоит из одиночных клеток, имеющих поперечно-полосатую исчерченность.

В некоторых участках эти клетки смыкаются, образуя между собой контакты, благодаря которым возбуждение одной клетки волнообразно
передается на соседние, таким образом, охватываются новые участки миокарда. Сокращается эта ткань непроизвольно, не утомляется.

Сердечная ткань обладает уникальным свойством – автоматизмом – способностью возбуждаться и сокращаться без влияний извне,
самопроизвольно. Это легко можно подтвердить, изолировав сердце лягушки из организма в физиологический раствор: сокращения
сердца в нем будут продолжаться еще несколько часов.

Автоматизм сердца, изолированное сердце лягушки сокращается

Автоматизм возможен благодаря наличию в миокарде особых пейсмекерных (англ. pacemaker – задающий ритм) клеток, которые также называют водителями ритма. Они
спонтанно генерируют нервные импульсы, которые охватывают весь миокард, в результате чего осуществляется сокращение. Именно благодаря водителям
ритма сердце лягушки продолжает биться, будучи полностью отделенным от тела.

Ответ мышц на физическую нагрузку

Физические нагрузки приводят к гипертрофии мышц (от др.-греч. ὑπερ- чрез, слишком + τροφή – еда, пища) – в них увеличивается количество мышечных волокон, объем мышечной
массы нарастает.

Гипертрофия мышц

В условиях гиподинамии (от греч. ὑπό – под и δύνᾰμις – сила), то есть пониженной активности, мышцы уменьшаются вплоть до полной
атрофии. В худшем случае волокна мышечной ткани перерождаются в соединительную ткань, после чего пациент становится обездвиженным.

Атрофия мышц

Необходимо отметить, что сердечная мышечная ткань также дает ответную реакцию на чрезмерную нагрузку: сердце увеличивается в
размере, нарастает масса миокарда. Причиной могут быть генетические заболевания, повышенное артериальное давление.
Гипертрофия сердца – состояние, требующее вмешательства врача и наблюдения за пациентом.

В большинстве случае
гипертрофия сердца обратима, а у спортсменов наблюдается так называемая физиологическая гипертрофия (вариант нормы).

Гипертрофия сердца

Происхождение мышц

Мышцы развиваются из среднего зародышевого листка – мезодермы.

Зародыш человека

© Беллевич Юрий Сергеевич 2018-2020

Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение
(в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов
без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования,
обратитесь, пожалуйста, к Беллевичу Юрию.

Источник