Какими свойствами обладают газообразные тела
Изучив свойства и строение твёрдых, жидких и аморфных тел, для которых характерны дальний или ближний порядок в расположении частиц, перейдём к рассмотрению свойств и строения газообразных тел. Для газов характерно полное отсутствие порядка в расположении и движении частиц. Как говорят физики, во всех газах их частицы расположены и движутся хаотически (греч. «хаос» – беспорядок).
Вы знаете много газов: водород, кислород, углекислый газ, водяной пар, пары ртути, азот, озон, хлор, воздух (как смесь газов). Все они очень разные. Водород лёгкий, а углекислый газ тяжёлый; азот не пахнет, а озон «щиплет» нос; водяные пары безвредны, а пары ртути ядовиты; воздух бесцветный, а хлор имеет жёлто-зелёный цвет. Эти свойства у газов разные, но есть и общие.
Во-первых, все газы очень хорошо поддаются сжатию. Их можно сжать в 100 и более раз. Во-вторых, все газы подчиняются закону Паскаля, передавая оказанное на них давление в другие части сосуда. В-третьих, в отличие от жидкостей, газы всегда оказывают давление, даже в невесомости. Как же можно объяснить эти общие свойства всех газов? На этот вопрос отвечает молекулярно-кинетическая теория.
Строение газообразных тел. При обычных условиях расстояния между частицами газа во много раз больше размеров самих частиц, а кинетическая энергия их движения гораздо больше (по модулю) потенциальной энергии их притяжения друг к другу и/или к Земле. Поэтому частицы газа практически свободно летают, сталкиваясь друг с другом и «бомбардируя» стенки сосуда, в котором находятся.
Таково объяснение давления газов. Оно будет справедливым и в условиях невесомости, где давление газов сохраняется в отличие от давления твёрдых и жидких тел.
Заметим, что давление жидкости имеет совсем иное происхождение: вышележащие слои жидкости своим весом придавливают нижележащие слои (поэтому по мере опускания ко дну сосуда давление возрастает). В каждом слое из-за частых соударений частиц давление передаётся во все стороны, в том числе и на стенки сосуда. Поэтому в условиях невесомости (где жидкость и её отдельные слои не имеют веса) давление жидкости на дно и стенки сосуда будет равно нулю.
Это важное отличие происхождения давления газа от давления жидкости подтверждает опыт. На рисунке изображены два сосуда: левый – с жидкостью, а правый – с газом. Сосуды снабжены манометрами: вблизи дна, в средней части и вблизи горловины. Взгляните: у сосуда с газом манометры показывают одинаковые давления, а у сосуда с жидкостью – возрастающие значения по мере опускания. Причина этого – различный «механизм» происхождения давления в жидкостях и газах.
Объясним теперь свойство газов легко поддаваться сжатию и подчиняться закону Паскаля. Обратимся к рисунку. Вдвинув поршень, мы уплотним расположение частиц вблизи него. Однако вскоре эти частицы разлетятся по всему объёму сосуда, и в результате газ станет более плотным, а «бомбардировка» его частицами стенок сосуда – более интенсивной. То есть газ передаст оказанное на него давление поршня во все стороны.
Вспомним, что при увеличении температуры газа его давление возрастает (см. § 4-г). МКТ легко объясняет этот факт. Повышение температуры приводит к увеличению скорости движения частиц газа, поэтому «бомбардировка» частицами стенок сосуда усиливается, что и означает возрастание давления газа.
Источник
Естественные науки, включающая химию и физику, обычно рассматриваются как науки, изучающие природу и свойства вещества и энергии в неживых системах. Вещество во Вселенной – атомы, молекулы и ионы, которые составляют все физические тела, все, что имеет массу и занимает пространство. Энергия — это способность вызывать изменения. Энергия не может быть создана или уничтожена; он может быть только сохранена и преобразована из одной формы в другую. Потенциальная энергия — это энергия, хранящаяся в объекте из-за его положения – например, ведро с водой, повешенное над дверью, может упасть. Кинетическая энергия — это энергия, движения, любой объект или частица, находящаяся в движении, обладает кинетической энергией, зависящей от массы и скорости тела. Кинетическая энергия может быть преобразована в другие виды энергии, такие как электрическая энергия и тепловая энергия.
Существует пять известных фаз или состояний вещества: твердое тело, жидкость, газ, плазма и бозе-эйнштейновский конденсат. Основное различие в структурах каждого состояния находится в плотностях частиц.
ТВЕРДОЕ ТЕЛО
В твердом теле частицы плотно упакованы, поэтому они не могут двигаться очень сильно. Частицы твердого вещества имеют очень низкую кинетическую энергию. Электроны каждого атома находятся в движении, поэтому атомы имеют небольшую вибрацию, но они фиксируются в своем положении. Твердые тела имеют определенную форму, и могут длительное время ее сохранять. У них также есть определенный объем. Частицы твердого тела уже настолько плотно упакованы вместе, что увеличивающееся давление не будет сжимать твердое тело до меньшего объема.
ЖИДКОСТИ
В жидкой фазе частицы вещества имеют большую кинетическую энергию, чем частицы в твердом теле. Частицы жидкости не удерживаются в регулярном расположении, но все еще очень близки друг к другу, поэтому жидкости имеют определенный объем. Жидкости, как и твердые тела, трудно сжимаемы. Частицы жидкости имеют достаточно места для обтекания друг друга, поэтому жидкости имеют неопределенную форму. Жидкость принимает форму емкости, в которую она помещена. Сила распределяется равномерно по всей жидкости, поэтому, когда объект помещается в жидкость, частицы жидкости перемещаются за объектом.
Величина восходящей плавучей силы равна весу жидкости, в объеме тела. Когда плавучая сила равна силе тяжести, объект будет плавать. Этот принцип плавучести был обнаружен греческим математиком Архимедом, который, согласно легенде, выпрыгнул из своей ванны и побежал обнаженным по улицам, крича «Эврика!», после того, как догадался о выталкивающих силах в жидкости. Эту силу еще называют силой Архимеда, как дань уважения и признания древнему ученому.
Частицы жидкости, как правило, удерживаются слабым межмолекулярным притяжением, а не свободно перемещаются, как частицы газа. Эта сила сцепления соединяет частицы вместе, образуя капли или потоки.
Ученые сообщили, что в апреле 2016 года они создали странное состояние материи, которое, как предполагалось, существовало, но никогда не было видно в реальной жизни. Хотя этот тип материи можно держать в руке, как если бы он был сплошным, увеличение материала выявило бы беспорядочные взаимодействия его электронов, более характерные для жидкости. Это тип материи называют квантовой спиновой жидкостью Китаева, в ней электроны входят в своеобразный квантовый танец, в котором они взаимодействуют или «разговаривают» друг с другом. Обычно, когда вещество остывает, спин его электронов имеет тенденцию выстраиваться в линию. Но в этой квантовой спиновой жидкости электроны взаимодействуют так, что они влияют на то, как другие вращаются и никогда не выравниваются независимо от того, насколько материал холодный. Материал будет вести себя так, как будто его электроны, считающиеся неделимыми, разрушались.
ГАЗЫ
Частицы газа находятся на большом расстоянии друг от друга и имеют высокую кинетическую энергию. Если пространство не ограничено, частицы газа будут разбросаны бесконечно; если оно ограничено, газ будет расширяться, чтобы заполнить весь объем. Когда газ оказывается под давлением, то есть уменьшается объем емкости, пространство между частицами уменьшается, а давление, оказываемое их столкновениями, увеличивается. Если объем сосуда поддерживается постоянным, но температура газа увеличивается, то давление также увеличивается. Частицы газа обладают достаточной кинетической энергией для преодоления межмолекулярных сил, которые удерживают твердые частицы и жидкости вместе, поэтому газ не имеет определенного объема и формы.
ПЛАЗМА
Плазма не является общим состоянием материи здесь, на Земле, но может быть самым распространенным состоянием материи во Вселенной. Плазма состоит из сильно заряженных частиц с чрезвычайно высокой кинетической энергией. Благородные газы (гелий, неон, аргон, криптон, ксенон и радон) часто используются для создания светильников, используя электричество для их ионизации в плазменное состояние. Звезды, по сути, являются перегретыми шарами плазмы.
КОНДЕНСАТ БОЗЕ-ЭЙНШТЕЙНА
В 1995 году технология позволила ученым создать новое состояние материи – конденсат Бозе-Эйнштейна (КБЭ). Используя комбинацию лазеров и магнитов, Эрик Корнелл и Карл Вейман охладили образец рубидия с точностью до нескольких градусов до абсолютного нуля. При этой чрезвычайно низкой температуре молекулярное движение очень близко к остановке. Так как кинетическая энергия почти не передается от одного атома к другому, атомы начинают сжиматься вместе. Уже не тысячи отдельных атомов, а один «супер атом». КБЭ используется для изучения квантовой механики на макроскопическом уровне. Свет, кажется, замедляется, когда он проходит через КБЭ, что позволяет изучать парадокс частиц/волн. КБЭ также обладает многими свойствами сверхтекучей жидкости без трения, также используются для моделирования условий, которые могут выполняться в черных дырах.
СМЕНА ФАЗЫ
Добавление энергии к веществу приводит к физическому изменению – материя переходит из одного состояния в другое. Например, добавление тепловой энергии – тепла – к жидкой воде приводит к тому, что она становится паром или газом. Извлечение энергии также приводит к физическим изменениям, например, когда жидкая вода становится льдом – твердой – при удалении тепла. Физическое изменение фазы также может быть вызвано движением и давлением.
ПЛАВЛЕНИЕ И ОТВЕРДЕВАНИЕ
Когда тепло прикладывается к твердому веществу, его частицы начинают быстрее вибрировать и склонны двигаться дальше друг от друга. Когда вещество при стандартном давлении достигает определенной точки, называемой точкой плавления, твердое вещество начинает превращаться в жидкость. Точку плавления чистого вещества часто можно определить с точностью до 0,1 градуса Цельсия, точкой, в которой твердая и жидкая фазы находятся в равновесии. Если вы продолжаете нагревать образец, температура не будет повышаться выше точки плавления, пока весь образец не будет сжижен. Тепловая энергия используется для преобразования твердого вещества в жидкую форму. Как только весь образец станет жидким, температура снова начнет расти. Соединения, которые в остальном очень похожи, могут иметь разные точки плавления, поэтому точка плавления может быть полезным способом различения среди них. Например, сахароза имеет точку плавления 186,1 градусов Цельсия, тогда как температура плавления глюкозы составляет 146 градусов Цельсия. Твердая смесь, такая как металлический сплав, часто может быть разделена на ее составные части путем нагревания смеси и извлечения жидкостей по мере достижения ими различных точек плавления.
Точка замерзания – это температура, при которой жидкое вещество достаточно охлаждается для образования твердого вещества. По мере охлаждения жидкости движение частиц замедляется. Во многих веществах частицы выравниваются точными геометрическими узорами для образования кристаллических твердых веществ. Большинство жидкостей сжимаются, когда они замерзают. Одной из важных характеристик воды является то, что она расширяется при замерзании, поэтому лед плавает. Если бы лед не плавал, не было бы жидкой воды под замерзшим льдом, и многие формы водной жизни были бы невозможны.
Температура замерзания часто близка к той же температуре, что и температура плавления, но не считается характерной для вещества, поскольку несколько факторов могут ее изменить. Например, добавление растворенных веществ в жидкость приведет к снижению температуры замерзания. Примером этого является использование суспензии соли для снижения температуры, при которой вода замерзает на наших дорогах. Другие жидкости можно охлаждать до температур, значительно ниже их температуры плавления, до того, как они начнут затвердевать. Такие жидкости называются суперохлаждаемыми и часто требуют наличия пылевой частицы или затравочного кристалла для начала процесса кристаллизации.
СУБЛИМАЦИЯ
Когда твердое вещество превращается непосредственно в газ без прохождения жидкой фазы, процесс известен как сублимация. Сублимация происходит, когда кинетическая энергия частиц больше атмосферного давления, окружающего образец. Это может произойти, когда температура образца быстро увеличивается за точку кипения (испарение вспышки). Чаще всего вещество может быть «высушено в замороженном состоянии» путем его охлаждения в условиях вакуума, так что вода в веществе подвергается сублимации и удаляется из образца. Несколько летучих веществ будут подвергаться сублимации при нормальной температуре и давлении. Наиболее известным из этих веществ является CO2 или сухой лед.
ПАРООБРАЗОВАНИЕ
Испарение представляет собой превращение жидкости в газ. Испарение может происходить путем испарения или кипения.
Поскольку частицы жидкости находятся в постоянном движении, они часто сталкиваются друг с другом, передавая при этом энергию. Этот перенос энергии имеет малое влияние внутри жидкости, но когда достаточная энергия передается частице вблизи поверхности, она может получить достаточную энергию, чтобы полностью удалиться из образца в виде частицы свободного газа. Этот процесс называется испарением, и он продолжается до тех пор, пока остается жидкость. Энергия, передаваемая поверхностным молекулам, вызывающая их вылет, уносится от оставшегося жидкого образца.
Когда к жидкости добавляется достаточно тепла, образуя пузырьки пара ниже поверхности, мы говорим, что жидкость кипит. Температура, при которой жидкость кипит, является переменной. Точка кипения зависит от давления вещества. Жидкость под более высоким давлением будет требовать больше тепла до того, как в ней могут образоваться пузырьки пара. На больших высотах атмосферном давлении ниже, чем при нормальных условиях, поэтому жидкость будет кипеть при более низкой температуре. Такое же количество жидкости на уровне моря находится под большим атмосферным давлением и будет кипеть при более высокой температуре.
КОНДЕНСАЦИЯ И ДЕСУБЛИМАЦИЯ
Конденсация – это когда газ превращается в жидкость. Конденсация происходит, когда газ охлаждается или сжимается до такой степени, что кинетическая энергия частиц больше не может преодолевать межмолекулярные силы. Первоначальный кластер частиц инициирует процесс, который имеет тенденцию дополнительно охлаждать газ, так что конденсация продолжается. Когда газ превращается непосредственно в твердое вещество, не проходя через жидкую фазу, процесс называется осаждением или десублимацией. Примером этого является то, как при пониженных температурах преобразуется водяной пар в атмосфере в иней и лед. Иней имеет тенденцию обрисовывать сплошные листья травы и веток, потому что воздух, касающийся этих твердых веществ, охлаждается быстрее, чем воздух, который не касается твердой поверхности.
Источник
Вся неживая материя состоит из частиц, поведение которых может отличаться. Строение газообразных, жидких и твердых тел имеет свои особенности. Частицы в твердых телах удерживаются вместе, так как расположены очень тесно друг к другу, это делает их очень прочными. Кроме того, они могут держать определенную форму, так как их мельчайшие частицы практически не двигаются, а только вибрируют. Молекулы в жидкостях находятся довольно близко друг к другу, однако они могут свободно передвигаться, поэтому собственной формы они не имеют. Частицы в газах движутся очень быстро, вокруг них, как правило, много пространства, что предполагает их легкое сжатие.
Свойства и строение твердых тел
Какова структура и особенности строения твердых тел? Они состоят из частиц, которые расположены очень близко друг к другу. Они не могут перемещаться, и поэтому их форма остается фиксированной. Каковы свойства твердого тела? Оно не сжимается, но если его нагреть, то его объем будет увеличиваться с ростом температуры. Это происходит потому, что частицы начинают вибрировать и двигаться, что приводит к уменьшению плотности.
Одной из особенностей твердых тел является то, что они имеют неизменную форму. Когда твердое тело нагревается, средняя скорость движения частиц увеличивается. Быстрее движущиеся частицы сталкиваются более яростно, заставляя каждую частицу толкать своих соседей. Следовательно, повышение температуры обычно приводит к повышению прочности тела.
Кристаллическое строение твердых тел
Межмолекулярные силы взаимодействия между соседними молекулами твердого тела достаточно сильны, чтобы держать их в фиксированном положении. Если эти мельчайшие частицы находятся в высокоупорядоченной комплектации, то такие структуры принято называть кристаллическими. Вопросами внутренней упорядоченности частиц (атомов, ионов, молекул) элемента или соединения занимается специальная наука – кристаллография.
Химическое строение твердого тела также вызывает особый интерес. Изучая поведение частиц, того, как они устроены, химики могут объяснить и предсказать, как определенные виды материалов будут себя вести при определенных условиях. Мельчайшие частицы твердого тела расположены в виде решетки. Это так называемое регулярное расположение частиц, где немаловажное значение играют различные химические связи между ними.
Зонная теория строения твердого тела рассматривает твердое вещество как совокупность атомов, каждый их которых, в свою очередь, состоит из ядра и электронов. В кристаллическом строении ядра атомов находятся в узелках кристаллической решетки, для которой характерна определенная пространственная периодичность.
Что такое структура жидкости?
Строение твердых тел и жидкостей схоже тем, что частицы, из которых они состоят, находятся на близком расстоянии. Различие состоит в том, что молекулы жидкого вещества свободно перемещаются, так как сила притяжения между ними гораздо слабее, нежели в твердом теле.
Какими же свойствами обладает жидкость? Во-первых, это текучесть, во-вторых, жидкость будет принимать форму контейнера, в который ее помещают. Если ее нагреть, объем будет увеличиваться. Из-за близкого расположения частиц друг к другу жидкость не может быть сжата.
Какова структура и строение газообразных тел?
Частицы газа располагаются случайным образом, они находятся так далеко друг от друга, что между ними не может возникнуть сила притяжения. Какими свойствами обладает газ и каково строение газообразных тел? Как правило, газ равномерно заполняет все пространство, в которое он был помещен. Он легко сжимается. Скорость частиц газообразного тела увеличивается вместе с ростом температуры. При этом происходит также повышение давления.
Строение газообразных, жидких и твердых тел характеризуется разными расстояниями между мельчайшими частицами этих веществ. Частицы газа находятся гораздо дальше друг от друга, чем в твердом или жидком состоянии. В воздухе, например, среднее расстояние между частицами примерно в десять раз превышает диаметр каждой частицы. Таким образом, объем молекул занимает всего около 0,1 % от общего объема. Остальные 99,9 % составляет пустое пространство. В противоположность этому частицы жидкости заполняют около 70 % общего объема жидкости.
Каждая частица газа движется свободно по прямолинейному пути, пока она не столкнется с другой частицей (газа, жидкости или твердого тела). Частицы обычно движутся достаточно быстро, а после того как две из них сталкиваются, они отскакивают друг от друга и продолжают свой путь в одиночку. Эти столкновения меняют направление и скорость. Эти свойства газовых частиц позволяют газам расширяться, чтобы заполнить любую форму или объем.
Изменение состояния
Строение газообразных, жидких и твердых тел может меняться, если на них оказывается определенное внешнее воздействие. Они могут даже переходить в состояния друг друга при определенных условиях, например в процессе нагревания или охлаждения.
- Плавление. Под воздействием очень высоких температур организованная структура разрушается, и твердое тело становится жидким. Частицы по-прежнему располагаются близко друг к другу, но между ними появляется больше свободного пространства. Таким образом, когда твердое вещество плавится, оно, как правило, расширяется, чтобы заполнить несколько больший объем. Эта свобода передвижения позволяет, например, придать определенную форму жидкому металлу.
- Испарение. Строение и свойства жидких тел позволяют им при определенных условиях переходить в совершенно другое физическое состояние. Например, случайно пролив бензин при заправке автомобиля, можно довольно быстро почувствовать его резкий запах. Как это происходит? Частицы двигаются по всей жидкости, в итоге определенная их часть достигает поверхности. Их направленное движение может вынести эти молекулы за пределы поверхности в пространство над жидкостью, но притяжение будет затягивать их обратно. С другой стороны, если частица движется очень быстро, она может оторваться от других на приличное расстояние. Таким образом, при увеличении скорости частиц, которое случается обычно при нагревании, происходит процесс испарения, то есть преобразования жидкости в газ.
Поведение тел в разных физических состояниях
Строение газов, жидкостей, твердых тел главным образом обусловлено тем, что все эти вещества состоят из атомов, молекул или ионов, однако поведение этих частиц может быть совершенно разным. Частицы газа хаотичным образом удалены друг от друга, молекулы жидкости находятся близко друг к другу, но они не так жестко структурированы, как в твердом теле. Частицы газа вибрируют и передвигаются на высоких скоростях. Атомы и молекулы жидкости вибрируют, перемещаются и скользят мимо друг друга. Частицы твердого тела также могут вибрировать, но движение как таковое для них не свойственно.
Особенности внутренней структуры
Для того чтобы понять поведение материи, нужно сначала изучить особенности ее внутренней структуры. Каковы внутренние различия между гранитом, оливковым маслом и гелием в воздушном шарике? Простая модель структуры материи поможет найти ответ на этот вопрос.
Модель является упрощенным вариантом реального предмета или вещества. Например, до того как начинается непосредственное строительство, архитекторы сначала конструируют модель строительного проекта. Такая упрощенная модель не обязательно предполагает точное описание, но в то же время она может дать приблизительное представление того, что будет собой представлять та или иная структура.
Упрощенные модели
В науке, однако, моделями не всегда выступают физические тела. За последнее столетие наблюдался значительный рост человеческого понимания о физическом мире. Однако большая часть накопленных знаний и опыта основана на чрезвычайно сложных представлениях, например в виде математических, химических и физических формул.
Для того чтобы разобраться во всем этом, нужно быть достаточно хорошо подкованным в этих точных и сложнейших науках. Ученые разработали упрощенные модели для визуализации, объяснения и предсказания физических явлений. Все это значительным образом упрощает понимание того, почему некоторые тела имеют постоянную форму и объем при определенной температуре, а другие могут их менять и так далее.
Вся материя состоит из мельчайших частиц. Эти частицы находятся в постоянном движении. Объем движения связан с температурой. Повышенная температура свидетельствует об увеличении скорости движения. Строение газообразных, жидких и твердых тел отличается свободой передвижения их частиц, а также тем, насколько сильно частицы притягиваются друг к другу. Физические свойства вещества зависят от его физического состояния. Водяной пар, жидкая вода и лед имеют одинаковые химические свойства, но их физические свойства значительно отличаются.
Источник