Какими свойствами обладают диагонали прямоугольника

Какими свойствами обладают диагонали прямоугольника thumbnail

Общая информация

В задачах по геометрии и физике приходится находить некоторые параметры прямоугольника: углы, стороны, периметр, площадь и диагонали. Все эти величины связаны между собой некоторыми соотношениями. Каждый должен уметь их рассчитывать, поскольку это необходимо не только для решения математических задач, но и в жизни. Например, при укладке керамзитной плитки на пол.

Используя свойство диагоналей, можно определить метод ее укладки. Кроме того, в физике иногда требуется рассчитать площадь поперечного сечения, а необходимая формула неизвестна. Во время планирования покупки строительных материалов нужно вычислить их количество, произведя вычисление площади или периметра помещения.

Однако формул для ведения расчетов недостаточно, поскольку нужно идентифицировать геометрическую фигуру. Для каждой из них применяются разные соотношения. В случае неверного определения вычисления окажутся недостоверными, а это негативно сказывается не только на экзаменах или контрольных, но и в финансовой сфере.

Сведения о прямоугольнике

Прямоугольником называется фигура с прямыми внутренними углами между смежными сторонами, у которой противоположные стороны равны. Его частным случаем, как говорят математики, является квадрат. У него все стороны равны, а углы также являются прямыми. Не каждый может правильно определить тип фигуры, поскольку от этого шага зависит правильность вычислений какого-либо параметра.

Для каждого геометрического тела существуют определенные критерии, по которым можно узнать его принадлежность. Эти критерии называются признаками. Некоторые новички путают признаки и свойства, но существует главное отличие, которое заключено в определении терминов «признак» и «свойство». Кроме того, специалисты предлагают простой способ, позволяющий избежать путаницы между терминами.

Идентификация или признаки

Признак — некоторые критерии, по которым можно отнести фигуру к определенному типу. Свойствами называются некоторые аксиомы и утверждения, полученные при доказательстве теорем. Идентифицировать прямоугольник можно с помощью теоремы из эвклидовой геометрии. Она имеет такую формулировку: если три угла фигуры являются прямыми, то она является прямоугольником. Для доказательства нужно выполнить такие действия:

  • Вычислить значение четвертого угла: D = 360 — (90 * 3) = 90 (градусов).
  • Сопоставить сведения, полученные при вычислении, с определением.

Существуют также и другие признаки, по которым можно идентифицировать фигуру. По одному из них можно определить ее принадлежность к прямоугольнику. К признакам можно отнести такие:

  • Равенство сторон, которые противоположны между собой.
  • Внутренние углы между собой равны, а их градусная мера соответствует 90 градусам.
  • Диагонали равны между собой.
  • Сумма квадратов двух сторон, которые не противоположны, равна квадрату одной диагонали. Это следует из теоремы Пифагора, по которой находится одна из сторон прямоугольного треугольника.
  • Если прямоугольник не является квадратом, то его стороны не равны одному значению.

Первый и второй признаки получаются из основного определения фигуры. Третий признак является следствием доказательства теоремы, формулировка которой является следующей: диагонали прямоугольника равны. Она еще называется теоремой о диагоналях прямоугольника.

Для ее доказательства нужно начертить произвольный прямоугольник ABCD и провести в нем диагонали AC и BD. Они будут пересекаться в некоторой точке X. Они образуют прямоугольные треугольники ABC и ABD. В этом случае нужно доказать равенство треугольников. Они равны между собой: сторона АВ — общая, угол А равен В и сторона BC = AD (по равенству противоположных сторон). Из этого следует, что треугольники равны. Следовательно, их гипотенузы, которые также являются и диагоналями, равны.

Четвертый признак также доказывается. Следует рассматривать прямоугольный треугольник ABC. Используя теорему Пифагора, нужно выразить гипотенузу, которая является диагональю фигуры, через катеты (стороны фигуры): AC 2 = AB 2 + BC 2. Таким способом доказывается данный признак. Последнее утверждение получается из частного случая: если у прямоугольника все стороны равны, то он является квадратом.

Свойства фигуры

Необходимо отметить, что квадрат — правильный четырехугольник, поскольку у него все стороны равны. Результирующая формула диагонали прямоугольника будет выглядеть таким образом: d = (AB2 + BC2)^(½). При решении задач применяются свойства прямоугольника:

  • Каждый из углов равен 90 градусам.
  • Стороны, которые являются противолежащими и параллельными, равны.
  • Сумма углов внутри фигуры составляет 360.
  • Пересечение диагоналей в точке, которая делит их пополам, также является центром окружности, описанной вокруг фигуры и центром симметрии.
  • Треугольники, полученные в результате проведения диагоналей, равны.
  • Суммарное значение квадратичных значений всех сторон эквивалентно двойному квадрату диагонали.
  • Большой и маленький треугольники, образованные диагоналями, подобны. Следует обратить внимание на коэффициент подобия.
  • Диагональ эквивалентна диаметру окружности, описанной около фигуры.
  • Геометрическая характеристика фигуры (сумма противоположных углов составляет 180) позволяет описать вокруг нее окружность.
  • Вписать круг в прямоугольник можно тогда, когда он является правильным, т. е. ширина эквивалентна длине (квадрат).
  • Угол между смежными сторонами равен 90.
  • В любом прямоугольнике диагонали взаимно перпендикулярны, когда он является квадратом.
  • Диагонали, пересекаясь между собой, образуют не разносторонние, а прямоугольные и равносторонние треугольники.
  • Половина диагонали, проведенная из любой вершины фигуры, является медианой и высотой.
  • Диагональ является биссектрисой (прямоугольник — квадрат).
  • Средняя линия прямоугольника проходит через точку пересечения диагоналей.

Однако при решении задач свойств недостаточно. Для этого применяются специальные соотношения и формулы. Некоторые из них были получены из свойств фигуры. Во всех формулах будет браться радиус описанной окружности — R и ее диаметр — D, а также функция «sqrt», которая эквивалентна квадратному корню (x^(1/2) = x^(0.5)).

Периметр и площадь

Для удобства необходимо ввести некоторые обозначения. Диагонали следует обозначить литерой d, а противолежащие стороны — a и b, соответственно. Периметр — характеристика, соответствующая суммарному значению сторон фигуры. Очень часто ее обозначают литерой P. Существует также базовая формула: Р = 2а + 2b. Соотношение можно править таким способом: Р = 2 (a + b). Кроме того, существуют другие соотношения для определения P, когда известны некоторые параметры:

  • Величина площади и сторона, которая известна: P = (2S + 2a 2 ) / a или P = (2S + 2b 2 ) / b.
  • Диагональ и a (b): P = 2(a + (d 2 — a 2 )^(0.5)) = 2(b + (d 2 — b 2 )^(0.5)).
  • a (b) и R: P = 2(a + (4 * R 2 — a 2 )^(0.5)) = 2(b + (4 * R 2 — b 2 )^(0.5)).
  • D и a (b): P = 2(a + sqrt(D 2 — a 2 )) = 2(b + sqrt(D 2 — b 2 )).

Площадь — характеристика размерности двумерной фигуры. Ее обозначают литерой S, и измеряют в метрических единицах в квадрате (мм 2, см 2, м 2 и т. д.). Следует отметить, что она вычисляется интегральным методом. Однако для частных случаев существуют соотношения. Формула, которая является основанием для всех остальных соотношений, называется базовой. Она имеет такой вид: S = a * b. Площадь находится в зависимости от параметров, которые известны:

  • P и a (b): S = [(P * a) — 2a 2 ] / 2 = [(P * b) — 2b 2 ] / 2.

  • a (b) и d: S = a * sqrt[d 2 — a 2 ] = b * sqrt[d 2 — b 2 ].

  • Синус острого угла (Y) между двумя d и d: S = d 2 * sin (Y) / 2.

  • R и a (b): S = a * sqrt[4 * R 2 — a 2 ] = b * sqrt[4 * R 2 — b 2 ].

  • D и a (b): S = a * sqrt[D 2 — a 2 ] = b * sqrt[D 2 — b 2 ].

Для решения различных задач также могут быть полезны и другие соотношения, позволяющие найти не только диагонали, но и стороны прямоугольника.

Диагонали и стороны

Для оптимизации решения нужно знать формулы, с помощью которых можно находить одну из сторон или диагональ прямоугольника. Необходимо разобрать основные соотношения, по которым находятся стороны фигуры, когда известны следующие параметры:

  • d и a (b): a = sqrt[d 2 — b 2 ] и b = sqrt[d 2 — a 2 ].
  • S и a (b): a = S / b и b = S / a.
  • P и a (b): a = (P — 2b) / 2 и b = (P — 2a) / 2.

Для нахождения диагонали также есть некоторые формулы. Для их применения следует знать такие параметры фигуры:

  • a и b: d = [a 2 + b 2 ]^(1/2).

  • S и a (b): d = (S 2 + a 4 )^(1/2) / a= (S 2 + b 4 )^(1/2) / b.

  • P и a (b): d = (P 2 — 4Pa + 8a 2 )^(1/2) / 2 = (P 2 — 4Pb + 8b 2 )^(1/2) / 2.

  • R и D: d = 2R и d = D.

Однако это не все соотношения. В некоторых случаях разрешается описывать окружность вокруг фигуры. С помощью такого «геометрического хода» можно существенно упростить решение задачи. Это позволяет воспользоваться другими формулами.

Другие соотношения

Для решения задач используются и другие соотношения, которые позволяют найти параметры окружности, которая описана. Пусть дана окружность с радиусом R и диаметром D. Кроме того, известны некоторые параметры фигуры (a, b, d, P и S). С помощью формул можно найти D и R окружности при известных некоторых величинах:

  • a и b: R = (a 2 + b 2 )^(1/2) / 2.

  • P и a (b): R = (P 2 — 4Pa + 8a 2 )^(1/2) / 4 = (P 2 — 4Pb + 8b 2 )^(1/2) / 4.

  • S и a (b): R = (S 2 + a 4 )^(1/2) / 2a = (S 2 + b 4 )^(1/2) / 2b.

  • d: R = d / 2.
  • sin(F), прилегающего к диагонали и стороне, и a: R = a / 2sin (F).
  • cos(F) и b: R = b / 2cos (F).

Для нахождения угла F следует воспользоваться такой формулой: sin (F) = a / d и cos (F) = b / d. Острый угол между двумя диагоналями определяется при помощи такого соотношения: sin (Y) = 2S / d 2 .

Пример решения

Пусть дана некоторая фигура, диагонали которой равны, а ее периметр равен 50. Одна из сторон a = 10. Следует провести идентификацию, а также найти такие параметры:

  • Другие стороны.
  • Значения диагоналей.
  • Площадь.
  • R описанной окружности через площадь и периметр.
  • Выяснить возможность укладки плитки в форме квадрата на такую поверхность.
  • Вычислить значения всех углов между смежными сторонами.

Данная задача является типом сложного класса, поскольку название фигуры не упоминается. Ее следует идентифицировать, а затем применить некоторые формулы для решения. Кроме того, необходимо верно выполнить 5 пункт. Однако не следует углубляться в строительную сферу. Бывают два метода укладки плитки: обычный — форма помещения является прямоугольником или квадратом, и с центра — другая фигура.

У фигуры диагонали равны, значит по третьему признаку она является прямоугольником. К нему можно применять вышеописанные формулы. Для нахождения другой стороны следует составить уравнение 2x + 2 * 10 = 50. Затем нужно перенести все известные значения в правую часть: 2х = 50 — 20. Далее можно найти переменную: х = 30 / 2 = 15 (ед.). Следует обратить внимание на написание единицы измерения. Если в условии задачи она не указана, то пишется единица измерения, которая заключается в круглые скобки. Достаточно найти только одну сторону, поскольку у прямоугольника существует свойство равенства противоположных сторон.

Значение диагоналей находится по формуле: d = [a 2 + b 2 ]^(1/2) = (15 2 + 10 2 )^(1/2) = (225 +100)^(1/2) = (325)^(1/2). Площадь можно найти таким образом: S = a * b = 15 * 10 = 150 [(ед.)^2]. Радиус вычисляется так:

  • R = (P 2 — 4Pa + 8a 2 )^(1/2) / 4 = (50 2 — 4 * 50 * 10 + 8 * 10 2 )^(1/2) / 4 = (1300)^(1/2) / 4 (ед.).

  • R = (S 2 + a 4 )^(1/2) / 2a = (150 2 + 100 4 )^(1/2) / (2 * 10) = (1300)^(1/2) / 4 (ед.).

Плитку можно укладывать обыкновенным способом, начиная не с центра, поскольку поверхность является прямоугольником. Все углы между сторонами равны между собой. Их градусная мера по 12 свойству соответствует 90.

Таким образом, при решении задач рекомендуется идентифицировать геометрическую фигуру, а затем применять к ней формулы.

Источник

  • KtoNaNovenkogo
  • ЧАстые ВОпросы
  • Вы здесь

19 октября 2019

  1. Прямоугольник — это…
  2. Его признаки
  3. Диагональ прямоугольника
  4. Свойства фигуры
  5. Периметр и площадь

Здравствуйте, уважаемые читатели блога KtoNaNovenkogo.ru.

Сегодня мы расскажем об одной из основных геометрических фигур – ПРЯМОУГОЛЬНИКЕ.

Название это весьма говорящее, и в нем скрыто официальное определение.

Прямоугольник – это четырехугольник, у которого все углы прямые, то есть равны 90 градусам.

Впервые описание этой фигуры встречается еще в Древнем Египте. Но в те времена все геометрические правила давались как неопровержимые истины, не предоставляя доказательств.

Более правильный подход появился в Древней Греции. И естественно, автором стал самый знаменитый математик той эпохи — Евклид. А прямоугольник, как и многие другие фигуры и термины, был подробно описан в его произведении «Начала».

Прямоугольник — это…

Все тот же Евклид разделил все четырехугольники на два вида – параллелограммы (что это?) и трапеции (что это?).

У первых противоположные стороны равны и параллельны, а у вторых параллельна только одна пара сторон, и они при этом не равны.

То есть выглядит это так:

Так вот, прямоугольник в данном случае является частным случаем параллелограмма.

Судите сами:

У этой фигуры противоположные стороны параллельны. Это первое условие по Евклиду. И к тому же они равны, что является условием номер два.

У прямоугольника есть и собственный частный случай. Когда равны не только противоположные стороны, а все. И как нетрудно догадаться, фигура эта называется квадрат.

Ну, и логично предположить, что квадрат (как и сам прямоугольник) является частным случаем параллелограмма.

Признаки прямоугольника

Признаки геометрической фигуры – это совокупность отличий, по которым ее можно выделить среди других.

В случае с прямоугольником их всего три:

  1. Если один из углов параллелограмма прямой, то данный параллелограмм является прямоугольником.
  2. Если три угла четырехугольника являются прямыми, то перед нами опять же прямоугольник. При этом нет необходимости доказывать, что четырехугольник является параллелограммом. Это промежуточное звено становится верно само по себе.
  3. Если диагонали параллелограмма равны между собой, то фигура точно является прямоугольником.

Диагонали прямоугольника

Как мы уже упомянули выше, диагонали прямоугольника (отрезки, соединяющие его противоположные углы) равны между собой.

Доказать это можно с помощью известной теоремы Пифагора. Она гласит, что «Сумма квадратов катетов прямоугольного треугольника равна квадрату гипотенузы».

В нашем случае гипотенузой является диагональ прямоугольника, которая делит его на два равных прямоугольных треугольника. И теорема Пифагора выглядит следующим образом:

Свойства прямоугольника

К свойствам прямоугольника относятся следующие утверждения:

  1. Прямоугольник является параллелограммом, а значит имеет все присущие ему свойства.
    1. У прямоугольника равны противоположные стороны.
    2. У прямоугольника противоположные стороны параллельны.
  2. У прямоугольников все прилегающие друг к другу стороны пересекаются под прямыми углами. А в сумме они дают 360 градусов.
  3. У прямоугольников обе диагонали равны между собой.
  4. Диагональ прямоугольника делит фигуру ровно пополам, и в результате получаются два одинаковых прямоугольных треугольника.
  5. Диагонали прямоугольника пересекаются в его геометрическом центре. А их точка пересечения делит каждую диагональ на два равных отрезка. Более того, все четыре отрезка равны между собой.
  6. У прямоугольника точка пересечения диагоналей является еще и центром описанной вокруг окружности. Причем длина диагонали одновременна является диаметром (что это такое?) этой окружности.

Периметр и площадь

Для того чтобы определить периметр прямоугольника, надо просто сложить длины всех его четырех сторон.

Но с учетом того, что попарно они равны, то конечная формула может выглядеть более просто:

Площадь прямоугольника вычисляется также весьма просто. Надо лишь перемножить две его стороны:

К слову, это не единственная формула для вычисления площади. Площадь также можно получить, имея значение периметра фигуры или длину его диагонали. Но эти формулы гораздо сложнее.

Вот и все, что мы хотели рассказать о геометрической фигуре ПРЯМОУГОЛЬНИК. До новых встреч на страницах нашего блога.

Удачи вам! До скорых встреч на страницах блога KtoNaNovenkogo.ru

Источник

Определение.

Прямоугольник – это четырехугольник у которого две противоположные стороны равны и все четыре угла одинаковы.

Прямоугольники отличаются между собой только отношением длинной стороны к короткой, но все четыре угла у них прямые, то есть по 90 градусов.

Длинную сторону прямоугольника называют длиной прямоугольника, а короткую – шириной прямоугольника.

Стороны прямоугольника одновременно является его высотами.

Основные свойства прямоугольника

Прямоугольником могут быть параллелограмм, квадрат или ромб.

1. Противоположные стороны прямоугольника имеют одинаковую длину, то есть они равны:

AB = CD,   BC = AD

2. Противоположные стороны прямоугольника параллельны:

AB||CD,   BC||AD

3. Прилегающие стороны прямоугольника всегда перпендикулярны:

AB ┴ BC,   BC ┴ CD,   CD ┴ AD,   AD ┴ AB

4. Все четыре угла прямоугольника прямые:

∠ABC = ∠BCD = ∠CDA = ∠DAB = 90°

5. Сумма углов прямоугольника равна 360 градусов:

∠ABC + ∠BCD + ∠CDA + ∠DAB = 360°

6. Диагонали прямоугольника имеют одинаковой длины:

AC = BD

7. Сумма квадратов диагонали прямоугольника равны сумме квадратов сторон:

2d2 = 2a2 + 2b2

8. Каждая диагональ прямоугольника делит прямоугольник на две одинаковые фигуры, а именно на прямоугольные треугольники.

9. Диагонали прямоугольника пересекаются и в точке пересечения делятся пополам:

       AO = BO = CO = DO = d
2

10. Точка пересечения диагоналей называется центром прямоугольника и также является центром описанной окружности

11. Диагональ прямоугольника является диаметром описанной окружности

12. Вокруг прямоугольника всегда можно описать окружность, так как сумма противоположных углов равна 180 градусов:

∠ABC + ∠CDA = 180°   ∠BCD + ∠DAB = 180°

13. В прямоугольник, у которого длина не равна ширине, нельзя вписать окружность, так как суммы противоположных сторон не равны между собой (вписать окружность можно только в частный случай прямоугольника – квадрат).

Стороны прямоугольника

Определение.

Длиной прямоугольника называют длину более длинной пары его сторон. Шириной прямоугольника называют длину более короткой пары его сторон.

Формулы определения длин сторон прямоугольника

1. Формула стороны прямоугольника (длины и ширины прямоугольника) через диагональ и другую сторону:

a = √d2 – b2

b = √d2 – a2

2. Формула стороны прямоугольника (длины и ширины прямоугольника) через площадь и другую сторону:

3. Формула стороны прямоугольника (длины и ширины прямоугольника) через периметр и другую сторону:

4. Формула стороны прямоугольника (длины и ширины прямоугольника) через диаметр и угол α:

a = d sinα

b = d cosα

5. Формула стороны прямоугольника (длины и ширины прямоугольника) через диаметр и угол β:

Диагональ прямоугольника

Определение.

Диагональю прямоугольника называется любой отрезок соединяющий две вершины противоположных углов прямоугольника.

Формулы определения длины диагонали прямоугольника

1. Формула диагонали прямоугольника через две стороны прямоугольника (через теорему Пифагора):

d = √a2 + b2

2. Формула диагонали прямоугольника через площадь и любую сторону:

d = √S2 + a4 = √S2 + b4
ab

3. Формула диагонали прямоугольника через периметр и любую сторону:

d = √P2 – 4Pa + 8a2 = √P2 – 4Pb + 8b2
22

4. Формула диагонали прямоугольника через радиус описанной окружности:

d = 2R

5. Формула диагонали прямоугольника через диаметр описанной окружности:

d = Dо

6. Формула диагонали прямоугольника через синус угла, прилегающего к диагонали, и длину стороны противоположной этому углу:

7. Формула диагонали прямоугольника через косинус угла, прилегающего к диагонали, и длину стороны прилегающей к этому углу:

8. Формула диагонали прямоугольника через синус острого угла между диагоналями и площадью прямоугольника

d = √2S : sin β

Периметр прямоугольника

Определение.

Периметром прямоугольника называется сумма длин всех сторон прямоугольника.

Формулы определения длины периметру прямоугольника

1. Формула периметру прямоугольника через две стороны прямоугольника:

P = 2a + 2b

P = 2(a + b)

2. Формула периметру прямоугольника через площадь и любую сторону:

P = 2S + 2a2 = 2S + 2b2
ab

3. Формула периметру прямоугольника через диагональ и любую сторону:

P = 2(a + √d2 – a2) = 2(b + √d2 – b2)

4. Формула периметру прямоугольника через радиус описанной окружности и любую сторону:

P = 2(a + √4R2 – a2) = 2(b + √4R2 – b2)

5. Формула периметру прямоугольника через диаметр описанной окружности и любую сторону:

P = 2(a + √Do2 – a2) = 2(b + √Do2 – b2)

Площадь прямоугольника

Определение.

Площадью прямоугольника называется пространство ограниченный сторонами прямоугольника, то есть в пределах периметра прямоугольника.

Формулы определения площади прямоугольника

1. Формула площади прямоугольника через две стороны:

S = a · b

2. Формула площади прямоугольника через периметр и любую сторону:

S = Pa – 2a2 = Pb – 2b2
22

3. Формула площади прямоугольника через диагональ и любую сторону:

S = a√d2 – a2 = b√d2 – b2

4. Формула площади прямоугольника через диагональ и синус острого угла между диагоналями:

5. Формула площади прямоугольника через радиус описанной окружности и любую сторону:

S = a√4R2 – a2 = b√4R2 – b2

6. Формула площади прямоугольника через диаметр описанной окружности и любую сторону:

S = a√Do2 – a2 = b√Do2 – b2

Окружность описанная вокруг прямоугольника

Определение.

Окружностью описанной вокруг прямоугольника называется круг проходящий через четыре вершины прямоугольника, центр которого лежит на пересечении диагоналей прямоугольника.

Формулы определения радиуса окружности описанной вокруг прямоугольника

1. Формула радиуса окружности описанной вокруг прямоугольника через две стороны:

2. Формула радиуса окружности описанной вокруг прямоугольника через периметр квадрата и любую сторону:

R = √P2 – 4Pa + 8a2 = √P2 – 4Pb + 8b2
44

3. Формула радиуса окружности описанной вокруг прямоугольника через площадь квадрата:

R = √S2 + a4 = √S2 + b4
2a2b

4. Формула радиуса окружности описанной вокруг прямоугольника через диагональ квадрата:

5. Формула радиуса окружности описанной вокруг прямоугольника через диаметр описанной окружности:

6. Формула радиуса окружности описанной вокруг прямоугольника через синус угла, прилегающего к диагонали, и длину стороны противоположной этому углу:

7. Формула радиуса окружности описанной вокруг прямоугольника через косинус угла, прилегающего к диагонали, и длину стороны прилегающей к этому углу:

8. Формула радиуса окружности описанной вокруг прямоугольника через синус острого угла между диагоналями и площадью прямоугольника:

Угол между стороной и диагональю прямоугольника

Формулы определения угла между стороной и диагональю

1. Формула определения угла между стороной и диагональю прямоугольника через диагональ и сторону:

2. Формула определения угла между стороной и диагональю прямоугольника через угол между диагоналями:

Угол между диагоналями прямоугольника

Формулы определения угла между диагоналями прямоугольника

1. Формула определения угла между диагоналями прямоугольника через угол между стороной и диагональю:

β = 2α

2. Формула определения угла между диагоналями прямоугольника через площадь и диагональ:

Источник