Какими свойствами обладают четырехугольники описанные около окружности и вписанные в нее
Мы видели, что вокруг всякого треугольника можно описать окружность.
То есть, для всякого треугольника найдётся такая окружность, что все три вершины треугольника «сидят» на ней. Вот так:
Вопрос: а можно ли то же самое сказать о четырехугольнике? Правда ли, что всегда найдётся окружность, на которой будут «сидеть» все четыре вершины четырехугольника?
Сейчас мы это выясним!
Вот оказывается, что это НЕПРАВДА!
НЕ ВСЕГДА четырехугольник можно вписать в окружность. Есть очень важное условие:
Четырехугольник можно вписать в окружность тогда и только тогда, когда сумма двух его противоположных углов равна ( displaystyle 180{}^circ ).
На нашем рисунке:
( displaystyle alpha +beta =180{}^circ )
Посмотри, углы ( displaystyle alpha ) и ( displaystyle beta ) лежат друг напротив друга, значит, они противоположные. А что же тогда с углами ( displaystyle varphi ) и ( displaystyle psi )? Они вроде бы тоже противоположные?
Можно ли вместо углов ( displaystyle alpha ) и ( displaystyle beta ) взять углы ( displaystyle varphi ) и ( displaystyle psi )?
Конечно, можно!
Главное, чтобы у четырехугольника нашлись какие-то два противоположных угла, сумма которых будет ( displaystyle 180{}^circ ).
Оставшиеся два угла тогда сами собой тоже дадут в сумме ( displaystyle 180{}^circ ). Не веришь? Давай убедимся. Смотри:
Пусть ( displaystyle alpha +beta =180{}^circ ). Помнишь ли ты, чему равна сумма всех четырех углов любого четырехугольника? Конечно, ( displaystyle 360{}^circ ).
То есть ( displaystyle alpha +beta +varphi +psi =360{}^circ ) – всегда! ( displaystyle 180{}^circ )
Но ( displaystyle alpha +beta =180{}^circ ), →( displaystyle varphi +psi =360{}^circ -180{}^circ =180{}^circ).
Волшебство прямо!
Так что запомни крепко-накрепко:
Это закрытый контент
Оставьте E-mail и получите на почту доступ к нему
Если четырехугольник вписан в окружность, то сумма любых двух его противоположных углов равна ( displaystyle 180{}^circ )
и наоборот:
Если у четырехугольника есть два противоположных угла, сумма которых равна ( displaystyle 180{}^circ ), то такой четырехугольник вписанный.
Доказывать всё это мы здесь не будем (если интересно, заглядывай в следующие уровни теории). Но давай посмотрим, к чему приводит этот замечательный факт о том, что у вписанного четырехугольника сумма противоположных углов равна ( displaystyle 180{}^circ ).
Вот, например, приходит в голову вопрос, а можно ли описать окружность вокруг параллелограмма?
Попробуем сперва «методом тыка»:
Вот как-то не получается.
Теперь применим знание:
Предположим, что нам как-то удалось посадить на параллелограмм ( displaystyle ABCD) окружность. Тогда непременно должно быть: ( displaystyle alpha +beta =180{}^circ ), то есть ( displaystyle angle B+angle D=180{}^circ ).
А теперь вспомним о свойствах параллелограмма: у всякого параллелограмма противоположные углы равны.
То есть ( displaystyle angle B = angle D).
У нас получилось, что
( displaystyle left{ begin{array}{l}angle B=angle D\angle B+angle D=180{}^circ end{array} right.) → ( displaystyle left{ begin{array}{l}angle B=90{}^circ \angle D=90{}^circ end{array} right.)
А что же углы ( displaystyle A) и ( displaystyle C)?
Ну, то же самое конечно.
( displaystyle ABCD) – вписанный → ( displaystyle angle A+angle C=180{}^circ ) → ( displaystyle angle A=90{}^circ )
( displaystyle ABCD) – параллелограмм→ ( displaystyle angle A=angle C) → ( displaystyle angle C=90{}^circ )
Потрясающе, правда? Получилось, что…
Это закрытый контент
Оставьте E-mail и получите на почту доступ к нему
Если параллелограмм вписан в окружность, то все его углы равны ( displaystyle 90{}^circ ), то есть это прямоугольник!
И ещё при этом –
Центр окружности совпадает с точкой пересечения диагоналей этого прямоугольника.
Это, так сказать, в качестве бонуса прилагается.
Ну, вот значит, выяснили, что параллелограмм, вписанный в окружность – прямоугольник.
А теперь поговорим о трапеции. Что будет, если трапецию вписать в окружность? А оказывается, будет равнобедренная трапеция.
Почему?
Вот пусть трапеция ( displaystyle ABCD) вписана в окружность.
Тогда опять ( displaystyle angle B+angle D=180{}^circ ), но из-за параллельности прямых ( displaystyle AD) и ( displaystyle BC) ( displaystyle angle B+angle A=180{}^circ ).
Значит, имеем: ( displaystyle left{ begin{array}{l}angle B+angle D=180{}^circ \angle B+angle A=180{}^circ end{array} right.) → ( displaystyle angle D=angle A) → трапеция равнобокая.
Даже проще чем с прямоугольником, правда? Но запомнить нужно твёрдо – пригодиться:
Трапеция, вписанная в окружность – равнобедренная.
Давай ещё раз перечислим самые главные утверждения, касающиеся четырехугольника, вписанного в окружность:
- Четырехугольник вписан в окружность тогда и только тогда, когда сумма двух его противоположных углов равна ( displaystyle 180{}^circ )
- Параллелограмм, вписанный в окружность – непременно прямоугольник и центр окружности совпадает с точкой пересечения диагоналей
- Трапеция, вписанная в окружность – равнобокая
Главная теорема о вписанном четырехугольнике
Известно, что для всякого треугольника существует описанная окружность (это мы доказывали в теме «Описанная окружность»). Что же можно сказать о четырёхугольнике?
Вот, оказывается, что НЕ ВСЯКИЙ четырехугольник можно вписать в окружность, а есть такая теорема:
Четырёхугольник вписан в окружность тогда и только тогда, когда сумма его противоположных углов равна ( displaystyle 180{}^circ ).
На нашем рисунке – ( largedisplaystyle angle alpha +angle beta =180{}^circ )
Давай попробуем понять, почему так? Другими словами, мы сейчас докажем эту теорему.
Но прежде чем доказывать, нужно понять, как устроено само утверждение. Ты заметил в утверждении слова «тогда и только тогда»? Такие слова означают, что вредные математики впихнули два утверждения в одно.
Расшифровываем:
Это закрытый контент
Оставьте E-mail и получите на почту доступ к нему
1
«Тогда» означает: Если четырехугольник вписан в окружность, то сумма любых двух его противоположных углов равна ( displaystyle 180{}^circ )
2
«Только тогда» означает: Если у четырёхугольника найдутся два противоположных угла, сумма которых равна ( displaystyle 180{}^circ ), то такой четырехугольник можно вписать в окружность
Прямо как у Алисы: «думаю, что говорю» и «говорю, что думаю».
А теперь разбираемся, отчего же верно и 1, и 2?
Пусть четырехугольник ( displaystyle ABCD) вписан в окружность. Отметим её центр ( displaystyle O) и проведём радиусы ( displaystyle OA) и ( displaystyle OC).
Что же получится? Помнишь ли ты, что вписанный угол вдвое меньше соответствующего центрального?
Если помнишь – сейчас применим, а если не очень – загляни в тему «Окружность. Вписанный угол».
Итак,
Это закрытый контент
Оставьте E-mail и получите на почту доступ к нему
( displaystyle angle ABC) – вписанный ( displaystyleRightarrow angle ABC=frac{1}{2}cdot angle psi )
( displaystyle angle ADC) – вписанный ( displaystyleRightarrow angle ADC=frac{1}{2}cdot angle varphi )
Но посмотри: ( displaystyle angle varphi +angle psi =360{}^circ )
Значит,
( displaystyle begin{array}{l}angle ABC+angle ADC=frac{1}{2}angle psi +frac{1}{2}angle varphi =\=frac{1}{2}left( angle psi +angle varphi right)=frac{1}{2}cdot 360{}^circ =180{}^circ end{array})
Получаем, что если ( displaystyle ABCD) – вписанный, то
( displaystyle angle alpha +angle beta =180{}^circ )
Ну, и ясно, что ( displaystyle angle A) и ( displaystyle angle C) тоже в сумме составляет ( displaystyle 180{}^circ ). (нужно так же рассмотреть ( displaystyle angle BAD) и ( displaystyle angle BCD)).
Пусть оказалось так, что у четырехугольника ( displaystyle ABCD) сумма каких – то двух противоположных углов равна ( displaystyle 180{}^circ ). Скажем, пусть
( displaystyle angle B+angle D=180{}^circ )
Мы пока не знаем, можем ли описать вокруг него окружность. Но мы точно знаем, что вокруг треугольника ( displaystyle ABC) мы гарантированно окружность описать можем. Так и сделаем это.
Если точка ( displaystyle D) не «села» на окружность, то она неминуемо оказалась или снаружи или внутри.
Рассмотрим оба случая.
Пусть сначала точка ( displaystyle D) – снаружи.
Тогда отрезок ( displaystyle AD) пересекает окружность в какой-то точке ( displaystyle E). Соединим ( displaystyle C) и ( displaystyle E).
Получился вписанный (!) четырехугольник ( displaystyle ABCE).
Про него уже знаем, что сумма его противоположных углов равна ( displaystyle 180{}^circ ), то есть ( displaystyle angle alpha +angle gamma =180{}^circ ), а по условию у нас ( displaystyle angle alpha +angle beta =180{}^circ )
Получается, что должно бы быть так, что ( displaystyle angle beta =angle gamma )
Но это никак не может быть поскольку ( displaystyle angle gamma ) – внешний угол для ( displaystyle Delta DEC) и значит, ( displaystyle angle gamma =angle beta +angle delta )
А внутри?
Это закрытый контент
Оставьте E-mail и получите на почту доступ к нему
Проделаем похожие действия. Пусть точка ( displaystyle D) внутри.
Тогда продолжение отрезка ( displaystyle AD) пересекает окружность в точке ( displaystyle E).
Снова ( displaystyle ABCE) – вписанный четырехугольник ( displaystyle angle alpha +angle gamma =180{}^circ ).
А по условию ( displaystyle angle alpha +angle beta =180{}^circquad Rightarrow ) должно выполняться ( displaystyle angle beta =angle gamma ), но ( displaystyle angle beta ) – внешний угол для ( displaystyle Delta DEC) и значит, ( displaystyle angle beta =angle gamma +angle delta ).
То есть опять никак не может быть так, что ( displaystyle angle beta =angle gamma ).
То есть точка ( displaystyle D) не может оказаться ни снаружи, ни внутри окружности – значит, она на окружности!
Доказали всю-всю теорему!
Теперь посмотрим, какие же хорошие следствия даёт эта теорема.
Следствие 1
Параллелограмм, вписанный в окружность, может быть только прямоугольником
Доказательство следствия 1
Давай-ка поймём, почему так. Пусть параллелограмм ( displaystyle ABCD) вписан в окружность. Тогда должно выполняться ( displaystyle angle B+angle D=180{}^circ ).
Но из свойств параллелограмма мы знаем, что ( displaystyle angle B=angle D).
То есть
( displaystyle left{ begin{array}{l}angle B+angle D=180{}^circ \angle B=angle Dend{array} right. left{ begin{array}{l}angle B=90{}^circ \angle D=90{}^circ end{array} right.)
И то же самое, естественно, касательно углов ( displaystyle A) и ( displaystyle C).
Вот и получился прямоугольник – все углы по ( displaystyle 90{}^circ ).
Но, кроме того, есть ещё дополнительный приятный факт:
Центр окружности, описанной около прямоугольника, совпадает с точкой пересечения диагоналей.
Давай поймём почему. Надеюсь, ты отлично помнишь, что угол, опирающийся на диаметр – прямой.
Ну вот,
( displaystyle angle B=90{}^circ Rightarrow AC) – диаметр,
( displaystyle angle A=90{}^circ Rightarrow BD) – диаметр
а значит, ( displaystyle O) – центр. Вот и всё.
Следствие 2
Трапеция, вписанная в окружность – равнобедренная
Докажем?
Доказательство следствия 2
Пусть трапеция ( displaystyle ABCD) вписана в окружность. Тогда ( displaystyle angle B+angle D=180{}^circ ).
Но ( displaystyle ADparallel BC Rightarrow angle B+angle A=180{}^circ )
То есть
( displaystyle left{ begin{array}{l}angle B+angle D=180{}^circ \angle B+angle A=180{}^circ end{array} right.) ( displaystyle Rightarrow angle D=angle A). И так же ( displaystyle angle B=angle C).
Всё ли мы обсудили?
Не совсем. На самом деле есть ещё один, «секретный» способ, как узнавать вписанный четырехугольник. Мы этот способ сформулируем не очень строго (но понятно).
Итак:
Это закрытый контент
Оставьте E-mail и получите на почту доступ к нему
Если в четырёхугольнике можно наблюдать такую картинку, как здесь на рисунке (тут углы, «смотрящие» на сторону ( displaystyle AD) из точек ( displaystyle B) и ( displaystyle C), равны), то такой четырехугольник – вписанный.
Это очень важный рисунок – в задачах часто бывает легче найти равные углы, чем сумму углов ( displaystyle B) и ( displaystyle D).
Несмотря на совершенное отсутствие строгости в нашей формулировке, она верна, и более того, всегда принимается проверяющими ЕГЭ. Ты должен писать примерно так:
«( displaystyle angle ABD=angle ACDRightarrow ABCD) – вписанный» – и всё будет отлично!
Не забывай этот важный признак – запомни картинку, и, возможно, она тебе вовремя бросится в глаза при решении задачи.
КОРОТКО О ГЛАВНОМ
Если четырехугольник вписан в окружность, то сумма любых двух его противоположных углов равна ( displaystyle 180{}^circ )
и наоборот:
Если у четырехугольника есть два противоположных угла, сумма которых равна ( displaystyle 180{}^circ ), то такой четырехугольник вписанный.
Четырехугольник вписан в окружность тогда и только тогда, когда сумма двух его противоположных углов равна ( displaystyle 180{}^circ ).
( displaystyle angle B+angle D=180{}^circ ).
Параллелограмм, вписанный в окружность – непременно прямоугольник, и центр окружности совпадает с точкой пересечения диагоналей.
Трапеция, вписанная в окружность – равнобокая.
P.S. Последний бесценный совет ????
Ну вот, тема закончена. Если ты читаешь эти строки, значит, ты очень крут.
Почему?
Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, ты попал в эти 5%!
Теперь самое главное.
Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.
Проблема в том, что этого может не хватить…
Для чего?
Для успешной сдачи ОГЭ или ЕГЭ, для поступления в 10 класс или в институт на бюджет и, самое главное, для жизни.
Я не буду тебя ни в чем убеждать, просто скажу одну вещь…
Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.
Но и это не главное.
Главное то, что они более счастливы (есть такие исследования). Возможно, потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю…
Но думай сам…
Что нужно, чтобы быть наверняка лучше других на ОГЭ или ЕГЭ и быть в конечном итоге… более счастливым?
Набить руку, решая задачи.
На экзамене у тебя не будут спрашивать теорию.
Тебе нужно будет решать задачи на время. И, если ты не решал их (много!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь. Это как в спорте: нужно много раз повторить, чтобы выиграть наверняка.
Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!
Можешь воспользоваться нашим сборником задач с подробным разбором, и мы их всячески рекомендуем, потому что они разбиты по темам, по типам и даже собраны в целую программу подготовки.
Если решишь набить руку с помощью наших задач, зайди на сайт 100gia и приобрети одну из программ.
А еще можешь зарегистрироваться и получить доступ к огромному количеству бесплатных материалов, видеоуроков, тестов.
После регистрации ты сможешь:
- проверить свою готовность к каждому типу задач на ЕГЭ (пройдя тест);
- подтянуть слабые места с помощью видеоуроков, вебинаров;
- понять тему с помощью статей учебника YouClever;
- набить руку, решая задачи и получая проверку и решения;
- сдать пробный ЕГЭ и получить сразу оценку и разбор ошибок.
Бонус: информатика и физика.
И в заключение…
Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.
“Понял” и “Умею решать” – это совершенно разные навыки. Тебе нужны оба.
Найди задачи и решай!
Нам нужна твоя помощь!
Ну вот, мы рассказали тебе всё о вписанном четырехугольнике.
Особенно тебе эти знания понадобятся в задачах повышенной сложности. Например, в ОГЭ долгое время была задача про трапецию.
Ты теперь знаешь намного больше, чем рассказывают в школах.
И я очень надеюсь, что однажды эти знания тебе пригодятся!
Напиши ниже в комментариях, что думаешь об этой статье. Как думаешь, какой момент тут самый важный?
Успехов!
Источник
Описанные и вписанные окружности
Наглядная геометрия 9 класс. Опорный конспект 2 Описанные и вписанные окружности
Около любого треугольника можно описать окружность. Она проходит через все вершины треугольника. Вы уже знаете, что точка пересечения серединных перпендикуляров равноудалена от вершин треугольника. Она и является центром описанной окружности.
В любой треугольник можно вписать окружность. Она касается всех сторон треугольника. Вы также знаете, что точка пересечения биссектрис треугольника равноудалена от сторон треугольника. Она и является центром вписанной окружности.
А можно ли описать окружность около любого параллелограмма? Если попробовать это сделать, то окажется, что около параллелограмма можно описать окружность, только если он — прямоугольник. Мы узнаем, каким свойством обладают вписанные и описанные четырехугольники и какие признаки позволяют судить о том, можно ли около данного четырехугольника описать и можно ли в него вписать окружность.
И вдобавок мы познакомимся с одной важной формулой площади треугольника S = рr.
ТАБЛИЦА «Описанные и вписанные окружности»
1. Окружность, описанная около треугольника.
Окружность называется описанной около треугольника, если она проходит через все его вершины.
Теорема. Вокруг любого треугольника можно описать окружность, и только одну. Ее центр лежит на пересечении серединных перпендикуляров к сторонам треугольника.
Доказательство. Точка пересечения серединных перпендикуляров к сторонам треугольника равноудалена от его вершин (доказано нами в 7 классе). Поэтому она является центром описанной окружности, расстояние от этой точки до любой из вершин равно радиусу.
Если существует еще одна описанная окружность, то ее центр равноудален от всех трех вершин и поэтому совпадает с точкой пересечения серединных перпендикуляров, а радиус совпадает с радиусом первой окружности. Окружности совпадают.
2. Окружность, описанная около прямоугольного треугольника.
Теорема. Центр окружности, описанной около прямоугольного треугольника, лежит на середине гипотенузы, а радиус окружности равен половине гипотенузы.
Доказательство. Мы знаем, что медиана прямоугольного треугольника, проведенная из вершины прямого угла, равна половине гипотенузы (доказано нами в 7 классе). Поэтому середина гипотенузы является центром описанной окружности, а ее радиус равен половине гипотенузы, т. е. R = c/2.
3. Окружность, вписанная в треугольник.
Окружность называется вписанной в треугольник, ест она касается всех сторон треугольника.
Теорема. В любой треугольник можно вписать окружность, и только одну. Ее центр лежит на пересечении биссектрис треугольника.
Доказательство. Точка пересечения биссектрис треугольника равноудалена от сторон треугольника (доказано нами в 7 классе). Если из этой точки опустить перпендикуляры на стороны и провести окружность радиусом, равным перпендикуляру, то стороны треугольника будут касаться окружности по признаку касательной.
Если существует еще одна вписанная окружность, то ее центр равноудален от всех трех сторон и поэтому совпадает с точкой пересечения биссектрис, а радиус совпадает с радиусом первой окружности. Окружности совпадают.
4. Формула площади S = рr.
Теорема. Площадь треугольника S = рr, где р — полупериметр треугольника, r — радиус вписанной окружности.
Доказательство. Соединим центр вписанной окружности с вершинами треугольника, стороны которого равны а, b и с. Получим три треугольника, для которых радиусы вписанной окружности, проведенные в точки касания, являются высотами. Площадь данного треугольника равна сумме площадей этих треугольников:
где p — полупериметр треугольника.
Данная формула справедлива для любого многоугольника, в который можно вписать окружность, т. е. для любого описанного многоугольника. Доказательство аналогично.
5. Окружность, вписанная в прямоугольный треугольник.
Теорема. Радиус окружности, вписанной в прямоугольный треугольник, находится по формуле r = (а + b – c)/2.
Доказательство. Проведем радиусы в точки касания. Получим квадрат со стороной r (четырехугольник, у которого все углы прямые и две соседние стороны равны по r) и отрезки катетов, равные r и а – r для катета а, r и b – r для катета b. Так как отрезки касательных, проведенных из одной точки, к окружности равны, то гипотенуза равна сумме отрезков (a – r) и (b – r). Так как с = (а – r) + (b – r), то r = (а + b – c)/2.
6. Свойство вписанного четырехугольника.
Теорема (свойство вписанного четырехугольника). Если четырехугольник вписан в окружность, то суммы его противоположных углов равны по 180°.
Доказательство. Противоположные углы α и β являются вписанными. Они опираются на дуги, которые дополняют друг друга до окружности. Окружность содержит 360°. Так как вписанный угол равен половине дуги, на которую он опирается, то сумма углов α и β равна 180°.
7. Признак вписанного четырехугольника.
Теорема (признак вписанного четырехугольника). Если сумма противоположных углов четырехугольника равна 180°, то вокруг него можно описать окружность.
Доказательство. Через три вершины четырехугольника всегда можно провести окружность (это вершины некоторого треугольника). Если четвертая вершина будет лежать внутри окружности или вне ее, то угол при этой вершине будет больше или меньше угла β, по свойству внешнего угла треугольника, т. е. 1 < β < 2. Тогда сумма противоположных углов этого четырехугольника не будет равна 180°. Поэтому четвертая вершина такого четырехугольника обязана лежать на окружности.
8. Свойство вписанной трапеции.
Теорема. Вписанная трапеция является равнобедренной.
Доказательство. 1-й способ. ∠1 + ∠2 = 180° как внутренние односторонние при параллельных прямых и секущей, ∠3 + ∠2 = 180° по свойству вписанного четырехугольника. Тогда ∠1 = ∠3 и трапеция равнобедренная по признаку равнобедренной трапеции.
2-й способ. Параллельные прямые отсекают равные дуги. Равные дуги стягиваются равными хордами. Поэтому боковые стороны трапеции равны.
9. Свойство описанного четырехугольника.
Теорема (свойство описанного четырехугольника). Если в четырехугольник можно вписать окружность, то суммы его противоположных сторон равны.
Доказательство. Отрезки касательных, проведенных из одной точки к окружности, равны. Обозначим равные отрезки соответственно одной черточкой, двумя, тремя и четырьмя. Убеждаемся, что суммы противоположных сторон равны: Т + А = Н + Я.
10. Признак описанного четырехугольника.
Теорема (признак описанного четырехугольника). Если у четырехугольника суммы противоположных сторон равны, то в него можно вписать окружность.
Доказательство. Пусть окружность касается только трех сторон. Повернув четвертую сторону вокруг вершины так, чтобы она касалась окружности, получим описанный четырехугольник.
Т + А = Н + Я — по свойству описанного четырехугольника,
Т + y = (Н + х) + Я — по условию.
Тогда y = А + х. А это противоречит неравенству треугольника у < А + х. Значит, окружность касается всех четырех сторон заданного четырехугольника.
ЭТО НУЖНО ЗНАТЬ !
Это опорный конспект № 2 по геометрии для 9 класса «Описанные и вписанные окружности». Выберите дальнейшие действия:
- Вернуться к Списку конспектов по геометрии
- Смотреть Опорный конспект 1. Окружности
- Смотреть Опорный конспект 3. Теорема синусов. Теорема косинусов
- Смотреть Опорный конспект 4. Правильные многоугольники
Источник