Какими свойствами обладают буферные растворы внутри клетки
Буферные системы – это системы, способные сохранять постоянное значение рН при разбавлении и при добавлении определенных количеств сильных кислот и оснований.
Буферные системы могут быть образованы:
1. слабой кислотой и ее солью (СН3СООН + СН3СООNa; С6Н5СООН + С6Н5СООNa; НСООН + НСООNa;)
2. слабым основанием и его солью (NН4ОН (NН3.Н2О) + NН4С1)
3. кислой и средней солью слабой кислоты (NаНСО3 + Nа2СО3; Nа2НРО4 + Nа3РО4)
4. одно- и двухзамещенной солью слабой кислоты (Nа2НРО4 + NаН2РО4)
Растворы, содержащие буферные смеси, способные вследствие этого противостоять изменению рН, называются буферными растворами.
Для количественной характеристики способности буферного раствора противостоять влиянию сильных кислот и оснований используется величина, называемая буферной емкостью. По мере увеличения концентрации буферного раствора возрастает его способность сопротивляться изменению рН при добавлении кислот или щелочей.
Буферная емкость – число эквивалентов кислоты или щелочи, которое следует добавить к 1 л буферного раствора, чтобы изменить рН на единицу (понизить при добавлении кислоты и повысить при добавлении щелочи)
В | = | ν(1/Z*кислоты) | или | В | = | ν(1/Z*основания) |
ΔpH×V | ΔpH×V |
где V – объем буферного раствора, л.;
ν(1/Z*Х) – количество эквивалента кислоты или щелочи, моль;
ν(1/ Z*Х) = C(1/ Z*Х)×V(Х);
c(1/ Z*Х) – молярная концентрация эквивалента кислоты (щелочи), моль/л;
V(Х) – объем раствора кислоты (щелочи), л;
∆рН – изменение рН после добавления кислоты (щелочи).
Величина буферной емкости зависит от концентрации компонентов буферной смеси и их отношения между этими концентрациями. С увеличением концентрации компонентов буферной смеси буферная емкость увеличивается. При разбавлении буферной смеси буферная емкость уменьшается.
Буферная емкость максимальна при одинаковых концентрациях соли и кислоты или соли и основания в буферной смеси. Если молярные концентрации эквивалента кислоты и соли равны, то рН буферной смеси будет равен рК к-ты.
Следовательно, для приготовления буферной системы с наибольшей буферной емкостью надо выбирать кислоту с наиболее близкой к заданному значению рН величиной рКк-ты (рН ≈ рКк-ты).
Для смесей, образованных слабым основанием и его солью, рН = 14 – рКосн., т.е. рКосн. ≈ 14 – рН.
Свойства буферных растворов
1. рН буферного раствора зависит от отношения концентраций компонентов буферных систем, а также свойств буферной пары и растворителя.
2. Различные буферные растворы обладают определенной буферной емкостью и сохраняют постоянство рН только до прибавления определенного количества кислоты или щелочи.
3. Буферная емкость тем больше, чем выше концентрация компонентов буферного раствора. Максимальная буферная емкость наблюдается у растворов, которые содержат равные концентрации компонентов буферной пары.
Во внеклеточной и внутриклеточной жидкости существуют четыре основные буферные системы:
– бикарбонатная;
– белковая;
– гемоглобиновая;
– фосфатная.
Главными буферами внеклеточной жидкости является бикарбонатный и гемоглобиновый, в то время как белки и фосфаты — это основные внутриклеточные буферы.
Бикарбонатный буфер является основным и наиболее лабильным внеклеточным буфером. Он состоит из угольной кислоты и бикарбоната (гидрокарбоната) натрия; константой, характеризующей буфер соотношение концентраций кислоты и ее кислой соли.
Внеклеточная буферная система угольной кислоты и гидрокарбоната натрия нейтрализует примерно 40% всех высвобождаемых ионов водорода.
Эта буферная система уникальна тем, что Н2СО3 может диссоциировать на Н2О воду и СО2. В то время как другие буферы быстро становятся неэффективными в результате связывания водородных ионов и анионов слабой кислоты, бикарбонатные системы поддерживают работоспособность в связи с удалением Н2СО3в виде СО2. Лимитирующим параметром эффективности бикарбонатной системы является, по сути дела, начальная концентрация бикарбоната
Гемоглобиновый буфер играет важную роль в регуляции концентрации Н+. Его буферная емкость определяется наличием полярных групп в аминокислотных остатках гемоглобина. Гемоглобин является более важным буфером по сравнению с другими белками, что определяется тремя причинами:
– относительно высокой молярной концентрацией гемоглобина;
– относительно высокой концентрацией в гемоглобине гистидина, рК которого (~7) близко к значению pH крови;
– ролью гемоглобина в транспорте газов крови.
Белковый буфер. Белки, отличные от гемоглобина, представляют собой относительно слабый буфер во внеклеточной жидкости, но в связи с высокой концентрацией белков внутри клеток эта буферная система важна в нейтрализации внутриклеточных сдвигов pH.
Фосфатная буферная пара (НРО2-4 и Н2РО-4) во внеклеточной жидкости представлена в низких концентрациях, но является важной буферной системой мочи.
Буферные системы организма
– Буферы ограничивают изменения pH, вызываемые внесением сильной кислоты или основания.
– Основные буферы внеклеточной жидкости — бикарбонатный и гемоглобиновый.
– Основные буферы внутриклеточной жидкости — белковый и фосфатный.
ПЛОТНОСТЬ ВОДЫ В ИНТЕРВАЛЕ -10÷100 °С
t, °С | ρ·10-3, кг/м3 | t, °С | ρ·10-3, кг/м3 | t, °С | ρ·10-3, кг/м3 | t, °С | ρ·10-3, кг/м3 | t, °С | ρ·10-3, кг/м3 |
-10 | 0,99815 | 17 | 0,99880 | 24 | 0,99732 | 35 | 0,99406 | 70 | 0,97781 |
-5 | 0,99930 | 18 | 0,99862 | 25 | 0,99707 | 40 | 0,99224 | 75 | 0,97489 |
0,99987 | 19 | 0,99843 | 26 | 0,99681 | 45 | 0,99025 | 80 | 0,97183 | |
4 | 1,00000 | 20 | 0,99823 | 27 | 0,99654 | 50 | 0,98807 | 85 | 0,96865 |
5 | 0,99999 | 21 | 0,99802 | 28 | 0,99626 | 55 | 0,98573 | 90 | 0,96534 |
10 | 0,99973 | 22 | 0,99780 | 29 | 0,99597 | 60 | 0,98324 | 95 | 0,96192 |
15 | 0,99913 | 23 | 0,99756 | 30 | 0,99567 | 65 | 0,98059 | 100 | 0,95838 |
16 | 0,99897 |
* Источник: Краткий справочник физико-химических величин. Издание десятое, испр. и дополн. / Под ред. А.А. Равделя и А.М. Пономаревой – СПб.: «Иван Федоров», 2003 г. С. 15
Источник
Буферные растворы (англ. buffer, от buff — смягчать удар) — растворы с определённой устойчивой концентрацией водородных ионов. рН буферных растворов мало изменяется при прибавлении к ним небольших количеств сильного основания или сильной кислоты, а также при разбавлении и концентрировании.
Принцип действия буферных систем[править | править код]
Буферные системы представляют из себя смесь кислоты (донора протонов) и сопряженного с ней основания (акцептора протонов), то есть частиц, различающихся на . В растворе устанавливаются равновесия:
(автопротолиз воды)
(диссоциация кислоты, заряды поставлены условно, из предположения, что кислота является нейтральной молекулой)
Каждое из этих равновесий характеризуется своей константой: первое — ионным произведением воды, второе — константой диссоциации кислоты.
При добавлении в систему сильной кислоты, она протонирует основание[1], входящее в буферную смесь, а добавление сильного основания связывает протоны и смещает второе равновесие в сторону продуктов, при этом в итоге концентрация в растворе меняется незначительно[2].
Буферные системы[править | править код]
В качестве буферных смесей могут быть использованы системы:
- слабая кислота и её соль с сильным основанием, например, ацетатный буфер СН3СООН + CH3COONa
- слабое основание и его соль с сильной кислотой, например, аммиачный буфер NH4OH + NH4Cl
- кислая соль и средняя соль слабой кислоты с сильным основанием, например, карбонатный буфер Na2CO3 + NaHCO3
Значение pH буферных растворов можно рассчитать по формулам:
- Для слабой кислоты HA и её соли с сильным основанием BA
- Для слабого основания BOH и его соли с сильной кислотой BA
Например, pH аммиачного буферного раствора NH4OH + NH4Cl определяется формулой:
pH карбонатного буферного раствора выражается формулой:
Буферная ёмкость[править | править код]
Буферные растворы сохраняют своё действие только до определённого количества добавляемой кислоты, основания или степени разбавления, что связано с изменением концентраций его компонентов.
Способность буферного раствора сохранять свой pH определяется её буферной ёмкостью — количеством сильной кислоты или основания, которые следует прибавить к 1 л буферного раствора, чтобы его pH изменился на единицу. Буферная ёмкость тем выше, чем больше концентрация его компонентов.
Буферная ёмкость π определяется по формуле
где dx — концентрация введённой сильной кислоты (основания), т. е. её количество, отнесённое к объёму буферного раствора.
Область буферирования — интервал pH, в котором буферная система способна поддерживать постоянное значение pH. Обычно он равен pKa±1.
Биологическая роль[править | править код]
Буферные растворы имеют большое значение для протекания реакций в живых организмах. Например, в крови постоянство водородного показателя рН (химический гомеостаз) поддерживается тремя независимыми буферными системами: бикарбонатной, фосфатной и белковой. Известно большое число буферных растворов (ацетатно-аммиачный буферный раствор, фосфатный буферный раствор, боратный буферный раствор, формиатный буферный раствор и др.).
Примеры буферных растворов[править | править код]
- Калий-фосфатный буфер
- Натрий-фосфатный буфер
- Натрий-ацетатный буфер
- Буферные системы крови
Примечания[править | править код]
- ↑ Алексеев, В.Н. Количественный анализ / Под ред. П.К. Агасяна. – Изд. 4-е, перераб. – М. : Химия, 1972. – 504 с. : 24 табл., 76 рис. С.280
- ↑ Ленинджер А. Основы биохимии. — Мир, 1985. — Т. 1. — С. 93-96. — 367 с.
Литература[править | править код]
- Химическая энциклопедия / Редкол.: Кнунянц И.Л. и др.. — М.: Советская энциклопедия, 1988. — Т. 1 (Абл-Дар). — 623 с.
Ссылки[править | править код]
- Кислоты и основания
- Примеры составов буферных растворов
Источник
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 28 августа 2018; проверки требуют 18 правок.
Бу́ферные систе́мы кро́ви (от англ. buffer, buff — «смягчать удар») — физиологические системы и механизмы, обеспечивающие заданные параметры кислотно-основного равновесия в крови[1]. Они являются «первой линией защиты», препятствующей резким перепадам pH внутренней среды живых организмов.
Циркулирующая кровь представляет собой взвесь живых клеток в жидкой среде, химические свойства которой очень важны для их жизнедеятельности. У человека за норму принят диапазон колебаний pH крови 7,37—7,44 со средней величиной 7,4. Буферные системы крови слагаются из буферных систем плазмы и клеток крови и представлены следующими системами[1][2]:
- бикарбона́тная (водородкарбонатная) бу́ферная систе́ма;
- фосфа́тная бу́ферная систе́ма;
- белко́вая бу́ферная систе́ма;
- гемоглоби́новая бу́ферная система;
Помимо этих систем также активно участвуют дыхательная и мочевыделительная системы[1].
Бикарбонатная буферная система[править | править код]
Одна из самых мощных и вместе с тем самая управляемая система[2] внеклеточной жидкости и крови, на долю которой приходится около 53 % всей буферной ёмкости крови. Представляет собой сопряжённую кислотно-основную пару, состоящую из молекулы угольной кислоты H2CO3, являющейся источником протона, и бикарбонат-аниона HCO3−, выполняющего функцию акцептора протона:
Вследствие того, что концентрация гидрокарбоната натрия в крови значительно превышает концентрацию H2CO3, буферная ёмкость этой системы будет значительно выше по кислоте. Иначе говоря, гидрокарбонатная буферная система особенно эффективно компенсирует действие веществ, увеличивающих кислотность крови. К числу таких веществ прежде всего относят молочную кислоту, избыток которой образуется в результате интенсивной физической нагрузки. Гидрокарбонатная система наиболее «быстро» отзывается на изменение pH крови[2].
Фосфатная буферная система[править | править код]
В крови ёмкость фосфатной буферной системы невелика (составляет около 2 % общей буферной ёмкости), в связи с низким содержанием фосфатов в крови. Фосфатный буфер выполняет значительную функцию в поддержании физиологических значений рН во внутриклеточных жидкостях и моче.
Буфер образован неорганическими фосфатами. Функцию кислоты в этой системе выполняет однозамещённый фосфат (NaH2PО4), а функцию сопряженного основания — двузамещённый фосфат (Na2HPО4). При рН 7,4 соотношение [НРО42-/Н2РО4-] равняется поскольку при температуре 25+273,15K pKa, ортоII=7,21[3], при этом средний заряд аниона ортофосфорной кислоты < q >=((-2)*3+(-1)*2)/5=-1,4 единиц заряда позитрона.
Буферные свойства системы при увеличении в крови содержания водородных ионов реализуются за счет их связывания с ионами НРО42- с образованием Н2РО4-:
а при избытке ионов ОН- — за счет связывания их с ионами Н2РО4-:
Фосфатная буферная система крови тесно взаимосвязана с бикарбонатной буферной системой.
Белковая буферная система[править | править код]
В сравнении с другими буферными системами имеет меньшее значение для поддержания кислотно-основного равновесия (7—10 % буферной ёмкости).
Белки́ плазмы крови благодаря наличию кислотно-основных групп в молекулах белков (белок—H+ — кислота, источник протонов и белок− — сопряжённое основание, акцептор протонов) образуют буферную систему, наиболее эффективную в диапазоне pH 7,2—7,4[1].
Основную часть белков плазмы крови (около 90 %) составляют альбумины и глобулины. Изоэлектрические точки этих белков (число катионных и анионных групп одинаково, заряд молекулы белка равен нулю) лежат в слабокислой среде при pH 4,9—6,3, поэтому в физиологических условиях при pH 7,4 белки находятся преимущественно в формах «белок-основание» и «белок-соль».
Буферная ёмкость, определяемая белками плазмы, зависит от концентрации белков, их вторичной и третичной структуры и числа свободных протон-акцепторных групп. Эта система может нейтрализовать как кислые, так и основные продукты. Однако вследствие преобладания формы «белок-основание» её буферная ёмкость значительно выше по кислоте.
Буферная ёмкость свободных аминокислот плазмы крови незначительна как по кислоте, так и по щелочи. При физиологическом значении pH их мощность мала. Практически только одна аминокислота — гистидин — обладает значительным буферным действием при значении pH, близком к плазме крови.[2]
Эритроциты[править | править код]
Во внутренней среде эритроцитов в норме поддерживается постоянное значение pH, равное 7,30. Здесь также действуют гидрокарбонатная и фосфатная буферные системы. Однако их мощность отличается от таковой в плазме крови. Кроме того, в эритроцитах белковая система гемоглобин-оксигемоглобин играет важную роль как в процессе дыхания (транспортная функция по переносу кислорода к тканям и органам и удалению из них метаболической CO2), так и в поддержании постоянства pH внутри эритроцитов, а в результате и в крови в целом. Эта буферная система в эритроцитах тесно связана с гидрокарбонатной системой.[2]
Гемоглобиновая буферная система[править | править код]
Буферная система крови (75 % буферной ёмкости). Играет важную роль как в процессе дыхания (транспортная функция по переносу кислорода к тканям и органам и удалению из них метаболической CO2), так и в поддержании постоянства pH внутри эритроцитов, а в результате и в крови в целом.[2]
См. также[править | править код]
- Буферный раствор
Примечания[править | править код]
- ↑ 1 2 3 4 Березов Т. Т., Коровкин Б. Ф. Биологическая химия: Учебник — 1990 г. — стр. 452—455.
- ↑ 1 2 3 4 5 6 Ершов. Общая химия.Биофизическая химия.Химия биогенных элементов. — Издание восьмое, стериотипное. — Москва: Высшая школа, 2010. — 559 с. — ISBN 978-5-06-006180-2.
- ↑ И.Т.Гороновский, Ю.П.Назаренко, Е.Ф.Некряч. Краткий справочник по химии. — Пятое издание, исправленное и дополненное. — Киев: Наукова Думка, 1987. — С. 348. — 828 с.
Литература[править | править код]
- Березов Т. Т., Коровкин Б. Ф. [www.xumuk.ru/biologhim/ Биологическая химия: Учебник] / Под. ред. акад. АМН СССР С. С. Дебова.— 2-е изд., перераб. и доп.— М.: Медицина,— 1990.— 528 с., С. 452—455. ISBN 5-225-01515-8.
- Ершов. Общая химия.Биофизическая химия.Химия биогенных элементов. — Издание восьмое,стереотипное. — Москва: Высшая школа, 2010. — 559 с. — ISBN 978-5-06-006180-2.
Некоторые внешние ссылки в этой статье ведут на сайты, занесённые в спам-лист. Эти сайты могут нарушать авторские права, быть признаны неавторитетными источниками или по другим причинам быть запрещены в Википедии. Редакторам следует заменить такие ссылки ссылками на соответствующие правилам сайты или библиографическими ссылками на печатные источники либо удалить их (возможно, вместе с подтверждаемым ими содержимым). |
Источник
Одним из основных свойств живых организмов является поддержание кислотно-основного гомеостаза на определенном уровне. Протолитический гомеостаз – постоянство рН биологических жидкостей, тканей и органов. Это находит выражение в достаточно постоянных значениях рН биологических сред (крови, слюны, желудочного сока и т.д.) и способности организма восстанавливать нормальные значения рН при воздействии протолитов. Система, поддерживающая протолитический гомеостаз, включает в себя не только физиологические механизмы (легочную и почечную компенсацию), но и физико-химические: буферное действие, ионный обмен и диффузию.
Обеспечение постоянства рН крови и других органов и тканей является одним из важнейших условий нормального существования организма. Это обеспечение достигается наличием в организме многочисленных регулирующих систем, важнейшими из которых являются буферные системы. Последние играют основную роль в поддержании КОР в организме.
Кроме того, материал данной темы необходим для изучения последующих тем предмета (потенциометрия, свойства растворов ВМС и т.д.) и таких дисциплин как биохимия, микробиология, гистология, гигиена, физиология, в практической деятельности врача при оценке типа и тяжести нарушений КОР.
Буферными растворами называются растворы, сохраняющие неизменными значения рН при разбавлении или добавлении небольшого количества сильной кислоты или основания. Протолитические буферные растворы представляют смеси электролитов, содержащие одноимённые ионы.
Различают в основном протолитические буферные растворы двух типов:
· Кислотные т.е. состоящие из слабой кислоты и избытка сопряженного с ней основания (соли, образованной сильным основанием и анионом этой кислоты). Например: СН3СООН и СН3СООNa – ацетатный буфер
СН3СООН + Н2О ↔ Н3О+ + СН3СОО- избыток сопряженного
кислота основания
СН3СООNa → Na+ + CH3COO-
· Основные, т.е. состоящие из слабого основания и избытка сопряженной с ним кислоты (т.е. соли, образованной сильной кислотой и катионом этого основания). Например: NH4OH и NH4Cl – аммиачный буфер.
NH3 + H2O ↔ OH- + NH4+ избыток сопряженной
основание кислоты
NH4Cl → Cl- + NH4+
Уравнение буферной системы рассчитывается по формуле Гендерсона-Гассельбаха:
рН = рК + ℓg , pOH = pK + ℓg ,
где рК = -ℓg КД.
С – молярная или эквивалентная концентрация электролита (C = V N)
Механизм действия буферных растворов
Рассмотрим его на примере ацетатного буфера: СН3СООН + СН3СООNa
Высокая концентрация ацетат-ионов обусловлена полной диссоциацией сильного электролита – ацетата натрия, а уксусная кислота в присутствии одноименного аниона существует в растворе практически в неионизированном виде.
1. При добавлении небольшого количества хлороводородной кислоты, ионы Н+ связываются с имеющимся в растворе сопряженным основанием СН3СОО- в слабый электролит СН3СООН.
CH3COO‾ +H + ↔ CH3COOH (1)
Из уравнения (1) видно, что сильная кислота НС1 заменяется эквивалентным количеством слабой кислоты СН3СООН. Количество СН3СООН увеличивается и по закону разбавления В. Оствальда степень диссоциации уменьшается. В результате этого концентрация ионов Н+ в буфере увеличивается, но очень незначительно. рН сохраняется постоянным.
При добавлении кислоты к буферу рН определяется по формуле:
рН = рК + ℓg
2. При добавлении к буферу небольшого количества щелочи протекает реакция её с СН3СООН. Молекулы уксусной кислоты будут реагировать с гидроксид-ионами с образованием Н2О и СН3СОО ‾:
CH3COOН + OH ‾ ↔ CH3COO‾ + H2O (2)
В результате этого щелочь заменяется эквивалентным количеством слабоосновной соли CH3COONa. Количество СН3СООН убывает и по закону разбавления В. Оствальда степень диссоциации увеличивается за счет потенциальной кислотности оставшихся недиссоциированных молекул СН3СООН. Следовательно, концентрация ионов Н+ практически не изменяется. рН остаётся постоянным.
При добавлении щелочи рН определяется по формуле:
рН = рК + ℓg
3. При разбавлении буфера рН также не меняется, т.к. константа диссоциации и соотношение компонентов при этом остаются неизменными.
Таким образом, рН буфера зависит от: константы диссоциации и соотношения концентрации компонентов. Чем эти величины больше, тем больше рН буфера. рН буфера будет наибольшим при соотношении компонентов равным единице.
Для количественной характеристики буфера вводится понятие буферной ёмкости.
Буферная ёмкость
Это способность буферной системы противодействовать изменению рН среды.
Интервал значений рН, выше и ниже которого буферное действие прекращается, называется зоной буферного действия.
Она равна рН = рК ± 1
Буферная ёмкость (В) выражается количеством моль-эквивалентов сильной кислоты или щелочи, которое следует добавить к одному литру буфера, чтобы сместить рН на единицу.
В =
В – буферная ёмкость,
nЭ – количество моль-эквивалента сильной кислоты или щелочи,
рНН – начальное значение рН ( до добавления кислоты или щелочи)
рНК – конечное значение рН (после добавления кислоты или щелочи)
ΔрН – изменение рН.
На практике буферная ёмкость рассчитывается по формуле:
В =
V – объём кислоты или щелочи,
N – эквивалентная концентрация кислоты или щелочи,
Vбуф.- объём буферного раствора,
Δ рН – изменение рН.
О противодействии изменению рН крови свидетельствуют следующие данные. Чтобы сдвинуть рН крови на единицу в щелочную область, нужно прибавить в кровь в 70 раз больше количества NaOH, чем в такой же объём чистой воды. Для изменения рН на единицу в кислую область, следует в кровь добавить в 320 раз больше количества соляной кислоты, чем к такому же объёму чистой воды.
Буферная ёмкость зависит от концентрации электролитов и соотношения компонентов буфера. Наибольшей буферной ёмкостью обладают растворы с большей концентрацией компонентов и соотношением компонентов, равным единице.
Буферная ёмкость артериальной крови 25,3 ммоль/л, венозной – 24,3 ммоль/л, слюна обладает буферной ёмкостью и определяется бикарбонатной, фосфатной и белковой системами. Буферная ёмкость слюны изменяется под влиянием ряда факторов: углеводистая диета снижает буферную ёмкость слюны, высокобелковая диета – повышает её. Поражаемость зубов кариесом меньше у лиц с высокой буферной ёмкостью.
В организме человека действуют белковый, гемоглобиновый, фосфатный и бикарбонатный буферы.
Буферные системы организма.
Бикарбонатный буфер.
Он составляет 53 % буферной ёмкости и представлен:
Н2СО3
NaHCO3 Соотношение 1 : 20
Бикарбонатный буфер представляет собой основную буферную систему плазмы крови; он является системой быстрого реагирования, так как продукт его взаимодействия с кислотами СО2 – быстро выводится через легкие. Помимо плазмы, эта буферная система содержится в эритроцитах, интерстициальной жидкости, почечной ткани.
Механизм действия. В случае накопления кислот в крови уменьшается количество НСО3- и происходит реакция: НСО3- + Н+ ↔ Н2СО3 ↔ Н2О + СО2↑. Избыток удаляется лёгкими. Однако значение рН крови остаётся постоянным, так как увеличивается объём лёгочной вентиляции, что приводит к уменьшению объёма СО2
1. При увеличении щелочности крови концентрация НСО3- увеличивается: Н2СО3 + ОН- ↔ НСО3- + Н2О.
Это приводит к замедлению вентиляции лёгких, поэтому СО2 накапливается в организме и буферное соотношение остаётся неизменным.
Гемоглобиновый буфер
Составляет 35 % буферной ёмкости.
Главная буферная система эритроцитов, на долю которой приходится около 75% всей буферной ёмкости крови. Участие гемоглобина в регуляции рН крови связано с его ролью в транспорте кислорода и СО2. Гемоглобиновая буферная система крови играет значительную роль сразу в нескольких физиологических процессах: дыхании, транспорте кислорода в ткани и в поддержании постоянства рН внутри эритроцитов, а в конечном итоге – в крови.
Она представлена двумя слабыми кислотами – гемоглобином и оксигемоглобином и сопряженными им основаниями – соответственно гемоглобинат- и оксигемоглобинат-ионами:
HHb ↔ H+ + Hb-
HHbO2 ↔ H+ HbO2-
Оксигемоглобин – более сильная кислота (рКа = 6,95), чем гемоглобин (рКа = 8,2). При рН = 7,25 (внутри эритроцитов) оксигемоглобин ионизирован на 65%, а гемоглобин – на 10%, поэтому присоединение кислорода к гемоглобину уменьшает значение рН крови, так как при этом образуется более сильная кислота. С другой стороны, по мере отдачи кислорода оксигемоглобином в тканях значение рН крови вновь увеличивается.
Буферные свойства ННb прежде всего обусловлены возможностью взаимодействия кислореагирующих соединений с калиевой солью гемоглобина с образованием эквивалентного количества соответствующей калийной соли кислоты и свободного гемоглобина:
КНb + Н2СО3 ↔ КНСО3 + ННb.
Образующийся гидрокарбонат (КНСО3) уравновешивает количество поступающей Н2СО3, рН сохраняется, так как происходит диссоциация потенциальных молекул Н2СО3 и образовавшихся гемоглобиновых кислот.
Именно таким образом поддерживается рН крови в пределах нормы, несмотря на поступление в венозную кровь огромного количества СО2 и других кислореагирующих продуктов обмена.
В капиллярах лёгких гемоглобин (ННb) поглощает кислород и превращается в HHbO2, что приводит к некоторому подкислению крови, вытеснению некоторого количества Н2СО3 из бикарбонатов и понижению щелочного резерва крови, а в тканях отдает его и поглощает СО2.
В лёгких: ННb + O2 ↔ HHbO2;
HHbO2 + HCO3- ↔ HbO2 + H2O + CO2 ↑
В тканях: HbO2 ↔ Hb- + O2; Hb- + Н2СО3 ↔ ННb + HCO3-
Кроме того, гемоглобиновый буфер является сложным белком и действует как белковый буфер.
Фосфатный буфер
Составляет 5 % буферной ёмкости. Содержится как в крови, так и в клеточной жидкости других тканей, особенно почек. В клетках он представлен солями К2НРО4 и КН2РО4, а в плазме крови и в межклеточной жидкости Na2HPO4 и NaH2PO4. Функционирует в основном в плазме и включает: дигидрофосфат ион Н2РО4- и гидрофосфат ион НРО42-.
Отношение [HPO4 2- ]/[H2PO4-] в плазме крови (при рН = 7,4) равно 4 : 1. Следовательно, эта система имеет буферную ёмкость по кислоте больше, чем по основанию.
Например, при увеличении концентрации катионов Н+ во внутриклеточной жидкости, например, в результате переработки мясной пищи, происходит их нейтрализация ионами НРО4 2- :
Н + + НРО42- ↔ Н2РО41-
Образующийся избыточный дигидрофосфат выводится почками, что приводит к снижению величины рН мочи.
При увеличении концентрации оснований в организме, например при употреблении растительной пищи, они нейтрализуются ионами Н2РО41-:
ОН ‾ + Н2РО41- ↔ НРО42- + Н2О
Образующийся избыточный гидрофосфат выводится почками, при этом рН мочи повышается.
Выведение тех или иных компонентов фосфатной буферной системы с мочой, в зависимости от перерабатываемой пищи, объясняет широкий интервал значений рН мочи – от 4,8 до 7,5. Фосфатная буферная система крови характеризуется меньшей буферной ёмкостью, чем гидрокарбонатная, из-за малой концентрации компонентов крови. Однако эта система играет решающую роль не только в моче, но и в других биологических средах – в клетке, в соках пищеварительных желез, в моче.
Белковый буфер
Составляет 5 % буферной ёмкости. Он состоит из белка-кислоты и его соли, образованной сильным основанием.
Pt – COOH – белок-кислота
Pt – COONa – белок-соль
1. При образовании в организме сильных кислот они взаимодействуют с солью белка. При этом получается эквивалентное количество белок-кислоты: НС1 + Pt-COONa ↔ Pt-COOH + NaCl. По закону разбавления В. Оствальда увеличение концентрации слабого электролита уменьшает его диссоциацию, рН практически не меняется.
2. При увеличении щелочных продуктов они взаимодействуют с
Pt-СООН: NaOH + Pt-COOH ↔ Pt-COONa + H2O
Количество кислоты уменьшается. Однако концентрация ионов Н+ увеличивается за счет потенциальной кислотности белок-кислоты. поэтому практически рН не меняется.
Белок – это амфотерный электролит и поэтому проявляет собственное буферное действие.
Рассмотрим взаимодействие буферных систем в организме по стадиям:
1. В процессе газообмена в легких кислород поступает в эритроциты, где протекает реакция:
ННb + O2 ↔ HHbO2 ↔ Н+ + HbO2-
2. По мере перемещения крови в периферические отделы кровеносной системы происходит отдача кислорода ионизированной формой HbO2-
HbO2-↔ Нb- + О2
Кровь при этом из артериальной становится венозной. Отдаваемый в тканях кислород расходуется на окисление различных субстратов, в результате чего образуется СО2, большая часть которого поступает в эритроциты.
3. В эритроцитах в присутствии карбоангидразы со значительной скоростью протекает следующая реакция:
СО2 + Н2О ↔ Н2СО3 ↔ Н+ + НСО3-
4. Образующийся избыток протонов связывается с гемоглобинат-ионами:
Н+ + Нb- → HHb
Связывание протонов смещает равновесие реакции стадии (3) вправо, вследствие чего концентрация гидрокарбонат ионов возрастает и они диффундируют через мембрану в плазму. В результате встречной диффузии ионов, отличающихся кислотно-основными свойствами (хлорид-ион протолитически неактивен; гидрокарбонат ион в условиях организма является основанием), возникает гидрокарбонатно-хлоридный сдвиг. Этим объясняется более кислая реакция среды в эритроцитах (рН = 7,25) по сравнению с плазмой (рН = 7,4).
5. Поступающие в плазму гидрокарбонат-ионы нейтрализуют накапливающийся там избыток протонов, возникающий в результате метаболических процессов:
НСО3- + Н+ ↔ Н2СО3 ↔ Н2О + СО2
6. Образовавшийся СО2 взаимодействует с компонентами белковой буферной системы:
СО2 + Рt-NH2 ↔ Pt-NHCOOH ↔ H+ + Pt-NHCOO-
7. Избыток протонов нейтрализуется фосфатным буфером:
Н+ + НРО4- ↔ Н2РО4-
8. После того как кровь вновь попадает в легкие, в ней увеличивается концентрация оксигемоглобина (стадия 1), который реагирует с гидрокарбонат-ионами, не диффундировавшими в плазму:
НСО3- + ННbО2 ↔ НbО2- + СО2 + Н2О
Образующийся СО2 выводится через легкие. В результате уменьшения концентрации НСО3- ионов в этой части кровеносного русла наблюдаются их диффузия в эритроциты и диффузия хлорид-ионов в обратном направлении.
9. В почках также накапливается избыток протонов в результате реакции:
СО2 + Н2О ↔ Н2СО3 ↔ Н+ + НСО3-,
который нейтрализуется гидрофофат-ионами и аммиаком (аммиачный буфер): H+ + NH3 ↔ NH4+
Таким образом, гемоглобиновая система участвует в двух процессах:
· Связывание протонов, накапливающихся в результате метаболических процессов;
· Протонирование гидрокарбонат-ионов с последующим выделением СО2
Гемоглобиновую буферную систему можно рассматривать как одно из важнейших звеньев в транспорте СО2 из тканей в легкие.
Следует отметить, что на поддержание постоянства рН различных жидких систем организма оказывают влияние не столько буферные системы, сколько функционирование ряда органов и систем: легких, почек, кишечника, кожи и др.
Источник