Какими свойствами обладает звуковая волна

Какими свойствами обладает звуковая волна thumbnail

Раскаты грома, музыка, шум прибоя, человеческая речь и все остальное, что мы слышим – это звук. А что такое “звук”?

Источник изображения: pixabay.com

В действительности все, что мы привыкли считаем звуком – это всего лишь одна из разновидностей колебаний (воздуха), которые могут воспринимать наш мозг и органы слуха.

Какая природа у звука

Все звуки, распространяемые в воздухе, представляют собой вибрации звуковой волны. Она возникает посредством колебания объекта и расходится от её источника во всех направлениях. Колеблющийся объект сжимает молекулы в окружающей среде, а затем создаёт разреженную атмосферу, заставляя молекулы отталкиваться друг от друга всё дальше и дальше. Таким образом, изменения в давлении воздуха распространяются от объекта, сами молекулы остаются в неизменной для себя позиции.

Воздействие звуковых волн на барабанную перепонку. Источник изображения:prd.go.th

По мере того, как звуковая волна распространяется в пространстве, она отражается от объектов, встречающихся на её пути, создавая изменения в окружающем воздухе. Когда эти изменения, достигая вашего уха, воздействуют на барабанную перепонку, нервные окончания подают сигнал в мозг, и вы воспринимаете эти колебания как звук.

Основные характеристики звуковой волны

Самой простой формой звуковой волны является синусоида. Синусоидные волны в чистом виде редко встречаются в природе, однако именно с них следует начинать изучение физики звука, так как любые звуки можно разложить на комбинацию синусоидных волн.

Синусоида чётко демонстрирует три основных физических критерия звука – частоту, амплитуду и фазу.

Частота

Чем реже частота колебаний, тем звук ниже, Источник изображения:ReasonGuide.Ru

Частота – это величина, характеризующая количество колебаний в секунду. Она измеряется в количестве периодов колебания либо в герцах (ГЦ). Человеческое ухо может воспринимать звук в диапазоне от 20 Гц (низкочастотные) и до 20 КГц (высокочастотные). Звуки, находящиеся выше данного диапазона называется ультразвуком, а ниже – инфразвуком, и человеческими органами слуха не воспринимаются.

Амплитуда

Чем больше амплитуда звуковой волны, тем громче звук.

Понятие амплитуды (или интенсивности) звуковой волны имеет отношение к силе звука, которую человеческие органы слуха воспринимают как объём или громкость звука. Люди могут воспринимать достаточно широкий спектр громкости звука: от капающего крана в тихой квартире, и до музыки, звучащей на концерте. Для измерения громкости используются фонометры (показатели в децибелах), в которых используется логарифмическая шкала чтобы сделать измерения более удобными.

Фаза звуковой волны

Фазы звуковой волны. Источник изображения: Muz-Flame.ru

Используется для того, чтобы описать свойства двух звуковых волн. Если две волны имеют одинаковую амплитуду и частотность, то говорят, что две звуковые волны находятся в фазе. Фаза измеряется в диапазоне от 0 до 360, где 0 – это значение, показывающее, что две звуковые волны синхронны (в фазе), а 180 – значение, означающее противоположность волн друг к другу (находятся в противофазе). Когда две звуковые волны находятся в фазе, то два звука накладываются и сигналы усиливают друг друга. При совмещении двух сигналов, не совпадающих по амплитуде, из-за разницы давления идёт подавление сигналов, что приводит к нулевому результату, то есть звук исчезает. Этот феномен известен как “подавление фазы”.

При совмещении двух одинаковых аудио сигналов – подавление фазы может стать серьёзной проблемой, так же огромной неприятностью является совмещение оригинальной звуковой волны с волной, отражённой от поверхностей в акустической комнате. Например, когда совмещают левый и правый каналы стерео микшера, чтобы получить гармоничную запись, сигнал может страдать от подавления фаз.

Что такое децибел?

В децибелах измеряется уровень звукового давления или электрического напряжения. Это такая единица, которая показывает коэффициент отношения двух разных величин друг к другу. Бел (названный в честь американского ученого Александра Белла) является десятичным логарифмом, отражающим соотношение двух разных сигналов друг к другу. Это означает, что для каждого последующего бела в шкале, принимаемый сигнал в десять раз мощнее. Например, звуковое давление громкого звука в миллиарды раз выше, чем у тихого. Для того чтобы отображать такие большие величины, стали использовать относительную величину децибел (дБ) – при этом 1.000.000.000 – это 109, или просто 9. Принятие физиками акустиками данной величины позволило сделать работу с огромными числами удобнее.

Шкала громкости различных звуков. Источник изображения: Nauet.ru

На практике получается так, что бел является слишком большой единицей для измерения уровня звука, поэтому вместо него стали использовать децибел, что составляет одну десятую от бела. Нельзя сказать, что применение децибелов вместо белов – это как использование, скажем, сантиметров вместо метров для обозначения размера обуви, белы и децибелы — относительные величины.

Из выше сказанного понятно, что уровень звука принято измерять в децибелах. Некоторые эталоны уровня звука используются в акустике на протяжении многих лет, начиная со времён изобретения телефона, и по сей день. Большинство этих эталонов сложно применить относительно современного оборудования, они используются только для устаревших единиц техники. На сегодняшний день на оборудовании в студиях звукозаписи и вещания используется такая единица, как дБu (децибел относительно уровня 0,775 В), а в бытовой аппаратуре – дБВ (децибел, отсчитываемый относительно уровня 1 В). В цифровой аудио аппаратуре для измерения мощности звука применяется дБFS (децибел полной шкалы).

Читайте также:  Разделение смеси серы и железа с помощью магнита на каких свойства

дБм – “м” обозначает милливатты (мВт), данная единица измерения используется для обозначения электрической мощности. Следует отличать мощность от электрического напряжения, хотя эти два понятия тесно связаны друг с другом. Единицу измерения дБм начали использовать ещё на заре внедрения телефонных коммуникаций, на сегодняшний день её тоже используют в профессиональной аппаратуре.

дБu — в данном случае измеряется напряжение (вместо мощности) относительно эталонного нулевого уровня, за эталонный уровень принято считать 0,75 вольт. В работе с современной профессиональной аудио аппаратуре дБu заменён на дБм. В качестве единицы измерения в сфере звукотехники было удобнее использовать дБu раньше, когда для оценки уровня сигнала было важнее считать электрическую мощность, а не его напряжение.

дБВ – в основе данной единицы измерения так же лежит эталонный нулевой уровень (как и в случае с дБu), однако за эталонный уровень принимают 1 В, что является более удобным, чем цифра 0,775 В. Данная единица измерения звука часто используется для бытовой и полу профессиональной аудио аппаратуры.

дБFS – данная оценка уровня сигнала широко используется в цифровой звукотехнике и сильно отличается от указанных выше единиц измерения. FS (full scale) – полная шкала, которая используется из-за того, что, в отличие от аналогового звукового сигнала, которое имеет оптимальное напряжение, весь диапазон цифровых значений одинаково приемлем при работе с цифровым сигналом. 0 дБFS – это максимально возможный уровень цифрового звукового сигнала, который можно записать без искажения. У аналоговых стандартов измерения таких, как дБu и дБВ, после уровня 0 дБFS нет запаса по динамическому диапазону.

Если Вам понравилась статья , поставьте лайк и подпишитесь на канал НАУЧПОП . Оставайтесь с нами, друзья! Впереди ждёт много интересного!

Источник

Свойства звуковой волны. Характеристики распространения волн.

Звуковые волны имеют несколько основных свойств:

• Распространение звуковых волн. Звуковые волны распространяются через воздух, жидкости и ткани человеческого организма почти исключительно в виде упругих волн. Последние представляют собой зоны, в которых молекулы, составляющие среду, попеременно разрежаются или уплотняются. Таким образом, звуковые волны могут распространяться через вещество и не распространяются в вакууме.

• Скорость распространения. Скорость звука при прохождении любых веществ относительно мала (для ткани около 1540 м/с). Следовательно, время прохождения звуковой волны может быть точно измерено и соотнесено с пройденным расстоянием с использованием принципа «время -расстояние».

• Отражение (частичное или полное) звуковых волн от поверхностей: степень отражения падающих на поверхность звуковых волн зависит от акустического сопротивления (импеданса):

Импеданс – отношение интенсивности падаюшей звуковой волны к той ее части, которая была пропущена средой.

Акустическое сопротивление – произведение плотности и скорости звука. Характеризует рассеяние энергии волн в веществе.

свойства волны

Эффект Допплера.

Согласно эффекту Допплера, частота отраженной звуковой волны изменяется при приближении или отдалении источника звука от принимающего устройства. В соответствии с законом «время-расстояние», произведение времени и скорости равняется пройденному расстоянию. Таким образом, для определения направления и скорости кровотока в сосудах и сердце могут быть проанализированы изменения частоты отражения звуковых волн от движущихся эритроцитов.

Качество ультразвукового исследования (УЗИ) зависит от двух критериев, связанных со свойствами звуковых волн:

• Максимально возможное разрешение (высшая частота передатчика).

• Адекватность глубины проникновения звука (низшая частота передатчика).

• Правило: звуковые волны меньшей длины дают большее разрешение, но меньшую глубину проникновения ультразвука

• Решение: диапазон оптимальных частот для ультразвуковой диагностики составляет 1-10 МГц. Диапазон оптимальной длины звуковых волн составляет 0.15-1,5 мм.

Скорость распространения звука. Этот показатель зависит от плотности среды (примерно 1500-1600 м/с в мягких тканях и жидкостях, 331 м/с в воздухе и 3500 м/с в костях). Ультразвуковые инструменты откалиброваны для средней скорости звука 1540 м/с.

Осевое разрешение. Звуковой импульс составляется двумя (или тремя) звуковыми волнами, выпущенными в продольном (осевом) направлении. Максимальная способность к различению двух отдельных точек в продольном направлении равняется 1/2 длины импульса, или приблизительно длине одной звуковой волны. Например, при рабочей частоте 3,5 МГц разрешение равно примерно 0,5 (- 1) мм.

Латеральное разрешение. С увеличением глубины ультразвуковой луч сначала сужается, а затем происходит его расширение со снижением интенсивности и разрешения. Фокусная зона луча («сужение») имеет ширину 3-4 длины звуковой волны и характеризуется максимальным латеральным разрешением. При частоте 3,5 МГц латеральное разрешение составляет примерно 2 мм, т.е. две соседние точки будут расценены как различные, если расстояние между ними не меньше 2 мм.

Учебное видео настройки аппарата УЗИ и параметров его работы

Видео настройки аппарата УЗИ и параметров его работы

– Также рекомендуем “Фокусировка ультразвукового луча. Распространение ультразвуковых волн.”

Читайте также:  Какие свойства стали придает вольфрам

Оглавление темы “УЗИ диагностика.”:

1. Свойства звуковой волны. Характеристики распространения волн.

2. Фокусировка ультразвукового луча. Распространение ультразвуковых волн.

3. Ультразвуковые методики. Режимы сканирования УЗИ.

4. Ультразвуковые передатчики. Виды УЗИ сканеров.

5. УЗИ с контрастированием. Настройка УЗИ аппарата.

6. Цветная дуплексная эхосонография. Цветное УЗИ.

7. Артефакты при УЗИ. Цветовые артефакты.

8. Помехи при УЗИ. Акустическое усиление УЗИ.

9. Реверберации при УЗИ. Боковые тени на УЗИ.

10. УЗИ органов брюшной полости. Виды плоскостей сканирования.

Источник

В общем случае звуковые волны физика рассматривает как распространение возмущений давления в упругих средах. Человеческое ухо улавливает аномалию, воспринимая звук.

Изучающая свойства явления наука называется акустикой. От греческого ἀκούω (слышать). Имеются в виду небольшие изменения параметров в отличие от физики ударных волн.

Звуковые волны

Процесс распространения связан с колебательным механическим движением частиц. Достаточно каким-либо образом создать скачок давления, и частицы «толкнут» соседние.

Уравнение звуковой волны в газе (гармоничные колебания) будет выглядеть так:

  • p0 – начальное давление (Па);

  • ω – круговая частота (Гц);

  • k – волновое число.

Формулы связи длины звуковой волны, скорости, иные характеристики:

  • v – скорость волны (м/с);

  • λ – длина волны (м);

  • T – период (с);

  • f – частота (Гц).

Источник звука

Под источником звука понимают вещь, спровоцировавшую волну. Например, динамик или музыкальный инструмент.

В громкоговорителе для извлечения шума используется подвижная мембрана. В духовых инструментах – движение воздуха по внутренним ходам различной геометрии.

Из струнных звук извлекают при помощи трения смычка или при помощи щипков, ударов. Человек выдает речь, вокал, при помощи голосовых связок.

Скорость звуковой волны

Скорость распространения акустической волны является важной физической характеристикой среды или материала, поскольку со скоростью звука передаются любые возмущения.

Величина зависит от упругих свойств среды. Например, от давления, температуры. Для атмосферного воздуха важна влажность.

В общем случае определяется отношением модуля всестороннего сжатия и номинальной плотностью.

Для практических целей замеряется опытным путем. В жидкостях звук распространяется быстрее, чем в газах.

Громкость

Зависит от перемещаемой волной энергии. Замеряют в Вт/м2. Но интенсивность принято измерять в децибелах.

Существует масса приложений для компьютеров, смартфонов. Специалисты вооружаются специализированными устройствами.

Бел – десятичный логарифм отношения текущего уровня интенсивности в фоновому, пороговому. Осталось умножить на 10 (поскольку децибел).

Вот примеры уровня шума для разных источников.

Высота и тембр звука

Считается, что человеческое ухо воспринимает с разным успехом частоты диапазона 20…20 000 Гц. Оптимальными для слуха является интервал 1 000…5 000 Гц.

Высота определяется частотой. В связанной с музыкальными инструментами акустике измеряется также в мелах.

В музыкальных колонках в зависимости от частот звук может разделяться на полосы (НЧ, СЧ, ВЧ). На каждый громкоговоритель поступает соответственно отфильтрованный звук.

Рассуждения корректны, если имеем гармоничные колебания (синусоида), определенный тон. Примером такого звучания может служить камертон. Реальные инструменты дают дополнительные гармоники (обертона), образующие тембр.

Так выглядит звук от разных источников на одной ноте.

Звуковые явления

Звук обладает ярко выраженными волновыми свойствами:

1. Интерференция или сложение. В зависимости от условий волны могут взаимно усиливаться или ослабляться.

При проведении крупных концертных мероприятий учитывается возможные «деформации» звука в некоторых участках помещения. Эффект связан с обильным отражением (рефракцией) волн от стен, потолка, пола. Особенно коварно поведение линейных массивов.

Рота бойцов разрушит мост, идя по нему «в ногу». Конструкции не выдерживает наступающего резонанса.

2. Дифракция. Огибание препятствия, если длина волны существенно больше.

3. Замеренная частота источника увеличивается в процессе сближения с последним (эффект Доплера).

Применение звуковых волн

Помимо ценности общения друг с другом, звук дает возможность наслаждаться музыкой и обогащать свое представление об окружающем мире. Кроме слышимого спектра существуют инфра- и ультразвук. Ниже и выше границ слышимости соответственно.

УЗИ (ультразвуковое исследование) позволяет «увидеть» внутренности пациента без скальпеля и небезопасного рентгеновского аппарата. Эхолокатор поставляет морякам информацию о глубинах и рельефе дна. Офицер-гидроакустик обнаружит спрятавшуюся подводную лодку. Характер отражения ультразвука поможет обнаружить скрытый дефект в ответственной детали.

Слабо затухающий в средах инфразвук предупредит о стихийном бедствии. Регистрирующие приборы обнаруживают и локализуют сотрясения почвы и скальных пород. Это важно для изучения и предсказания землетрясений. Таким же образом обнаруживаются запрещенные испытания ядерного оружия. Предупрежден – значит вооружен.

Источник

Понятие “звук” тесно связано с понятием “волна”. Волна — это изменение состояния среды (возмущение), распространяющееся в ней и несущее с собой энергию. Важно, что независимо от природы волны перенос энергии осуществляется без переноса вещества.

Звуковая волна (звуковые колебания) — это передающиеся в пространстве механические колебания молекул вещества (например, воздуха). В результате каких-либо возмущений (например, колебаний диффузора громкоговорителя или гитарной струны), вызывающих движение и колебания воздуха в определенной точке пространства, возникает избыточное давление (поскольку воздух в процессе движения сжимается), толкающее окружающие слои воздуха. Эти слои тоже сжимаются, что, в свою очередь, снова создает избыточное давление, влияющее на соседние слои воздуха. Так, по цепочке, происходит передача первоначального возмущения в пространстве из одной точки в другую. Тело, создающее возмущение (колебания воздуха), называют источником звука.

Читайте также:  Feo какие свойства проявляет

Привычное для всех понятие “звук” означает всего лишь набор звуковых колебаний, воспринимаемый слуховым аппаратом человека. О том, какие колебания человек воспринимает, а какие нет, мы расскажем ниже.

Если говорить о звуковых колебаниях, то необходимо упомянуть такую характеристику, как скорость их распространения. Она зависит от среды, в которой эти колебания распространяются. На нее влияют такие факторы, как упругость среды, ее плотность и температура. Так, например, чем выше температура среды, тем в ней больше скорость звука. В нормальных условиях (при комнатной температуре и атмосферном давлении) скорость звука в воздухе составляет приблизительно 330 м/с. Таким образом, время, через которое слушатель начинает воспринимать звуковые колебания, зависит от его удаленности от источника звука, а также от характеристик среды, в которой распространяется звуковая волна. Надо заметить, что скорость распространения звука почти не зависит от частоты звуковых колебаний. Это означает, что звук воспринимается именно в той последовательности, в какой он создается источником. Звуковым волнам присущи различные явления, связанные с распространением колебаний в пространстве. Перечислим наиболее важные из них.

Интерференция — усиление колебаний звука в одних точках пространства и ослабление в других в результате наложения двух или нескольких звуковых волн. Когда мы слышим звуки разных, но достаточно близких частот сразу от двух источников, к нам приходят то гребни обеих звуковых волн, то гребень одной волны и впадина другой. В результате наложения двух волн звук то усиливается, то ослабевает, что воспринимается на слух как биения. Этот эффект называется интерференцией во времени. Он используется при настройке двух музыкальных тонов в унисон (например, при настройке гитары): настройку производят до тех пор, пока биения перестают ощущаться.

Звуковая волна при падении на границу раздела с другой средой может отразиться от нее, пройти в другую среду, изменить направление движения, т. е. преломиться от границы раздела (это явление называют рефракцией), поглотиться или одновременно совершить несколько из перечисленных действий. Степень поглощения и отражения зависит от свойств сред на границе раздела.

Энергия звуковой волны в процессе ее распространения поглощается средой. Этот эффект называют поглощением звуковых волн. Важно отметить, что степень поглощения звуковой энергии зависит как от свойств среды (температура, давление, плотность), так и от частоты звуковых колебаний: чем выше частота, тем большее рассеяние претерпевает на своем пути звуковая волна.

Очень важно упомянуть также явление волнового движения в замкнутом объеме, суть которого состоит в отражении звуковых волн от стенок некоторого закрытого пространства. Отражения звуковых колебаний могут сильно влиять на конечное восприятие звука — изменять его окраску, насыщенность, глубину. Так, звук от источника, расположенного в закрытом помещении, многократно отражаясь от стен помещения, воспринимается слушателем как сопровождающийся специфическим гулом. Такой гул называется реверберацией (латинское reverbero — отбрасываю). Эффект реверберации очень широко используется в обработке звука для придания звучанию специфических свойств и тембральной окраски.

Способность огибать препятствия — еще одно ключевое свойство звуковых волн, называемое дифракцией. Степень огибания зависит от соотношения между длиной звуковой волны (ее частотой) и размером стоящего на ее пути препятствия или отверстия. Если препятствие оказывается намного больше длины волны, то звуковая волна отражается от него. Если же размер препятствия сопоставим с длиной волны или меньше ее, то звуковая волна дифрагирует.

Еще один эффект, связанный с волновым движением, о котором нельзя не вспомнить, — резонанс. Он заключается в значительном усилении амплитуды при наложении нескольких колебаний с одинаковой частотой. Звуковая волна, создаваемая некоторым колеблющимся телом, распространяясь в пространстве, может переносить энергию колебаний другому телу (резонатору), имеющему равную частоте звуковой волны частоту собственных колебаний, которое, поглощая эту энергию, начинает колебаться и фактически само становится источником звука. При этом исходная звуковая волна усиливается, и звук становится громче. Надо заметить, что в случае появления резонанса энергия звуковой волны расходуется на “раскачивание” резонатора, что соответственно сказывается на длительности звучания.

Эффект Доплера — еще одно интересное явление, связанное с распространением звуковых волн в пространстве. Он состоит в том, что длина волны (а, значит, и ее частота) изменяется в соответствии со скоростью движения слушателя относительно источника волны. Чем быстрее слушатель (регистрирующий датчик) приближается к источнику звуковых колебаний, тем регистрируемая им длина волны становится меньше и наоборот.

Источник