Какими свойствами обладает водяной пар
Вода — однородное химическое соединение, молекула которой состоит из трех атомов, принадлежащих двум химическим элементам — водороду и кислороду. Вода является прекрасным растворителем, поэтому все природные воды представляют собой растворы, содержащие разнообразные вещества — соли, газы.
Вода и водяной пар как рабочее тело и теплоноситель получили наибольшее применение в промышленности. Это объясняется широким распространением воды в природе, а также тем, что вода и водяной пар обладают относительно хорошими термодинамическими характеристиками.
Так, теплоемкость воды выше теплоемкости многих других жидкостей и твердых тел и в пределах от 0 до 100 °С при атмосферном давлении она равна 4,19 кДж/(кг- К), или 4,19 кДж/(кг °С). Теплопроводность воды Вт/(м-К), в отличие от теплопроводности других жидких и твердых тел с повышением температуры до 120… 140°С увеличивается, а при дальнейшем повышении температуры — уменьшается. Плотность воды изменяется с температурой. Наибольшей плотностью вода обладает при 4 °С.
Процесс перехода воды из жидкого состояния в газообразное (пар) называется испарением, а из газообразного в жидкое — конденсацией. Превращение воды в пар может протекать как при испарении, так и при кипении. Испарение — это процесс образования пара, происходящий с поверхности жидкости при любой температуре. При испарении молекулы воды отрываются от поверхности жидкости, имея относительно большие скорости. Вследствие этого средняя скорость движения молекул в массе воды уменьшается и температура жидкости понижается.
При подводе теплоты в процессе нагревания температура жидкости и интенсивность ее испарения увеличиваются, и при определенных температуре и давлении жидкость закипает.
Кипение — это процесс интенсивного парообразования во всей массе жидкости, который получает развитие при ее нагревании, т.е. подводе к системе определенного количества теплоты. При атмосферном давлении температура кипения составляет приблизительно 100 °С. С повышением давления температура кипения возрастает и, наоборот, в условиях пониженного давления (высоко в горах) температура кипения снижается.
Количество теплоты, которое необходимо сообщить воде для превращения ее из жидкого состояния в парообразное при температуре кипения, называется скрытой теплотой парообразования г. С повышением давления скрытая теплота парообразования уменьшается (табл. 1.1).
Ранее было отмечено, что конденсация — это процесс превращения пара в жидкость, называемую конденсатом.
Таблица 1.1 Свойства воды и сухого насыщенного пара
Абсолютное давление | Температура кипения, °С | Плотность пара, кг/м3 | Удельный объем пара, м3/кг | Энтальпия. кДж/кг | Скрытая теплота парообразования, кДж/кг | ||
МПа | кгс/см2 | кипящей воды | пара | ||||
0,02 | 0,2 | 59,67 | 0,129 | 7,789 | 250,7 | 2617,0 | 2366,3 |
0,04 | 0,4 | 75,42 | 0,246 | 4,066 | 316,7 | 2643,9 | 2327,2 |
0,06 | 0,6 | 85,45 | 0,360 | 2,782 | 359,1 | 2660,7 | 2301,6 |
0,08 | 0,8 | 92.99 | 0,471 | 2,125 | 390,6 | 2672,9 | 2282,3 |
0,10 | 1,0 | 99,09 | 0,580 | 1,725 | 416,6 | 2682,9 | 2266,3 |
0,12 | 1,2 | 104,5 | 0,687 | 1,455 | 438,5 | 2691,0 | 2252,5 |
0,17 | 1,7 | 115,00 | 0,956 | 1,044 | 483,0 | 2709,0 | 2226,0 |
0,20 | 2,0 | 119,62 | 1,109 | 0,902 | 499,8 | 2714,5 | 2210,9 |
0,50 | 5,0 | 151.11 | 2,620 | 0,382 | 554,8 | 2756,5 | 2117,6 |
0,90 | 9,0 | 174,33 | 4,456 | 0.219 | 741,3 | 2781,7 | 2040,4 |
1,40 | 14,0 | 194,13 | 6,974 | 0,143 | 828,7 | 2798,0 | 1969,4 |
2,00 | 20,0 | 211,38 | 9,852 | 0,102 | 906,8 | 2807,7 | 1909,9 |
4,00 | 40,0 | 249,18 | 19,700 | 0,051 | 1085,3 | 2809,8 | 1724,5 |
5,00 | 50,0 | 262,70 | 25,000 | 0,040 | 1149,3 | 2795,6 | 1646,3 |
6,00 | 60,0 | 274,29 | 30,300 | 0,033 | 1208,4 | 2786,8 | 1578,4 |
7,00 | 70,0 | 284,48 | 35,714 | 0,028 | 1266.6 | 2775,5 | 1513,8 |
8,00 | 80.0 | 293,62 | 41,667 | 0,024 | 1311,1 | 2762,0 | 1451,0 |
9,00 | 90,0 | 301,92 | 47,619 | 0,021 | 1357,1 | 2747,0 | 1389.8 |
10,00 | 100,0 | 309,53 | 55,556 | 0,018 | 1401,1 | 2730,2 | 1329,1 |
Количество теплоты, выделяющееся при конденсации 1 кг пара и численно равное г, называется теплотой конденсации пара.
Пар, имеющий максимальную плотность при конкретном давлении, называется насыщенным. Насыщенный водяной пар может быть влажным и сухим. Насыщенным является пар, полученный при кипении воды и имеющий с ней одинаковую температуру при том же давлении. В объеме влажного насыщенного пара в виде мельчайших капелек находится вода, которая образуется при разрыве оболочек паровых пузырьков. Сухой насыщенный пар, имея температуру насыщения, влаги не содержит.
Пар, температура которого для определенного давления превышает температуру насыщенного пара, называется перегретым. Разность температур перегретого и сухого насыщенного пара при том же давлении называется перегревом пара.
Важной характеристикой влажного насыщенного водяного пара является степень его сухости X которая определяет долю пара в пароводяной смеси. Соответственно Y — доля жидкости, т.е.
Х= 1-Y
Отделение капель воды от пара называется сепарацией, а устройства, предназначенные для этой цели, — сепараторами.
Энтальпия влажного насыщенного пара ∆hx, кДж/кг, выражается через степень сухости следующим образом:
∆hx = ∆h’ + rХ;
где ∆h’ — энтальпия воды при температуре кипения, кДж/кг; r — скрытая теплота парообразования, кДж/кг.
Энтальпия перегретого пара ∆hn.n, кДж/кг, равна
∆hn.n = ∆h” + сп(tп.п-tн.п),
где ∆h” — энтальпия сухого насыщенного пара, кДж/кг; сп — удельная теплоемкость пара, кДж/(кг-°С); tп.п, tн.п — температура перегретого и насыщенного пара, °С.
В табл. 1.1 приведены изменения отдельных показателей воды и водяного пара с повышением давления.
Источник
Водяной пар играет важнейшую роль в жизни нашей планет в целом и в жизни человека в частности …
Водяной пар — газообразное состояние воды
Водяной пар является газообразным состоянием воды. Газообразное состояние относится к трем основным агрегатным состояниям воды, встречающихся в природе в естественных условиях. Детально этот вопрос рассмотрен в материале АГРЕГАТНЫЕ СОСТОЯНИЯ ВОДЫ В ПРИРОДЕ → .
Чистый водяной пар не имеет ни цвета, ни вкуса. Наибольшее скопление пара наблюдается в тропосфере.
Водяной пар — вода, содержащаяся в атмосфере в газообразном состоянии. Количество водяного пара в воздухе сильно меняется; наибольшее его содержание – до 4 %. Водяной пар невидим; то, что называют паром в быту (пар от дыхания на холодном воздухе, пар от кипения воды и т. п.), – это результат конденсации водяного пара, как и туман. Количество водяного пара определяет важнейшую для состояния атмосферы характеристику – влажность воздуха.
География. Современная иллюстрированная энциклопедия. — М.: Росмэн. Под редакцией проф. А. П. Горкина. 2006
Как образуется водяной пар
Водяной пар образуется в результате «парообразования». Парообразование происходит в результате двух процессов – испарения или кипения. При испарении пар образуется только на поверхности вещества, при кипении же пар образуется по всему объему жидкости, о чем и свидетельствуют пузырьки, активно поднимающиеся вверх во время процесса кипения.
Кипение воды происходит при температурах которые зависят от химического состава водного раствора и атмосферного давления. Температура кипения остается неизменной на протяжении всего процесса.
Пар, образующийся в результате кипения, называется насыщенным. Насыщенный пар в свою очередь подразделяется на насыщенный сухой и насыщенный влажный пар. Насыщенный влажный пар состоит из взвешенных капелек воды, температура которых находится на уровне кипения, и соответственно самого пара, а насыщенный сухой пар не содержит капелек воды.
Так же существует «перегретый пар», который образуется при дальнейшем нагреве влажного пара, этот вид пара обладает более высокой температурой и более низкой плотностью.
С паром мы постоянно сталкиваем в ежедневной жизни, он появляется — над носиком чайника при кипении воды, при глажке, при посещении бани… Однако не забывайте, что, как мы уже отмечали выше, чистый водяной пар не имеет ни цвета, ни вкуса.
Благодаря своим физическим свойствам и качествам, пар уже давным-давно нашел свое практическое применение в хозяйственной деятельности человека. И не только в быту, но и при решении больших глобальных задач. Долгое время пар был главной движущей силой прогресса как в прямом, так и в переносном смысле этого выражения. Он использовался как рабочее тело паровых машин, самой известной из которых является ПАРОВОЗ.
Использование пара человеком
Пар и в наше время широко используется в хозяйственных и производственных нуждах:
- в целях гигиены;
- в лечебных целях;
- для тушения пожаров;
- используются тепловые свойства пара (пар как теплоноситель) – паровые котлы; паровые рубашки (автоклавов и реакторов); разогрев «смерзающихся» материалов; теплообменники; отопительные системы; пропарка бетонных изделий; в особого рода теплообменниках … ;
- используют трансформацию энергии пара в движение – паровые машины … ;
- стерилизация и дезинфекция – пищевая промышленность, сельское хозяйство, медицина … ;
- пар как увлажнитель — в производстве железобетонных изделий; фанеры; в пищевой промышленности; в химической и парфюмерной промышленности; в деревообрабатывающих производствах; в сельскохозяйственном производстве … ;
- …
Значение водяного пара для экосистемы Земли и его влияние на климат нашей планеты
Водяной пар активно участвует в создания парникового эффекта на Земле. Его влияние на климат планеты весьма значительно. Поэтому к нему приковано внимание многих ученых, занимающихся данной проблематикой.
Водяной пар активно участвует во многих химических процессах происходящих в атмосфере, стратосфере, топосфере.
Водяной пар является незаменимым элементом такого важного для нашей планеты процесса как Круговорот воды в природе (глобальный гидрологический цикл). Повышение интенсивности круговорота воды в природе приведет к весьма плачевным для человечества результатам — экстремальные осадки, наводнения, засухи …
Выводы
Подводя итоги, отметим, что, несмотря на всю свою «незаметность», водяной пар является не только важным элементом глобальной эко-системы Земли, но так же и весьма полезным веществом для хозяйственной и экономической деятельности человека.
Водяной пар — газообразное состояние воды
2014-06-14
Автор: Waterman
Источник
Изучение теплофизических свойств воды и водяного пара помогает понять, почему происходит испарение. Благодаря динамическому равновесию газообразного и жидкого состояния Н2О осуществляется круговорот воды в природе. Атмосфера планеты служит защитным колпаком, в ней происходят те же термодинамические процессы, что и в закрытой емкости с водой. Зависимость давления пара от температуры, плотности соответствует уравнению Менделеева-Клапейрона. С помощью формул можно вычислить, чему будет равна плотность пара в пузырьках, поднимающихся к поверхности воды, или при какой температуре закипит вода, если подняться на гору, где давление воздуха ниже.
Вода превращается в пар при температуре
Понятие «водяной пар» характеризует свойство жидкости
улетучиваться. Начало испарения — отрыв частичек воды от поверхности воды. Из
жидкого агрегатного состояния молекулы переходят в газообразное. Превращение в
газовую фазу происходит до момента насыщения, когда возникает равновесие между
жидкой или твердой субстанцией и газом. Молекула воды не в силах оторваться от
поверхности, если плотность достигает максимальной величины, газ становится
насыщенным. Определить величину давления насыщения водяного пара можно для
любой температуры. Даже лёд обладает способностью испаряться.
Когда говорят об испарении, уточняют градусы Цельсия, при которых начинается парообразование. При 100°С жидкость закипает только при атмосферном давлении 760 мм рт. столба. Чем ниже давление, тем свободнее отрываются частицы воды от поверхности, насыщая воздух. Снижение давления до 0,006 атмосфер (тройная точка) приводит к тому, что вода одновременно присутствует в трех фазовых состояниях: жидком, твердом, газообразном. Кипение воды в лабораторных условиях достигается без перехода в жидкое состояние. Происходит вскипание твердой фазы, процесс называется возгонкой. Лед трансформируется в газообразное состояние при температуре –0,1°С под давлением ниже тройной точки. Величину давления и плотности насыщенного водяного пара при различной температуре устанавливают экспериментальным путем.
Способность паров насыщать воздух характеризуется
влажностью. Упругость водяного пара определяют прибором для измерения
влажности, он называется психрометром. Измеряется парциальное давление водяных
паров, находящихся в атмосферном воздухе.
Насыщенный водяной пар
Вернемся к эксперименту. Итак, у нас в закрытой банке
жидкость. Что происходит? Испарение воды. Процесс начинается при низкой
плотности воздуха. Благодаря пару, давление на поверхность жидкости возрастает,
оно препятствует движению молекул. Их все меньше и меньше отрывается от воды.
Наступает момент, когда образуются капли влаги. Этот процесс называется
«конденсация». Когда скорость образования пара равна скорости конденсации,
возникает термодинамическое равновесие. Пар в этот момент считается насыщенным.
Жидкость и газ уравновешивают друг друга. Такое состояние достигается при
определенных условиях, важные параметры:
- Температура, изменение на долю градуса нарушает равновесие. При повышении парообразование ускоряется, при понижении увеличивается процесс конденсации влаги.
- Давление, при его понижении молекулы жидкой фазы свободнее передвигаются, отрываются от поверхности, начинается испарение воды.
Почему не учитывается объем банки? Он не меняет термодинамических свойств воды и водяного пара в состоянии насыщения. Допустим, крышка экспериментальной банки опустилась ниже, объем уменьшился. К чему это приведет? Пар будет ускоренно конденсироваться до момента равновесия. При увеличении объема ускорится парообразование, но замкнутая система опять придет в равновесное состояние.
Изучая термодинамику, легко понять, почему пар обжигает
сильнее воды той же температуры. Что такое кипение? Состояние, при котором
жидкая фаза активно превращается в парообразное состояние. Следовательно,
происходит обратный процесс конденсации, он сопровождается выделением теплоты.
За счет этого ожог от пара сильнее.
Удельная теплоемкость возрастает, если повышается температура
воды. Процесс парообразования виден в момент кипения. При повышении давления
температура газов достигает 200°С, это свойство используется в теплотехнике,
горячим, вязким паром заполняют теплообменники.
Давление насыщенного водяного пара
Формула p=nkT указывает на прямую зависимость давления
идеального газа (p) и его температуры (Т). Параметр n –число молекул,
содержащихся в заданном объеме, характеризует плотность пара. Постоянная
Больцмана k устанавливает взаимосвязь температуры с энергией образования
вещества (энтальпия).
Пар нельзя сравнивать с идеальным газом. Его давление при
повышении температуры растет быстрее из-за повышения плотности. Концентрация
частиц в неизменном объеме возрастает. Эти особенности свойств водяного пара
необходимо учитывать при расчетах давления насыщенного водяного пара. Если в
идеальном газе возрастает энергия ударов молекул о стенки сосуда, то в
насыщенном паре существенно возрастает число ударов за счет увеличения
концентрации активных частиц.
Плотность насыщенного водяного пара
Плотностью называется отношение массы вещества к его объему.
Этот параметр характеризует расстояние между отдельными молекулами. В жидкой
фазе они сцепляются между собой, в твердой расположены симметрично относительно
друг друга. В газообразном находятся на произвольном удаленном расстоянии, чем
объясняется отличие плотности водяного пара от плотности воды.
Теперь подробно рассмотрим, какое влияние оказывает на
плотность насыщенных водяных паров изменение температуры. Она непостоянна из-за
изменения массы газообразной фазы:
- при повышении температуры она возрастает за счет
ускорения испарения; - при понижении – падает, вода активно
конденсируется.
По сути, она должна постоянно меняться, так как частицы воды
непрерывно движутся, переходят из одного агрегатного состояния в другое. Но при
динамическом равновесии концентрация неизменна: сколько молекул испарится,
столько же конденсируется. Показатели устанавливаются экспериментально для
каждой температуры. Их значения сведены в таблицы.
Источник
Водяной пар.
Водяной пар – газообразное агрегатное состояние воды. Не имеет цвета, вкуса и запаха.
Водяной пар в воздухе, плотность водяного пара
Насыщенный и ненасыщенный водяной пар. Влажный и сухой пар. Пересыщенный и перегретый пар
Образование водяного пара. Конденсация водяного пара
Использование водяного пара
Водяной пар в воздухе, плотность водяного пара:
Водяной пар – газообразное агрегатное состояние воды.
Водяной пар не имеет цвета, вкуса и запаха.
Водяной пар, как и вода, – это бинарное неорганическое соединение с химической формулой H2O.
Молекула водяного пара, как и молекула воды, состоит из двух атомов водорода и одного – кислорода, которые соединены между собой ковалентной связью.
Водяной пар содержится в воздухе – в атмосфере Земли (в основном в тропосфере). Концентрация водяного пара в воздухе (в атмосфере Земли) составляет в среднем 0,25 % по массе от массы всей атмосферы Земли. Концентрация водяного пара в воздухе (в атмосфере Земли) по объему (в пересчете на сухой воздух) значительно варьируется от примерно 0,0001 % по объему в самых холодных частях атмосферы до 5% по объему в горячих, влажных воздушных массах.
Водяной пар легче и менее плотный, чем сухой воздух. Так, плотность сухого воздуха при нормальном атмосферном давлении (101 325 Па или 1 атм.) и температуре 0 °C составляет 1,292 кг/м3 (или 0,001292 г/см3), при температуре 20 °C – 1,2041 кг/м3 (или 0,0012041 г/см3). Плотность водяного пара при нормальном атмосферном давлении (101 325 Па или 1 атм.) и температуре 0 °C составляет 0,803 кг/м3 (или 0,000803 г/см3), при температуре 20 °C – 0,749 кг/м3 (или 0,000749 г/см3).
Плотность водяного пара (m/V) находится с использованием уравнения Клайперона – Менделеева (уравнения состояния идеального газа):
где
p – давление газа,
V – объём газа,
R – универсальная газовая постоянная, R ≈ 8,314 Дж/(моль⋅К),
T – термодинамическая температура газа, К,
m – масса газа,
M – молярная масса газа,
m/V – плотность газа.
.
Насыщенный и ненасыщенный водяной пар. Влажный и сухой пар. Пересыщенный и перегретый пар:
Над поверхностью воды всегда есть водяные пары, которые образуются в результате ее испарения испарения. При этом из-за диффузии часть молекул пара возвращается обратно в жидкость.
Процесс испарения жидкости еще называется парообразованием. А обратный процесс превращения пара в жидкость – конденсацией. Эти два процесса иллюстрируют фазовый переход – процесс перехода веществ из одного агрегатного состояния в другое: из жидкого в газообразное и наоборот.
Если число молекул водяного пара, покидающих жидкость за единицу времени, больше числа молекул водяного пара, возвращающихся в жидкость обратно за тот же промежуток времени, то пар называется ненасыщенным.
Иными словами, ненасыщенный водяной пар – водяной пар, не достигший динамического равновесия (не термодинамического!) со своей жидкостью. При данной температуре давление ненасыщенного пара всегда меньше давления насыщенного пара. При наличии над поверхностью жидкости ненасыщенного пара процесс парообразования преобладает над процессом конденсации, и потому жидкости в сосуде с течением времени становится все меньше и меньше.
Если число молекул водяного пара, покидающих жидкость за единицу времени, равно числу молекул водяного пара, возвращающихся в жидкость за тот же промежуток времени, то пар называется насыщенным.
Иными словами, насыщенный водяной пар – водяной пар, находящийся в динамическом равновесии со своей жидкостью: скорость испарения водяного пара равна скорости его конденсации. Такая ситуация возможна, если, например, ограничить объем над поверхностью воды.
Таким образом, в условиях динамического равновесия при определенной температуре в определенном объёме может находиться только определенное количество молекул пара. Во-вторых, в условиях динамического равновесия давление пара постоянно. Т.е. у насыщенного пара при одной и той же температуре большего давления и большей концентрации молекул пара достичь невозможно. Давление насыщенного пара имеет единственное значение, зависящее только от его температуры. Его значение при различных температурах можно найти в справочных таблицах.
Водяной пар обладает особенностью, заключающейся в том, что давление водяного пара не может превышать давление насыщенного водяного пара.
Для водяного пара вводится понятие относительной влажности φ, являющееся степенью его насыщенности. Чем ближе пар к насыщению, тем ближе к единице его относительная влажность. Для ненасыщенного пара φ < 1, для насыщенного φ = 1.
Насыщенный пар в свою очередь подразделяется на насыщенный сухой и насыщенный влажный пар. Насыщенный влажный пар состоит из виде взвешенных мелкодисперсных частиц воды, температура которых находится на уровне кипения, и соответственно самого пара, а насыщенный сухой пар не содержит капелек воды.
Существуют также перегретый пар и пересыщенный пар.
Пересыщенный пар (перенасыщенный пар, переохлажденный пар) – пар, давление которого превышает давление насыщенного пара при данной температуре. Пересыщенный пар может быть получен путём увеличения давления пара в объёме, свободном от центров конденсации (пылинок, ионов, капелек жидкости малых размеров и т. д.) либо путём охлаждения насыщенного пара при тех же условиях.
Состояние пересыщенного пара является метастабильным, то есть такое состояние пара способно существовать длительное время, однако оно является термодинамически неустойчивым. Так, при появлении каких-либо центров конденсации часть пара конденсируется, давление оставшегося пара падает, и он переходит в устойчивое состояние насыщенного пара над сконденсировшейся жидкостью. Устанавливается динамическое равновесие между жидкой и газообразной фазами.
Перегретый пар – пар, нагретый до температуры, превышающей температуру кипения при данном давлении.
Его получают путём нагрева насыщенного пара выше точки насыщения (температуры кипения при данном давлении) в специальных устройствах – пароперегревателях.
Использование перегретого пара позволяет значительно поднять КПД паровой установки, в которой он используется.
Перегретый пар обладает следующими основными свойствами и преимуществами:
– при одинаковом давлении с насыщенным паром имеет значительно бо́льшую температуру и теплосодержание;
– имеет больший удельный объём в сравнении с насыщенным паром, то есть объём 1 кг перегретого пара при том же давлении больше объема 1 кг насыщенного пара. Поэтому в паровых машинах для получения необходимой мощности перегретого пара по массе потребуется меньше, что даёт экономию в расходе воды и топлива;
– перегретый пар при охлаждении не конденсируется; конденсация при охлаждении наступает лишь тогда, когда температура перегретого пара станет ниже температуры насыщенного пара при данном давлении.
Образование водяного пара. Конденсация водяного пара:
Водяной пар может быть получен в результате испарения или кипения жидкой воды, а также в результате сублимации льда. При испарении пар образуется только на поверхности вещества, при кипении же пар образуется по всему объему жидкости.
В обычных атмосферных условиях водяной пар непрерывно образуется в результате испарения и конденсируется в жидкое состояние.
Кипение воды происходит при температурах, которые зависят от химического состава водного раствора и атмосферного давления.
При нормальном давлении окружающей среды 1 атм. (101,325 кПа) вода кипит при 100 °C. Температура кипения остается неизменной на протяжении всего процесса. Так, если в оставшуюся воду подается энергия (тепло), она испаряется без дальнейшего повышения температуры. Из 1 литра (соответственно 1 кг) воды образуется 1673 литра водяного пара (в нормальных условиях), для чего требуются затраты энергии 2257 кДж.
При поступлении водяного пара в воздух он, как и все другие газы, создаёт определённое давление, называемое парциальным. Парциальное давление (лат. partialis – «частичный» от pars – «часть») – давление отдельно взятого компонента газовой смеси. Общее давление газовой смеси является суммой парциальных давлений её компонентов.
Обратные образованию водяного пара процессы именуются конденсацией и десублимацией. Водяной пар будет конденсироваться на другую поверхность только тогда, когда эта поверхность будет более холодной, чем температура точки росы, или когда равновесие водяного пара в воздухе будет превышено.
В атмосфере конденсация водяного пара приводит к образованию облаков, тумана и осадков, а десублимация – снега.
Использование водяного пара:
Благодаря своим уникальным свойствам, водяной пар получил широкое распространение в разнообразной деятельности человека:
– в промышленности в качестве теплоносителя, рабочего тела в паровых машинах и турбинах,
– как очистительный агент при паровой очистке;
– в качестве огнетушащего вещества в системах паротушения;
– в кулинарии для приготовления блюд «на пару»;
– для стерилизации медицинских и микробиологических инструментов так называемым методом автоклавирования.
Примечание: © Фото https://www.pexels.com, https://pixabay.com
карта сайта
Коэффициент востребованности
238
Источник