Какими свойствами обладает умножение матриц

Какими свойствами обладает умножение матриц thumbnail

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 17 июля 2020;
проверки требуют 3 правки.

Умноже́ние ма́триц — одна из основных операций над матрицами. Матрица, получаемая в результате операции умножения, называется произведе́нием ма́триц. Элементы новой матрицы получаются из элементов старых матриц в соответствии с правилами, проиллюстрированными ниже.

Матрицы и могут быть перемножены, если они совместимы в том смысле, что число столбцов матрицы равно числу строк .

Матрицы обладают многими алгебраическими свойствами умножения, присущими обычным числам, за исключением коммутативности.

Для квадратных матриц, помимо умножения, может быть введена операция возведения матрицы в степень и обратная матрица.

Тогда как матрицы используются для описания, в частности, преобразований математических пространств (поворот, отражение, растяжение и другие), произведение матриц будет описывать композицию преобразований.

Определение[править | править код]

Пусть даны две прямоугольные матрицы и размерности и соответственно:

Тогда матрица размерностью :

в которой:

называется их произведением.

Операция умножения двух матриц выполнима только в том случае, если число столбцов в первом сомножителе равно числу строк во втором; в этом случае говорят, что матрицы согласованы. В частности, умножение всегда выполнимо, если оба сомножителя — квадратные матрицы одного и того же порядка.

Таким образом, из существования произведения вовсе не следует существование произведения

Иллюстрация[править | править код]

Произведение матриц AB состоит из всех возможных комбинаций скалярных произведений вектор-строк матрицы A и вектор-столбцов матрицы B. Элемент матрицы AB с индексами i, j есть скалярное произведение i-ой вектор-строки матрицы A и j-го вектор-столбца матрицы B.

Иллюстрация справа демонстрирует вычисление произведения двух матриц A и B, она показывает как каждые пересечения в произведении матриц соответствуют строкам матрицы A и столбцам матрицы B. Размер результирующей матрицы всегда максимально возможный, то есть для каждой строки матрицы A и столбца матрицы B есть всегда соответствующее пересечение в произведении матрицы.

Значения на пересечениях, отмеченных кружочками, будут:

В общем случае, произведение матриц не является коммутативной операцией. К примеру:

Элемент произведения матриц, приведённых выше, вычисляется следующим образом

Первая координата в обозначении матрицы обозначает строку, вторая координата — столбец; этот порядок используют как при индексации, так и при обозначении размера. Элемент на пересечении строки и столбца результирующей матрицы является скалярным произведением -й строки первой матрицы и -го столбца второй матрицы.
Это объясняет почему ширина и высота умножаемых матриц должны совпадать: в противном случае скалярное произведение не определено.

Обсуждение[править | править код]

Увидеть причины описанного правила матричного умножения легче всего, рассмотрев умножение вектора на матрицу.

Последнее естественно вводится исходя из того, что при разложении векторов по базису действие (любого) линейного оператора A даёт выражение компонент вектора v’ = Av:

То есть линейный оператор оказывается представлен матрицей, векторы — векторами-столбцами, а действие оператора на вектор — матричным умножением вектора-столбца слева на матрицу оператора (это частный случай матричного умножения, когда одна из матриц — вектор-столбец — имеет размер ).

(Равно переход к любому новому базису при смене координат представляется полностью аналогичным выражением, только в этом случае уже не компоненты нового вектора в старом базисе, а компоненты старого вектора в новом базисе; при этом  — элементы матрицы перехода к новому базису).

Рассмотрев последовательное действие на вектор двух операторов: сначала A, а потом B (или преобразование базиса A, а затем преобразование базиса B), дважды применив нашу формулу, получим:

откуда видно, что композиции BA действия линейных операторов A и B (или аналогичной композиции преобразований базиса) соответствует матрица, вычисляемая по правилу произведения соответствующих матриц:

Определённое таким образом произведение матриц оказывается совершенно естественным и очевидно полезным (даёт простой и универсальный способ вычисления композиций произвольного количества линейных преобразований).

Свойства[править | править код]

Сочетательное свойство, ассоциативность:

Распределительное свойство, дистрибутивность относительно сложения:

.

Произведение матрицы на единичную матрицу подходящего порядка равно самой матрице:

Произведение матрицы на нулевую матрицу подходящей размерности равно нулевой матрице:

Если и  — квадратные матрицы одного и того же порядка, то произведение матриц обладает ещё рядом свойств.

Умножение матриц в общем случае некоммутативно:

Если , то матрицы и называются коммутирующими между собой.

Простейшие примеры коммутирующих матриц:

Определитель и след произведения не зависят от порядка умножения матриц:

Обратная матрица[править | править код]

Квадратная матрица называется неособенной (невырожденной), если она имеет единственную обратную матрицу такую, что выполняется условие:

В противном случае матрица называется особенной (вырожденной).

Матрица порядка является невырожденной в том и только в том случае, если в этом случае есть квадратная матрица того же порядка

где  — алгебраическое дополнение элемента в определителе

Алгоритмы быстрого перемножения матриц[править | править код]

Сложность вычисления произведения матриц по определению составляет , однако существуют более эффективные алгоритмы[1], применяющиеся для больших матриц. Вопрос о предельной скорости умножения больших матриц, также как и вопрос о построении наиболее быстрых и устойчивых практических алгоритмов умножения больших матриц остаётся одной из нерешённых проблем линейной алгебры.

  • Алгоритм Штрассена (1969)

Первый алгоритм быстрого умножения больших матриц был разработан Фолькером Штрассеном[2] в 1969. В основе алгоритма лежит рекурсивное разбиение матриц на блоки 2Х2. Штрассен доказал, что матрицы 2Х2 можно некоммутативно перемножить с помощью семи умножений, поэтому на каждом этапе рекурсии выполняется семь умножений вместо восьми. В результате асимптотическая сложность этого алгоритма составляет . Недостатком данного метода является бо́льшая сложность программирования по сравнению со стандартным алгоритмом, слабая численная устойчивость и больший объём используемой памяти. Разработан ряд алгоритмов на основе метода Штрассена, которые улучшают численную устойчивость, скорость по константе и другие его характеристики. Тем не менее, в силу простоты алгоритм Штрассена остаётся одним из практических алгоритмов умножения больших матриц. Штрассен также выдвинул следующую гипотезу Штрассена: для сколь угодно малого существует алгоритм, при достаточно больших натуральных n гарантирующий перемножение двух матриц размера за операций.

  • Дальнейшие улучшения показателя степени ω для скорости матричного умножения
Читайте также:  Какие свойства ацетилена имеют отношение

Хронология улучшения оценок показателя степени ω для вычислительной сложности матричного умножения .

В дальнейшем оценки скорости умножения больших матриц многократно улучшались. Однако эти алгоритмы носили теоретический, в основном приближённый характер. В силу неустойчивости алгоритмов приближённого умножения в настоящее время они не используются на практике.

  • Алгоритм Пана (1978)

В 1978 Пан[3] предложил свой метод умножения матриц, сложность которого составила Θ(n2.78041).

  • Алгоритм Бини (1979)

В 1979 группа итальянских учёных во главе с Бини[4] разработала алгоритм умножения матриц с использованием тензоров. Его сложность составляет Θ(n2.7799).

  • Алгоритмы Шёнхаге (1981)

В 1981 Шёнхаге[5] представил метод, работающий со скоростью Θ(n2.695). Оценка получена с помощью подхода, названного частичным матричным умножением. Позже ему удалось получить оценку Θ(n2.6087).
Затем Шёнхаге на базе метода прямых сумм получил оценку сложности Θ(n2.548). Романи сумел понизить оценку до Θ(n2.5166), а Пан — до Θ(n2.5161).

  • Алгоритм Копперсмита — Винограда (1990)

В 1990 Копперсмит и Виноград[6] опубликовали алгоритм, который в модификации Вильямс Василевской[7]2011 года умножает матрицы со скоростью O(n2.3727). Этот алгоритм использует идеи, схожие с алгоритмом Штрассена. На сегодняшний день модификации алгоритма Копперсмита-Винограда являются наиболее асимптотически быстрыми. Но тот факт, что полученные улучшения ничтожны, позволяет говорить о существовании «барьера Копперсмита-Винограда» в асимптотических оценках скорости алгоритмов. Алгоритм Копперсмита-Винограда эффективен только на матрицах астрономического размера и на практике применяться не может.

  • Связь с теорией групп (2003)

В 2003 Кох и др. рассмотрели в своих работах[8] алгоритмы Штрассена и Копперсмита-Винограда в контексте теории групп. Они показали, что гипотеза Штрассена справедлива (т.е. минимальная сложность ограничена для любого ) , если выполняется одна из гипотез теории групп[9].

Степени матриц[править | править код]

Квадратные матрицы можно многократно умножать сами на себя так же, как обычные числа, так как у них одинаковое число строк и столбцов.
Такое последовательное умножение можно назвать возведением матрицы в степень — это будет частный случай обычного умножения нескольких матриц. У прямоугольных матриц число строк и столбцов разное, поэтому их никогда нельзя возводить в степень.
Матрица A размерности n × n, возведённая в степень, определяется формулой

и обладает следующими свойствами (λ — некоторый скаляр):

Нулевая степень:

где E – единичная матрица. Это аналог того факта, что нулевая степень любого числа равна единице.

Умножение на скаляр:

Определитель:

Наивный способ вычисления степени матрицы — это умножать k раз матрицу A на результат предыдущего умножения, начиная с единичной матрицы, как это часто делают для скаляров.
Для диагонализируемых матриц существует лучший метод, основанный на использовании спектрального разложения матрицы A.
Ещё один метод, основанный на теореме Гамильтона — Кэли, строит более эффективное выражение для Ak, в котором в требуемую степень возводится скаляр, а не вся матрица.

Особый случай составляют диагональные матрицы.
Так как произведение диагональных матриц сводится к умножению соответствующих диагональных элементов, то k-ая степень диагональной матрицы A состоит из элементов, возведённых в требуемую степень:

Таким образом, возвести диагональную матрицу в степень несложно.
При возведении произвольной матрицы (не обязательно диагональной) в степень часто полезным оказывается использовать сначала свойства диагонализируемых матриц.

Используя умножение матриц и возведение матриц в степень, можно определить другие операции над матрицами. Например, матричная экспонента может быть определена через степенной ряд, матричный логарифм[en] — как обратная к матричной экспоненте функция и так далее.

См. также[править | править код]

  • Произведение Кронекера

Литература[править | править код]

  • Корн Г., Корн Т. Алгебра матриц и матричное исчисление // Справочник по математике. — 4-е издание. — М: Наука, 1978. — С. 392—394.

Примечания[править | править код]

  1. ↑ Кибернетический сборник. Новая серия. Вып. 25. Сб. статей 1983 — 1985 гг.: Пер. с англ. — М.: Мир, 1988 — В.Б. Алекссев. Сложность умножения матриц. Обзор.
  2. Strassen V. Gaussian Elimination is not Optimal (англ.) // Numer. Math / F. Brezzi — Springer Science+Business Media, 1969. — Vol. 13, Iss. 4. — P. 354—356. — ISSN 0029-599X; 0945-3245 — doi:10.1007/BF02165411
  3. ↑ Pan V. Ya, Strassen’s algorithm is not optimal — trilinear technique of aggregating uniting and canceling for constructing fast algorithms for matrix operations. — Proc. 19th Annual Symposium on Foundations of Computer Science, Ann Arbor, Mich., 1978
  4. ↑ Bini D., Capovani M., Lotti G., Romani F. — complexity for approximate matrix multiplication. — Inform. Process. Lett., 1979
  5. ↑ Schonhage A. Partial and total matrix multiplication. — SIAM J. Comput., 1981
  6. ↑ Don Coppersmith and Shmuel Winograd. Matrix multiplication via arithmetic progressions. Journal of Symbolic Computation, 9:251-280, 1990.
  7. ↑ Williams, Virginia (2011), Multiplying matices in O(n2.3727 time
  8. ↑ Group-theoretic Algorithms for Matrix Multiplication
  9. ↑ Toward an Optimal Algorithm for Matrix Multiplication (недоступная ссылка). Дата обращения 26 сентября 2009. Архивировано 31 марта 2010 года.
Читайте также:  Каким свойствами обладает зеленый чай

Источник

Произведение двух матриц

Определение 1

Произведение матриц (С= АВ) — операция только для согласованных матриц А и В, у которых число столбцов матрицы А равно числу строк матрицы В:

C⏟m×n=A⏟m×p×B⏟p×n

Пример 1

 Даны матрицы:

  • A=a(ij) размеров m×n;
  • B=b(ij) размеров p×n

Матрицу C, элементы cij которой вычисляются по следующей формуле:

cij=ai1×b1j+ai2×b2j+…+aip×bpj, i=1,…m, j=1,…m

Пример 2

Вычислим произведения АВ=ВА:

А=121012, В=100111

Решение, используя правило умножения матриц:

А⏟2×3×В⏟3×2=121012×100111=1×1+2×0+1×11×0+2×1+1×10×1+1×0+2×10×0+1×1+2×1==2323⏟2×2

В⏟3×2×А⏟2×3=100111×121012=1×1+0×01×2+0×11×1+0×20×1+1×00×2+1×10×1+1×21×1+1×01×2+1×11×1+1×2=121012133⏟3×3

Произведение АВ и ВА найдены, но являются матрицами разных размеров: АВ не равна ВА.

Свойства умножения матриц

Свойства умножения матриц:

  • (АВ)С = А(ВС) — ассоциативность умножения матриц;
  • А(В+С) = АВ + АС — дистрибутивность умножения;
  • (А+В)С = АС + ВС — дистрибутивность умножения;
  • λ(АВ)=(λА)В

Пример 1

Проверяем свойство №1: (АВ)С = А(ВС):

(А×В)×А=1234×5678×1002=19224350×1002=194443100,

А(В×С)=1234×56781002=1234×512716=194443100.

Пример 2

Проверяем свойство №2: А(В+С) = АВ + АС:

А×(В+С)=1234×5678+1002=1234×66710=20264658,

АВ+АС=1234×5678+1234×1002=19224350+1438=20264658.

Произведение трех матриц

Произведение трех матриц АВС вычисляют 2-мя способами:

  • найти АВ и умножить на С: (АВ)С;
  • либо найти сначала ВС, а затем умножить А(ВС).

​​​​​Пример 3

Перемножить матрицы 2-мя способами:

4375×-289338-126×7321

Алгоритм действий:

  • найти произведение 2-х матриц;
  • затем снова найти произведение 2-х матриц.

1). АВ=4375×-289338-126=4(-28)+3×384×93+3(-126)7(-28)+5×387×93+5(-126)=2-6-621

2). АВС=(АВ)С=2-6-6217321=2×7-6×22×3-6×1-6×7+21×2-6×3+21×1=2003.

Используем формулу АВС=(АВ)С:

1). ВС=-289338-1267321=-28×7+93×2-28×3+93×138×7-126×238×3-126×1=-10914-12

2). АВС=(АВ)С=7321-10914-12=4(-10)+3×144×9+3(-12)7(-10)+5×147×9+5(-12)=2003

Ответ: 4375-289338-1267321=2003

Умножение матрицы на число

Определение 2

Произведение матрицы А на число k — это матрица В=Аk того же размера, которая получена из исходной умножением на заданное число всех ее элементов:

bi,j=k×ai,j

Свойства умножения матрицы на число:

  • 1×А=А
  • 0×А=нулевая матрица
  • k(A+B)=kA+kB
  • (k+n)A=kA+nA
  • (k×n)×A=k(n×A)

Пример 4

Найдем произведение матрицы А=4290   на 5.

Решение:

5А=542905×45×25×95×0=2010450

Умножение матрицы на вектор

Определение 3

Чтобы найти произведение матрицы и вектора, необходимо умножать по правилу «строка на столбец»:

  • если умножить матрицу на вектор-столбец число столбцов в матрице должно совпадать с числом строк в векторе-столбце;
  • результатом умножения вектора-столбца является только вектор-столбец:

АВ=а11а12⋯а1nа21а22⋯а2n⋯⋯⋯⋯аm1аm2⋯аmnb1b2⋯b1n=a11×b1+a12×b2+⋯+a1n×bna21×b1+a22×b2+⋯+a2n×bn⋯⋯⋯⋯am1×b1+am2×b2+⋯+amn×bn=c1c2⋯c1m

  • если умножить матрицу на вектор-строку, то умножаемая матрица должна быть исключительно вектором-столбцом, причем количество столбцов должно совпадать с количеством столбцов в векторе-строке:

АВ=аа⋯аbb⋯b=a1×b1a1×b2⋯a1×bna2×b1a2×b2⋯a2×bn⋯⋯⋯⋯an×b1an×b2⋯an×bn=c11c12⋯c1nc21c22⋯c2n⋯⋯⋯⋯cn1cn2⋯cnn

Пример 5

Найдем произведение матрицы А и вектора-столбца В:

АВ=240-213-10112-1=2×1+4×2+0×(-1)-2×1+1×2+3×(-1)-1×1+0×2+1×(-1)=2+8+0-2+2-3-1+0-1=10-3-2

Пример 6

Найдем произведение матрицы А и вектора-строку В:

А=320-1, В=-1102

Решение:

АВ=3201×-1102=3×(-1)3×13×03×22×(-1)2×12×02×20×(-1)0×10×00×21×(-1)1×11×01×2=-3306-22040000-1102

Ответ: АВ=-3306-22040000-1102

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Источник

Линейная алгебра

Основные определения

Определение. Матрицейразмера m´n, где m- число строк, n- число столбцов, называется таблица чисел, расположенных в определенном порядке. Эти числа называются элементами матрицы. Место каждого элемента однозначно определяется номером строки и столбца, на пересечении которых он находится. Элементы матрицы обозначаются aij, где i- номер строки, а j- номер столбца.

А =

Сложение и вычитание матриц сводится к соответствующим операциям над их элементами. Самым главным свойством этих операций является то, что они определены только для матриц одинакового размера. Таким образом, возможно определить операции сложения и вычитания матриц:

Определение. Суммой (разностью) матриц является матрица, элементами которой являются соответственно сумма (разность) элементов исходных матриц.

cij = aij ± bij

С = А + В = В + А.

Операция умножения (деления) матрицы любого размера на произвольное число сводится к умножению (делению) каждого элемента матрицы на это число.

a (А+В) =aА ± aВ

А(a±b) = aА ± bА

Пример. Даны матрицы А = ; B = , найти 2А + В.

2А = , 2А + В = .

Операция умножения матриц

Определение: Произведением матриц называется матрица, элементы которой могут быть вычислены по следующим формулам:

A×B = C;

.

Из приведенного определения видно, что операция умножения матриц определена только для матриц, число столбцов первой из которых равно числу строк второй.

Свойства операции умножения матриц

1)Умножение матриц не коммутативно, т.е. АВ ¹ ВА даже если определены оба произведения. Однако, если для каких – либо матриц соотношение АВ=ВА выполняется, то такие матрицы называются перестановочными.

Самым характерным примером может служить единичная матрица, которая является перестановочной с любой другой матрицей того же размера.

Перестановочными могут быть только квадратные матрицы одного и того же порядка.

А×Е = Е×А = А

Очевидно, что для любых матриц выполняются следующее свойство:

A×O = O; O×A = O,

где О – нулеваяматрица.

2) Операция перемножения матриц ассоциативна, т.е. если определены произведения АВ и (АВ)С, то определены ВС и А(ВС), и выполняется равенство:

(АВ)С=А(ВС).

3) Операция умножения матриц дистрибутивна по отношению к сложению, т.е. если имеют смысл выражения А(В+С) и (А+В)С, то соответственно:

А(В + С) = АВ + АС

(А + В)С = АС + ВС.

4) Если произведение АВ определено, то для любого числа a верно соотношение:

a(AB) = (aA)B = A(aB).

5) Если определено произведение АВ , то определено произведение ВТАТ и выполняется равенство:

(АВ)Т = ВТАТ, где

индексом Т обозначается транспонированная матрица.

Читайте также:  Каким и лечебными свойствами обладает лавровый лист

6) Заметим также, что для любых квадратных матриц det (AB) = detA×detB.

Пример. Найти произведение матриц А = и В = .

АВ = × = .

ВА = × = 2×1 + 4×4 + 1×3 = 2 + 16 + 3 = 21.

Пример. Найти произведение матриц А= , В =

АВ = × = = .

Определители (детерминанты)

Определение. Определителемквадратной матрицы А= называется число, которое может быть вычислено по элементам матрицы по формуле:

det A = , где

М1к – детерминант матрицы, полученной из исходной вычеркиванием первой строки и k – го столбца. Следует обратить внимание на то, что определители имеют только квадратные матрицы, т.е. матрицы, у которых число строк равно числу столбцов.

Предыдущая формула позволяет вычислить определитель матрицы по первой строке, также справедлива формула вычисления определителя по первому столбцу:

det A =

Вообще говоря, определитель может вычисляться по любой строке или столбцу матрицы, т.е. справедлива формула:

detA = , i = 1,2,…,n.

Очевидно, что различные матрицы могут иметь одинаковые определители.

Определитель единичной матрицы равен 1.

Для указанной матрицы А число М1к называется дополнительным минором элемента матрицы a1k. Таким образом, можно заключить, что каждый элемент матрицы имеет свой дополнительный минор. Дополнительные миноры существуют только в квадратных матрицах.

Определение. Дополнительный минор произвольного элемента квадратной матрицы aij равен определителю матрицы, полученной из исходной вычеркиванием i-ой строки и j-го столбца.

Пример. Вычислить определитель матрицы А =

= -5 + 18 + 6 = 19.

Пример:. Даны матрицы А = , В = . Найти det (AB).

1-й способ: det A = 4 – 6 = -2; det B = 15 – 2 = 13;

det (AB) = det A ×det B = -26.

2- й способ: AB = ,

det (AB) = 7×18 – 8×19 = 126 – 152 = -26.

Миноры

Определение. Если в матрице А выделить несколько произвольных строк и столько же произвольных столбцов, то определитель, составленный из элементов, расположенных на пересечении этих строк и столбцов называется миноромматрицы А. Если выделено s строк и столбцов, то полученный минор называется минором порядка s.

Заметим, что вышесказанное применимо не только к квадратным матрицам, но и к прямоугольным.

Если вычеркнуть из исходной квадратной матрицы А выделенные строки и столбцы, то определитель полученной матрицы будет являться дополнительным минором.

Алгебраические дополнения

Определение. Алгебраическим дополнением минора матрицы называется его дополнительный минор, умноженный на (-1) в степени, равной сумме номеров строк и номеров столбцов минора матрицы.

В частном случае, алгебраическим дополнением элемента матрицы называется его дополнительный минор, взятый со своим знаком, если сумма номеров столбца и строки, на которых стоит элемент, есть число четное и с противоположным знаком, если нечетное.

Теорема Лапласа. Если выбрано s строк матрицы с номерами i1, … ,is, то определитель этой матрицы равен сумме произведений всех миноров, расположенных в выбранных строках на их алгебраические дополнения.

Обратная матрица

Определим операцию деления матриц как операцию, обратную умножению.

Определение.Если существуют квадратные матрицы Х и А одного порядка, удовлетворяющие условию:

XA = AX = E,

где Е – единичная матрица того же самого порядка, что и матрица А, то матрица Х называется обратнойк матрице А и обозначается А-1.

Каждая квадратная матрица с определителем, не равным нулю имеет обратную матрицу и притом только одну.

Рассмотрим общий подход к нахождению обратной матрицы.

Исходя из определения произведения матриц, можно записать:

AX = E Þ , i=(1,n), j=(1,n),

eij = 0, i ¹ j,

eij = 1, i = j .

Таким образом, получаем систему уравнений:

,

Решив эту систему, находим элементы матрицы Х.

Пример. Дана матрица А = , найти А-1.

Таким образом, А-1= .

Однако, такой способ не удобен при нахождении обратных матриц больших порядков, поэтому обычно применяют следующую формулу:

,

где Мji– дополнительный минор элемента аji матрицы А.

Пример. Дана матрица А = , найти А-1.

det A = 4 – 6 = -2.

M11=4; M12= 3; M21= 2; M22=1

x11= -2; x12= 1; x21= 3/2; x22= -1/2

Таким образом, А-1= .

Пример. Дана матрица А = , найти А3.

А2 = АА = = ; A3 = = .

Отметим, что матрицы и являются перестановочными.

Пример. Вычислить определитель .

= -1

= -1(6 – 4) – 1(9 – 1) + 2(12 – 2) = -2 – 8 + 20 = 10.

= = 2(0 – 2) – 1(0 – 6) = 2.

= = 2(-4) – 3(-6) = -8 + 18 = 10.

Значение определителя: -10 + 6 – 40 = -44.

Базисный минор матрицы

Ранг матрицы

Определение. В матрице порядка m´n минор порядка r называется базисным, если он не равен нулю, а все миноры порядка r+1 и выше равны нулю, или не существуют вовсе, т.е. r совпадает с меньшим из чисел m или n.

Столбцы и строки матрицы, на которых стоит базисный минор, также называются базисными.

В матрице может быть несколько различных базисных миноров, имеющих одинаковый порядок.

Определение. Порядок базисного минора матрицы называется рангомматрицы и обозначается Rg А.

Пример. Определить ранг матрицы.

~ ~ , RgA = 2.

Пример: Определить ранг матрицы.

~ ~ ~ , Rg = 2.

Пример. Определить ранг матрицы.

~ , Þ Rg = 2.

Дата добавления: 2016-11-24; просмотров: 1545 | Нарушение авторских прав | Изречения для студентов

Читайте также:

Рекомендуемый контект:

Поиск на сайте:

© 2015-2020 lektsii.org – Контакты – Последнее добавление

Источник