Какими свойствами обладает трапеция
Трапе́ция (от др.-греч. τραπέζιον — «столик» от τράπεζα — «стол») — выпуклый четырёхугольник, у которого две стороны параллельны. Часто в определение трапеции добавляют условие, что две другие стороны должны быть не параллельны[1]. Параллельные противоположные стороны называются основаниями трапеции, а две другие — боковыми сторонами. Средняя линия — отрезок, соединяющий середины боковых сторон.
Варианты определения[править | править код]
Существует и другое определение трапеции.
Трапеция — это выпуклый четырёхугольник, у которого две стороны параллельны[2][3]. Согласно этому определению, параллелограмм и прямоугольник — частные случаи трапеции. Однако при использовании такого определения большинство признаков и свойств равнобедренной трапеции перестают быть верными (так как параллелограмм становится её частным случаем). Приведённые в разделе Общие свойства формулы верны для обоих определений трапеции.
Связанные определения[править | править код]
Элементы трапеции[править | править код]
Точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой
- Параллельные противоположные стороны называются основаниями трапеции.
- Две другие стороны называются боковыми сторонами.
- Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции.
- Углом при основании трапеции называется ее внутренний угол, образованный основанием с боковой стороной.
Виды трапеций[править | править код]
- Трапеция, у которой боковые стороны равны, называется равнобедренной трапецией (реже равнобокой[4] или равнобочной[5] трапецией).
- Трапеция, имеющая прямые углы при боковой стороне, называется прямоугольной.
Равнобедренная трапеция
Прямоугольная трапеция
Свойства[править | править код]
Основной источник: [6]
- Средняя линия трапеции параллельна основаниям и равна их полусумме.[7]
- Отрезок, соединяющий середины диагоналей трапеции, равен половине разности оснований и лежит на средней линии.
- Отрезок, параллельный основаниям и проходящий через точку пересечения диагоналей, делится последней пополам и равен среднему гармоническому длин оснований трапеции.
- В трапецию можно вписать окружность, если сумма длин оснований трапеции равна сумме длин её боковых сторон.
- Точка пересечения диагоналей трапеции, точка пересечения продолжений её боковых сторон и середины оснований лежат на одной прямой.
- Если сумма углов при одном из оснований трапеции равна 90°, то продолжения боковых сторон пересекаются под прямым углом, а отрезок, соединяющий середины оснований, равен полуразности оснований.
- Диагонали трапеции делят ее на 4 треугольника. Два из них, прилежащие к основаниям, подобны. Два других, прилежащие к боковым сторонам, имеют одинаковую площадь.
- Если отношение оснований равно , то отношение площадей треугольников, прилежащих к основаниям, равно .
- Высота трапеции определяется формулой:
где — большее основание, — меньшее основание, и — боковые стороны.
Их можно выразить в явном виде:
Если, наоборот, известны боковые стороны и диагонали, то основания выражаются формулами:
а при известных основаниях и диагоналях боковые стороны следующие:
Если же известна высота , то
- Прямая Ньютона для трапеции совпадает с её средней линией.
Равнобедренная трапеция[править | править код]
Трапеция является равнобедренной тогда и только тогда, когда выполнено любое из следующих эквивалентных условий:
- прямая, которая проходит через середины оснований, перпендикулярна основаниям (то есть является осью симметрии трапеции);
- высота, опущенная из вершины на большее основание, делит его на два отрезка, один из которых равен полусумме оснований, другой — полуразности оснований;
- углы при любом основании равны;
- сумма противоположных углов равна 180°;
- длины диагоналей равны;
- вокруг этой трапеции можно описать окружность;
- вершинами этой трапеции также являются вершины некоторого антипараллелограмма.
Кроме того
- если в равнобедренной трапеции диагонали перпендикулярны, то высота равна полусумме оснований.
Вписанная и описанная окружность[править | править код]
- Если сумма оснований трапеции равна сумме боковых сторон, то в неё можно вписать окружность. Средняя линия в этом случае равна сумме боковых сторон, делённой на 2 (так как средняя линия трапеции равна полусумме оснований).
- В трапеции её боковая сторона видна из центра вписанной окружности под углом 90°.
- Если трапецию можно вписать в окружность – то она равнобедренная.
- Радиус описанной окружности равнобедренной трапеции:[источник не указан 1930 дней]
где — боковая сторона, — бо́льшее основание, — меньшее основание, — диагонали равнобедренной трапеции.
- Если , то в равнобедренную трапецию можно вписать окружность радиуса
Площадь[править | править код]
Здесь приведены формулы, свойственные именно трапеции. См. также формулы для площади произвольных четырёхугольников.
Примечание: Приведённые выше две формулы эквивалентны, так как полусумма оснований равняется средней линии трапеции:
или
- Средняя линия разбивает фигуру на две трапеции, площади которых соотносятся как[8]
- Площадь равнобедренной трапеции:
где — боковая сторона, — бо́льшее основание, — меньшее основание, — угол между бо́льшим основанием и боковой стороной[9].
- Площадь равнобедренной трапеции через её стороны
История[править | править код]
Слово “трапеция” происходит от греческого слова др.-греч. τραπέζιον «столик» (уменьш. от τράπεζα «стол»), означающего стол. В русском языке от этого слова происходит слово “трапеза” (еда).
Примечания[править | править код]
Источник
Привет!
Перед тобой лучший гид по трапеции! Только то, что нужно. Без воды.
Основные определения, формулы и свойства.
Помни о своей цели!
Тебе нужно подготовиться к ЕГЭ по математике так, чтобы поступить в ВУЗ мечты! Будь уверен!
Приступим!
НАЧАЛЬНЫЙ УРОВЕНЬ
Что такое трапеция?
Трапеция – такой четырехугольник, у которого две стороны параллельны, а две другие – нет.
Параллельные стороны называются – основания, а непараллельные стороны называются боковые стороны.
Вот, смотри:
Оказывается, трапеция (как и треугольник) бывает равнобедренная.
Если боковые стороны трапеции равны, то она называется равнобедренной (или равнобокой).
И тут возникает вопрос: а могут ли у трапеции быть равными ОСНОВАНИЯ?
А вот и нет. Тогда это получится не трапеция, а параллелограмм, потому что две стороны окажутся параллельны и равны (вспоминаем признаки параллелограмма)
Свойства трапеции
Итак, что ты должен знать о свойствах трапеции…
Сумма углов при каждой боковой стороне трапеции равна 180°.
(у нас на рисунке ( displaystyle angle 1+angle 2=180{}^circ ) и ( displaystyle angle 3+angle 4=180{}^circ ))
Почему так? Ну, конечно, просто потому, что основания – параллельны, а боковая сторона – секущая. Вот и получается, что ( displaystyle angle 1) и ( displaystyle angle 2) – внутренние односторонние углы при параллельных ( displaystyle AD) и ( displaystyle BC) и секущей ( displaystyle AB). Поэтому ( displaystyle angle 1+angle 2=180{}^circ ). И точно так же ( displaystyle angle 3) и ( displaystyle angle 4) – внутренние односторонние углы при тех же параллельных ( displaystyle AD) и ( displaystyle BC), но секущая теперь – ( displaystyle CD).
Видишь: главное, что играет роль – это параллельность оснований. Давай разберем еще некоторые свойства трапеции.
Как у всякого четырехугольника, у трапеции есть диагонали. Их две – посмотри на рисунки:
Снова порассуждаем об углах:
Опять ( displaystyle AD) и ( displaystyle BC) – параллельные, а диагональ ( displaystyle AC) – секущая. Поэтому ( displaystyle angle 1=angle 2).
А теперь рассмотрим сразу 2 диагонали и 4 угла:
( displaystyle angle 1=angle 2)
( displaystyle angle 3=angle 4)
Что из этого может следовать?
Очень важный факт:
Треугольники ( displaystyle BOC) и ( displaystyle AOD) – подобны по двум углам.
Их коэффициент подобия равен отношению оснований: ( displaystyle K=frac{a}{b}).
Средняя линия трапеции
Для начала – что же такое средняя линия трапеции?
Средняя линия трапеции – это отрезок, который соединяет середины боковых сторон трапеции.
Оказывается, длину этой средней линии можно выразить через длины оснований трапеции. А именно, имеет место такая формула:
( displaystyle m=frac{a+b}{2}), то есть:
Длина средней линии трапеции равна полусумме (то есть половине суммы) длин оснований.
А ещё:
Средняя линия трапеции параллельна ее основаниям.
Трапеция, вписанная в окружность
Даже если ты ещё не изучал темы «Окружность. Вписанный угол» и «Вписанный четырехугольник», тебе будет полезно (и, надеюсь, интересно) узнать следующий удивительный факт:
Это закрытый контент
Оставьте E-mail и получите на почту доступ к нему
Если трапецию можно вписать в окружность, то она – равнобокая.
Доказывать это мы не будем (здесь, во всяком случае), а вот запомнить хорошо бы – пригодится!
Подведём итог – он короткий.
Самое важное, что есть в трапеции – две параллельные стороны и BCE свойства трапеции именно этим и определяются.
Так что, если у тебя в задаче трапеция, – используй параллельность и всё получится!
Трапеция – такой четырехугольник, у которого две стороны параллельны, а две другие – нет.
Параллельные стороны называются основаниями, а непараллельные – боковыми сторонами.
Если боковые стороны трапеции равны, то она называется равнобедренной (или равнобокой).
Сумма углов при каждой боковой стороне трапеции равна 180°.
(у нас на рисунке ( displaystyle angle 1+angle 2=180{}^circ ) и ( displaystyle angle 3+angle 4=180{}^circ ))
Почему? ( displaystyle AD) и ( displaystyle BC) – параллельны, а ( displaystyle AB) и ( displaystyle CD) – секущие, поэтому:
- ( angle 1+angle 2=180{}^circ );
- ( angle 3+angle 4=180{}^circ ).
Треугольники ( displaystyle BOC) и ( displaystyle AOD) подобны по двум углам.
(( displaystyle angle 1=angle 2) и ( displaystyle angle 3=angle 4) – как накрест лежащие)
Коэффициент подобия треугольников ( displaystyle BOC) и ( displaystyle AOD) равен отношению оснований:
( K=frac{a}{b})
Сначала сформулируем основное определение, которое тебе нужно знать для понимания этого свойства трапеции:
Средняя линия трапеции – отрезок, соединяющий середины боковых сторон.
А теперь формула:
А вот и само третье свойство трапеции:
Средняя линия трапеции равна полусумме оснований и параллельна им.
А это почему? Ту чуть – чуть сложнее – потребуется провести аж одну лишнюю линию!
Итак, проведём ( displaystyle CEparallel AB). Тогда четырехугольник ( displaystyle ABCE) – параллелограмм.
Возьмём середину ( displaystyle M) стороны ( displaystyle AB) и середину ( displaystyle K) стороны ( displaystyle CE).
Оба: ( displaystyle MBCK) и ( displaystyle AMKE) – снова параллелограммы (( displaystyle MBparallel CK) и ( displaystyle MB=CK); ( displaystyle AMparallel KE) и ( displaystyle AM=KE)).
Ну вот, значит ( displaystyle MKparallel AD), да ещё ( displaystyle MK=BC=a).
Поедем дальше.
Проведём ( displaystyle KN) – среднюю линию в ( displaystyle Delta ECD).
Знаем, что ( displaystyle KNparallel ED) и ( KN=frac{1}{2}ED)
Что же из всего этого следует?
- ( displaystyle MNparallel AD) (так как через точку ( displaystyle K) можно провести лишь одну прямую параллельную ( displaystyle AD), поэтому ( displaystyle MK) и ( displaystyle KN) – одна прямая ( displaystyle MN))
- ( displaystyle MN=MK+KN=a+frac{b-a}{2})
( displaystyle MN=frac{a+b}{2})
Вот и доказали!
Если трапеция вписана в окружность, то она равнобокая.
Почему? Подробнее смотри в теме «Вписанный четырехугольник», а тут – двумя строчками:
( angle 1+angle 2=180{}^circ ) (трапеция же!)
( angle 3+angle 2=180{}^circ ) (вписанный четырехугольник)
( Rightarrow angle 1=angle 3). Ну, и так же ( angle 2=angle 4).
Это закрытый контент
Оставьте E-mail и получите на почту доступ к нему
В любой трапеции следующие четыре точки лежат на одной прямой:
- ( displaystyle E) – точка пересечения продолжений боковых сторон;
- ( displaystyle F) и ( displaystyle H) – середины оснований;
- ( displaystyle G) – точка пересечения диагоналей.
Эту теорему доказывать не будем – не пугайся.
Заметим только, что ВЕРНО и ОБРАТНОЕ:
Если в каком-нибудь четырехугольнике какие-нибудь три из перечисленных четырёх точек окажутся на одной прямой, то четырёхугольник этот – ТРАПЕЦИЯ.
Биссектрисы углов при боковой стороне трапеции перпендикулярны.
( left{ begin{array}{l}angle 1+angle 2+angle 3+angle 4=180{}^circ -так, как, трапеция\angle 1=angle 2\angle 3=angle 4 -так, как, биссектрисаend{array} right.Rightarrow 2cdot angle 2+2cdot angle 3=180{}^circ Rightarrow )
( angle 2+angle 3=90{}^circ Rightarrow angle AEB =90{}^circ )
Здесь мы ещё раз увидим, как полезно в трапеции бывает провести линию, параллельную или боковой стороне, или диагонали – сразу появляется новый взгляд. Один раз мы уже так делали – в пункте про среднюю линию. А теперь ты узнал новый факт, который относительно часто встречается в задачах.
В трапеции с перпендикулярными диагоналями ( FH=frac{AD+BC}{2})
Давай докажем! Это уже целая задача, которая вполне может попасться прямо на экзамене!
Это закрытый контент
Оставьте E-mail и получите на почту доступ к нему
Ну вот, и ты теперь старайся с помощью новых знаний и методов решать задачки про трапецию – они обычно не слишком сложные. Главное, твёрдо помнить все свойства трапеции и не забывать о параллельности оснований и иногда (в задачах посложнее) бывает полезно провести что-то параллельное или соединить боковые стороны.
Проведём ( displaystyle BKparallel AC) и ( displaystyle BLparallel FH).
Обозначим ( displaystyle BC=text{ }a); ( displaystyle AD=b).
Тогда:
- ( displaystyle Delta KBD) – прямоугольный
- ( begin{array}{l}left{ begin{array}{l}LD=frac{b}{2}+frac{a}{2}=frac{a+b}{2}\LK=a+frac{b}{2}-frac{a}{2}=frac{a+b}{2}end{array} right.Rightarrow BL-медиана~в~ Delta KBD.\end{array})
Значит, ( BL=frac{KD}{2}) (медиана, проведенная к гипотенузе, равна её половине).
То есть ( BL=frac{a+b}{2}).
Но ведь ( displaystyle FH=BL) (так как ( displaystyle BFHL) – параллелограмм)( Rightarrow ) ( FH=frac{a+b}{2}).
Трапеция – четырёхугольник, у которого две стороны параллельны (они называются основания), а две другие – нет (это боковые стороны).
- Сумма углов при каждой боковой стороне трапеции равна 180°
- ( displaystyle angle 1+angle 2=180{}^circ ) и ( displaystyle angle 3+angle 4=180{}^circ )
Средняя линия трапеции (( displaystyle MN)) – отрезок, соединяющий середины боковых сторон:
( displaystyle AM=MB, CN=ND).
- Средняя линия параллельна основаниям: ( displaystyle MNparallel BCparallel AD).
- Длина средней линии трапеции равна полусумме длин оснований: ( displaystyle MN=frac{BC+AD}{2}).
- Диагонали любой трапеции пересекаются в точке О.
- Треугольники, образованные основаниями трапеции и отрезками диагоналей
(( displaystyle BOC) и ( displaystyle AOD)) подобны по двум углам с коэффициентом подобия равным отношению оснований: ( displaystyle k=frac{BC}{AD}). - Площади треугольников, образованных боковыми сторонами и отрезками диагоналей трапеции, равны: ( displaystyle {{S}_{Delta AOB}}={{S}_{Delta COD}}).
Равнобедренная (равнобокая) трапеция – это трапеция, у которой боковые стороны равны:
( displaystyle AB=CD).
Свойства равнобедренной трапеции:
- диагонали равны: ( displaystyle AC=BD);
- углы при основании равны: ( displaystyle angle A=angle D,text{ }angle B=angle C);
- сумма противолежащих углов равна ( displaystyle 180{}^circ ): ( displaystyle angle A+angle C=angle B+angle D=180{}^circ ).
- Если трапецию можно вписать в окружность, то она – равнобокая.
- Стороны и диагональ равнобокой трапеции связаны соотношением: ( displaystyle A{{C}^{2}}=B{{D}^{2}}=ADcdot BC+A{{B}^{2}}).
Площадь трапеции равна полусумме оснований, умноженной на высоту: ( displaystyle {{S}_{ABCD}}=frac{BC+AD}{2}cdot h).
P.S. Последний бесценный совет ????
Ну вот, тема закончена. Если ты читаешь эти строки, значит, ты очень крут.
Почему?
Потому что только 5% людей способны освоить что-то самостоятельно. И если ты дочитал до конца, ты попал в эти 5%!
Теперь самое главное.
Ты разобрался с теорией по этой теме. И, повторюсь, это… это просто супер! Ты уже лучше, чем абсолютное большинство твоих сверстников.
Проблема в том, что этого может не хватить…
Для чего?
Для успешной сдачи ОГЭ или ЕГЭ, для поступления в 10 класс или в институт на бюджет и, самое главное, для жизни.
Я не буду тебя ни в чем убеждать, просто скажу одну вещь…
Люди, получившие хорошее образование, зарабатывают намного больше, чем те, кто его не получил. Это статистика.
Но и это не главное.
Главное то, что они более счастливы (есть такие исследования). Возможно, потому, что перед ними открывается гораздо больше возможностей и жизнь становится ярче? Не знаю…
Но думай сам…
Что нужно, чтобы быть наверняка лучше других на ОГЭ или ЕГЭ и быть в конечном итоге… более счастливым?
Набить руку, решая задачи.
На экзамене у тебя не будут спрашивать теорию.
Тебе нужно будет решать задачи на время. И, если ты не решал их (много!), ты обязательно где-нибудь глупо ошибешься или просто не успеешь. Это как в спорте: нужно много раз повторить, чтобы выиграть наверняка.
Найди где хочешь сборник, обязательно с решениями, подробным разбором и решай, решай, решай!
Можешь воспользоваться нашим сборником задач с подробным разбором, и мы их всячески рекомендуем, потому что они разбиты по темам, по типам и даже собраны в целую программу подготовки.
Если решишь набить руку с помощью наших задач, зайди на сайт 100gia и приобрети одну из программ.
А еще можешь зарегистрироваться и получить доступ к огромному количеству бесплатных материалов, видеоуроков, тестов.
После регистрации ты сможешь:
- проверить свою готовность к каждому типу задач на ЕГЭ (пройдя тест);
- подтянуть слабые места с помощью видеоуроков, вебинаров;
- понять тему с помощью статей учебника YouClever;
- набить руку, решая задачи и получая проверку и решения;
- сдать пробный ЕГЭ и получить сразу оценку и разбор ошибок.
Бонус: информатика и физика.
И в заключение…
Если наши задачи тебе не нравятся, найди другие. Только не останавливайся на теории.
“Понял” и “Умею решать” – это совершенно разные навыки. Тебе нужны оба.
Найди задачи и решай!
Скажи погромче!
Если умеешь решать задачи по свойствам трапеции об окружности и о сумме сторон, поздравляю, ты сделал шаг в олимпиадный уровень!
А еще задачи по этой теме встречаются особенно часто во второй части ОГЭ.
Понравилась ли тебе статья? Все ли было понятно?
Если есть вопросы или предложения, пиши нам внизу в комментариях! А еще пиши, что думаешь о статье в целом ????
Мы читаем все и будем очень рады узнать.
Удачи!
Источник
В этой статье мы постараемся насколько возможно полно отразить свойства трапеции. В частности, речь пойдет про общие признаки и свойства трапеции, а также про свойства вписанной трапеции и про окружность, вписанную в трапецию. Затронем мы и свойства равнобедренной и прямоугольной трапеции.
Пример решения задачи с использованием рассмотренных свойств поможет вам разложить по местам в голове и лучше запомнить материал.
Трапеция и все-все-все
Для начала коротко вспомним, что такое трапеция и какие еще понятия с ней связаны.
Итак, трапеция – фигура-четырехугольник, две из сторон которой параллельны друг другу (это основания). И две не параллельны – это боковые стороны.
В трапеции может быть опущена высота – перпендикуляр к основаниям. Проведены средняя линия и диагонали. А также из любого угла трапеции возможно провести биссектрису.
Про различные свойства, связанные со всеми эти элементами и их комбинациями, мы сейчас и поговорим.
Свойства диагоналей трапеции
Чтобы было понятнее, пока читаете, набросайте себе на листке трапецию АКМЕ и проведите в ней диагонали.
- Если вы найдете середины каждой из диагоналей (обозначим эти точки Х и Т) и соедините их, получится отрезок. Одно из свойств диагоналей трапеции заключается в том, что отрезок ХТ лежит на средней линии. А его длину можно получив, разделив разность оснований на два: ХТ = (a – b)/2.
- Перед нами все та же трапеция АКМЕ. Диагонали пересекаются в точке О. Давайте рассмотрим треугольники АОЕ и МОК, образованные отрезками диагоналей вместе с основаниями трапеции. Эти треугольники – подобные. Коэффициент подобия k треугольников выражается через отношение оснований трапеции: k = АЕ/КМ.
Отношение площадей треугольников АОЕ и МОК описывается коэффициентом k2. - Все та же трапеция, те же диагонали, пересекающиеся в точке О. Только в этот раз мы будем рассматривать треугольники, которые отрезки диагоналей образовали совместно с боковыми сторонами трапеции. Площади треугольников АКО и ЕМО являются равновеликими – их площади одинаковые.
- Еще одно свойство трапеции включает в себя построение диагоналей. Так, если продолжить боковые стороны АК и МЕ в направлении меньшего основания, то рано или поздно они пересекутся к некоторой точке. Дальше, через середины оснований трапеции проведем прямую. Она пересекает основания в точках Х и Т.
Если мы теперь продлим прямую ХТ, то она соединит вместе точку пересечения диагоналей трапеции О, точку, в которой пересекаются продолжения боковых сторон и с