Какими свойствами обладает свет как волна
С античных времен философы задумывались о том, что такое свет и какова его природа. Аристотель, Платон, Пифагор и другие мыслители высказывали свои предположения, но их идеи в наше время кажутся просто наивными.
Как начали изучать свет?
Настоящее изучение структуры света началось с изобретения увеличительных линз и телескопов. В 17 веке крупные ученые того времени начали детально исследовать структуру света опираясь на открытия дифракции, дисперсии и интерференции.
Крупнейший ученый 17-18 веков Исаак Ньютон высказал предположение, что свет представляет собой поток мельчайших частиц (корпускул) распространяющихся с очень большой скоростью.
Исаак Ньютон. Источник изображения: historyarch.com
Его идея прекрасно описывала прямолинейное распространение света и его дисперсию. Он полагал, что частицы разного цвета имеют различные размеры – самыми большими являются красные, минимальные размеры у фиолетовых корпускул. Смешение различных частиц дает белый цвет, который можно разложить с помощью призмы. Отражение света Ньютон объяснял отскакиванием частиц от поверхности твердого тела. Ученый полностью не отвергал волновую природу света, но все же возражал против нее с помощью нехитрого аргумента – если свет волна, то почему он не проходит сквозь изогнутую трубку, как это успешно делают звуковые волны.
В то же время голландский ученый Христиан Гюйгенс и научный противник Ньютона англичанин Роберт Гук сходились во мнении, что свет имеет волновую природу и распространяется в особой универсальной среде именуемой эфиром. По мнению Гюйгенса, каждый участок эфира способен возбуждать вторичные световые волны, что прекрасно помогало описать такие явления как интерференция (перераспределение минимумов и максимумов освещенности) и дифракцию (отклонение движения луча света от прямой).
Корпускулы или волны?
Некоторое время корпускулярная и волновая теория боролись между собой, причем первая имела даже больше сторонников – сказывался почти непререкаемый авторитет Ньютона. Однако Юнг и Френель успешно дорабатывали положения волновой теории, которая стала завоевывать все больше сторонников.
Джеймс Клерк Максвелл – британский физик, математик и механик. Источник изображения: hi.redsearch.org
В 60-70-х годах 19 века показалось, что корпускулярной теории света нанесен окончательный удар – англичанин Джеймс Максвелл создал систему уравнений описывающую электромагнетизм. Поскольку световые волны распространялись с той же скоростью, что и электромагнитные волны, было решено, что свет имеет исключительно волновую структуру.
До начала 20 века о ньютоновской теории практически никто и не вспоминал. Однако, в 1901 году Макс Планк вывел формулу описывающую излучение абсолютно черного тела, и он же предположил, что электромагнитные волны излучаются не постоянно, а дискретно (порциями), причем минимальная порция получила название «квант». Затем последовали работы Эйнштейна объясняющие явление фотоэффекта (за которую германский физик и получил Нобелевскую премию) и создание законов этого явления русским физиком Столетовым.
Опыт, иллюстрирующий явление фотоэффекта. При освещении пластины ультрафиолетовым светом, например от электрической дуги, электрометр будет очень быстро разряжаться. Если же сообщить пластине положительный заряд и затем осветить ультрафиолетовым светом, то электрометр не разрядится. Источник изображения: ours-nature.ru
Ситуация перевернулась с ног на голову. Теперь свет явно вел себя как поток отдельных частиц и с этим ничего нельзя было поделать. Отдельный квант света получил название «фотон», а физики всего мира задумались как объяснить его непонятную природу.
Абсолютно неожиданным явилось изучение прохождение одиночного фотона через две узких щели расположенные рядом (двойную щель), используемую для изучения волновых свойств света.
Опыт по интерференции света на двух щелях. Источник изображения: ecured.cu
На экране ошарашив экспериментаторов появилась интерференционная картина с ее минимумами и максимумами. Получалось невероятное – квант света перед двойной щелью распался на 2 части и прошел через обе щели. Но этого то и не могло быть ни в коем случае – фотон представляет собой единственный квант, который не делим по определению. А вот для волн проблемы с интерференционной картинкой при прохождении двойной щели не появляется – она просто обязана быть.
Корпускулярно-волновой дуализм
Поскольку противоречия между корпускулярной и волновой природой света оказались неразрешимы, оставалось признать, что он обладает как корпускулярной, так и волновой структурой. Название такой структуре дали корпускулярно-волновой дуализм света.
Свет проявляет свойства и волн, и частиц одновременно. Источник изображения:robertdee.pl
Самое оригинальное, что свои свойства свет проявляет в зависимости от проводимого эксперимента. В большинстве физических явлений он ведет себя как волна, а в фотоэффекте, эффекте Комптона и некоторых других физических явлениях он демонстрирует свои корпускулярные свойства.
Позднее было доказано, что не только фотоны, но и иные микрочастицы обладают корпускулярно-волновым дуализмом. В 1948 году физик из СССР В. Фабрикант экспериментально подтвердил волновые свойства электрона. Позднее они были обнаружены у протонов, нейтронов и даже атомов. В 2013 году зафиксировали дифракцию (а это волновое свойство) молекулы содержащей больше 800 атомов.
Итак, кто же был прав – Ньютон или Гюйгенс с Гуком? Получается, что по своему правы были оба – и только объединение их теорий дает относительно полную картину природы света.
А сейчас ответим на вопрос вынесенный в заглавие статьи.
Ответ уже очевиден – свет является и частицей, и волной одновременно. Придумано даже несколько смешное слово описывающее структуру света – «волнатица».
Если вам понравилась статья, то поставьте лайк и подпишитесь на канал Научпоп. Наука для всех. Оставайтесь с нами, друзья! Впереди ждёт много интересного!
Источник
Естествознание, 11 класс
Урок 16. Волновые свойства света. Приборы, использующие волновые свойства света
Перечень вопросов, рассматриваемых в теме:
- какова роль знаний о волновых свойствах света для объяснения принципа действия световых приборов
- где применяется интерференция и поляризация
- какие устройства делают свет поляризованным
Глоссарий по теме:
Интерференция света – перераспределение интенсивности света в результате наложения (суперпозиции) нескольких световых волн.
Дифракция света – огибание электромагнитной волной препятствий соизмеримых с длиной волны.
Дифракционная решётка – оптический прибор, применяющийся для разложения светового излучения в спектр.
Поляризация света – выделение из пучка естественного света лучей с определенной ориентацией вектора напряженности электрического поля.
Полное внутреннее отражение – явление возврата светового луча в исходную среду после попадания на границу раздела двух сред при падении его из более оптически плотной среды в менее плотную.
Поляризатор – прибор, превращающий естественный свет в линейно-поляризованный.
Оптоволокно (оптические световоды) – нить из оптически прозрачного материала (стекло, пластик), используемая для переноса света внутри себя посредством полного внутреннего отражения.
Спектральный анализ – совокупность методов качественного и количественного определения состава объекта, основанная на изучении спектров взаимодействия материи с излучением, включая спектры электромагнитного излучения.
Естественный свет – оптическое излучение с быстро и беспорядочно изменяющимися направлениями напряженности электромагнитного поля.
Линейно–поляризованный свет – это электромагнитная волна, поляризованная таким образом, что направление вектора напряженности электрического поля остается неизменным
Основная и дополнительная литература по теме урока:
- Естествознание. 11 класс: Учебник для общеобразоват. организаций: базовый уровень под ред. И.Ю. Алексашиной. – 3-е изд. – М.: Просвещение, 2017 – §28, С. 90-93.
- Физика. 11 класс [Текст]: учебник для общеобразоват. учреждений: базовый уровень; профильный уровень/А.В. Грачев, В.А. Погожев, А.М. Салецкий и др.- М.: Вентана-Граф, 2018. – 464 с.
Теоретический материал для самостоятельного изучения
Какова роль знаний о световых явлениях и волновых свойствах света для объяснения принципов функционирования и применения световых приборов?
Начнём с интерференции света.
Интерференция света принципиально не отличается от интерференции других волн. Однако наблюдение и исследование интерференции световых волн затруднено, так как свет не является строго монохроматическим. Впервые эту проблему решил английский физик Томас Юнг.
Опыт Юнга заключался в следующем: свет падает на экран, в котором имеется узкая щель. проходя через щель, волна попадает на второй экран с двумя щелями. Каждая из этих щелей создает свою волну с одинаковыми свойствами. Эти волны могут интерферировать. Результатом интерференции является появление светлых и темных полос на третьем экране. Светлая полоса свидетельствует о том, что волны на экран пришли в одной фазе и усиливают друг друга, а темная полоса является результатом ослабления двух волн. Для усиления волн необходима одинаковая фаза. Следовательно, разность расстояний (разность хода) должна быть кратной четному числу длин полуволн.
Для ослабления волн они должны приходить в точку в противофазе. То есть для этого разность расстояний должна быть кратной нечетному числу длин полуволн.
Если интерференционной картине сопоставить график интенсивности света I, то он будет иметь вид синусоиды.
Положение максимумов и минимумов синусоиды будет зависеть от длины волны света, падающего на щель.
Как мы уже говорили ранее, белый свет полихроматический, т.е. включает спектр цветов от красного до фиолетового. Поэтому при интерференции мы наблюдаем максимумы не белого цвета, а всего спектра. Положение цветной полоски зависит от длины волны каждого света, входящего в белый.
Таким образом, не только с помощью призмы, но и с помощью интерференции можно разложить свет на спектр.
Наиболее эффективно для разложения света использовать не одну, а несколько щелей. Устройство, состоящее из многих равноотстоящих щелей, стали называть дифракционной решёткой. И чем больше щелей и чем они плотнее, тем больше эффективность дифракционной решетки как спектрального прибора. С помощью дифракционной решётки можно определить длину световой волны.
k·λ=d·sinφ,
k – номер рассматриваемого максимума
λ – длина световой волны
d – период дифракционной решётки
Следующее волновое свойство света, которое мы рассмотрим – это поляризация
Свет представляет собой электромагнитную волну, свойства которой таковы, что вектор напряженности электрического поля всегда перпендикулярен вектору индукции магнитного поля и оба этих вектора перпендикулярны скорости распространения волны.
В то же время в разных точках пространства и в разные моменты времени векторы E и B, оставаясь перпендикулярными друг другу и вектору скорости, могут изменять направления. Такой свет называется естественным.
При помощи специальных приборов, называемых поляризаторами, из такого естественно поляризованного света можно выделить волну, в которой направления векторов E и В будут оставаться неизменными. Такая волна называется линейно поляризованной.
Обычно поляризаторы представляют собой пластины, сделанные из прозрачного материала, например, из турмалина, герапатита, исландского шпата.
Через поляризатор проходят только те волны, вектор напряженности которых параллелен оси кристалла. В результате прохождения через поляризатор свет из естественного превращается в линейно-поляризованный.
Если же на пластину направить линейно-поляризованный свет, то интенсивность света на выходе будет зависеть от положения оси кристалла относительно направления вектора напряженности. В частности, если ось кристалла перпендикулярна вектору напряженности, то свет не пройдет через эту пластину.
Линейно-поляризованный свет можно получить также при помощи лазерных источников
Давайте вспомним из курса физики еще одно свойство света, которое широко используется человеком. Это явление полного внутреннего отражения.
Явление полного внутреннего отражения наблюдается, когда свет переходит из более плотной оптической среды в менее плотную.
Явление полного внутреннего отражения нашло применение в современных устройствах.
Допустим, нам нужно передать луч света на некоторое расстояние вдоль некоторого извилистого пути (подобно тому, как по проводу передается ток). Создают двойную стеклянную трубку из материалов с различной оптической плотностью.
Сердцевину делают из оптически более плотного вещества, а внешнюю трубку из вещества с меньшим показателем преломления. Подобная трубка называется оптическим световодом. Ее также называют оптическим волокном.
Оптические световоды применяются в настоящее время для передачи информации с очень высокой плотностью.
Компьютеры, к которым подключена оптоволоконная связь, работают гораздо эффективнее, чем, например, компьютеры, подключенные к сети при помощи телефонной линии.
Сегодня на уроке мы изучили волновые свойства света и рассмотрели приборы, использующие их свойства. Это дифракционная решётка, поляризатор, оптический световод.
Примеры и разбор решения заданий тренировочного модуля:
Текст задания 1:
Используя конспект урока, найдите и выделите цветом по вертикали и горизонтали понятия.
- Огибание волнами препятствий
- С помощью этого оптического прибора можно естественный свет превратить в плоско-поляризованный
- Волновое свойство света, применяемое в дифракционных решётках
- В этом приспособлении для передачи информации используется явление полного внутреннего отражения
Правильный вариант: дифракция, поляризатор, интерференция, оптоволокно.
Текст задания 2:
Вставьте пропущенные слова.
Если налить в стакан воду и поднять её выше уровня глаз, то поверхность воды при рассмотрении её снизу кажется посеребрённой вследствие __________ __________ ___________.
Правильный вариант: полного внутреннего отражения.
Источник
Вопрос, что такое свет в физике, является ключевым для многих отраслей деятельности науки и техники, он вызывает живой интерес как специалистов, так и просто любителей все знать. Использование слова «свет» в физике достаточно условно, так как оно не передает никаких свойств и характеристик отдельно взятого типа излучения. Это общее определение, которое удобно использовать для такого же общего описания природного явления.
Свет – это то явление, с которым мы сталкиваемся постоянно, и благодаря чему вообще существует все живое на земле. Частицы так называемого «света» движутся от Солнца через огромные комические просторы на Землю, освещают ее и придают предметам, окружающим человека, видимость и многие свойства. На это явление можно смотреть далеко не с одной точки зрения, поэтому данный вопрос стоит рассмотреть более подробно.
Что такое свет в физике
Споры вокруг того, что же такое свет, шли в физике и научной среде многие века. Различные деятели выдвигали самые разные теории, что представляет собой данное явление природы, но никак не могли сойтись в едином мнении. Теории появлялись, как грибы после дождя, то опровергая, то дополняя друг друга.
Был создан целый раздел физики – оптика, задача которого стояла в изучении рассматриваемого явления.
К изучению природы света приложили свои талантливые руки все видные деятели науки, начиная с 17 века. Такие европейские светила, как Декарт, Гук, Юнг, Ньютон, Гейгенс, Ампер и многие другие предпринимали многие попытки понять, чем является видимое нам излучение: волной или же потоком частиц.
Именно это противоречие, к которому приводили опыты, ставило исследователей в тупик. Ученым была никак не понятна сочетаемость: как в одном эксперименте явление может вести себя, как поток частиц, а в другом – как электромагнитное излучение.
На сегодня данный вопрос в известной степени решен. Все новые знания позволили вникнуть в суть вещей более глубоко. Корпускулярную и волновую теорию позже дополнила электромагнитная, далее специальная теория относительности Эйнштейна, позже квантовая теория и, наконец, квантовая электродинамика.
Волновые свойства света
То, что свет – это волна излучения с определенными волновыми свойствами, начали предполагать многие ученые еще в 17-18 веках. Опыты Юнга, Френеля, Ньютона явственно показали, что волновые характеристики выражаются в двух ключевых явлениях: дифракции и интерференции. Именно они имеют значения при доказательстве того, что мы имеем дело с волной.
Луч видимого диапазона излучения способен как бы огибать препятствия любой формы и засвечивать даже ту область, которая якобы находится в тени. Отклонение от прямолинейного распространения, которое невозможно для твердых частиц, получило название дифракции.
Также доказано, что излучение может накладываться друг на друга и как бы дополнять волны аналогичной природы, либо же «тушить», уменьшать их интенсивность. Это явление получило название интерференции.
Оно активно применяется, к примеру, при производстве автомобильных фар – в их стеклах есть специальная фактура, которая позволяет использовать интерференцию и максимально увеличивать интенсивность свечения.
Но утверждение, что свет – это только волна, также находит протесты. Так как другие опыты, скажем, русского ученого Вавилова, показывают, что ему свойственна двойственная характеристика.
Электромагнитная природа света
То, что обычный солнечный луч является электромагнитной волной, является доказанным научным фактом. Над этим трудились многие умы, в частности, Эйнштейн, Вавилов и другие. Не один раздел физики посвящен доказательству того факта, что свет возникает в результате различных возбуждений в атомах и молекулах.
Это может быть тепловое, химическое или электромагнитное воздействие. При прохождении различных процессов в атоме он излучает кванты энергии во всем видимом диапазоне.
Определение электромагнитной природы излучения доказано многими экспериментами, а также теорией. Наиболее полное описание данных вопросов дал известный ученый Максвелл в своих уравнениях по электромагнетизму.
Спектральный состав света
Как показал в своих экспериментах английский естествоиспытатель Ньютон, обычный белый свет – это набор многих цветов, то есть волн с различной длиной, которые в результате взаимодействия складываются в один белый. Длина волн видимого спектра лежит в диапазоне 380-780 нанометров.
Наука смогла доказать, что практически любой вариант излучения не является монохроматичным – то есть, состоящим из волн только одной длины. Почти любой источник света испускает определенный спектр излучения, в котором есть разброс по длинам волн.
Если излучение имеет более короткие волны, нежели 380 нм, то они относятся к ультрафиолетовому свету, если большие 780 нм – инфракрасному. За их пределами сверху и снизу есть и другие типы излучения: гамма-лучи, рентгеновские волны, микроволновой диапазон.
Закон прямолинейного распространения света
Любой школьник, перешедший в 9-11 класс, должен знать, что свет в однородной среде распространяется по прямолинейной траектории, а его скорость равна 3х108 м/с. С такой скоростью луч долетает от Земли до Луны (расстояние между которыми 384 000 километров) всего примерно за 1,2-1,3 секунды!
Исходя из прямолинейного распространения света, выводятся многие понятия, такие как тень, угол падения и отражения, и многое другое. Разный раздел науки по-разному использует эти данные, но они имеют большое значение в технике и теории.
Подытоживая скажем, что лексическое значение греческого слова «фотон» четко передает его смысл – это свет. Свет одновременно является и электромагнитной волной, и потоком частиц фотонов, которые распространяются от источника излучения и заполняют собой все окружающее пространство по законам прямолинейного распространения, дифракции, интерференции и т. д.
И естественное, и искусственное освещение имеют одинаковые свойства, за исключением, разве что длины волны, ее амплитуды и других, более конкретных характеристик каждой волны.
Источник