Какими свойствами обладает ромб

Какими свойствами обладает ромб thumbnail

У этого термина существуют и другие значения, см. Ромб (значения).

Ромб (др.-греч. ῥόμβος, лат. rombus, в буквальном переводе: «бубен») — это параллелограмм, у которого все стороны равны[1].

Этимология[править | править код]

Термин «ромб» происходит от др.-греч. ῥόμβος — «бубен». Если сейчас бубны в основном делают круглой формы, то раньше их делали как раз в форме квадрата или ромба. Поэтому название карточной масти бубны, знаки которой имеют ромбическую форму, происходит ещё с тех времён, когда бубны не были круглыми.

Слово «ромб» впервые употребляется у Герона и Паппа Александрийского.

Свойства[править | править код]

  1. Ромб является параллелограммом, поэтому его противолежащие стороны равны и попарно параллельны: АВ || CD, AD || ВС. Противоположные углы ромба равны, а соседние углы дополняют друг друга до 180°.
  2. Диагонали ромба пересекаются под прямым углом (ACBD) и в точке пересечения делятся пополам. Тем самым диагонали делят ромб на четыре прямоугольных треугольника.
  3. Диагонали ромба являются биссектрисами его углов (∠DCA = ∠BCA, ∠ABD = ∠CBD и т. д.).
  4. Сумма квадратов диагоналей равна квадрату стороны, умноженному на 4 (следствие из тождества параллелограмма).
  5. Середины четырех сторон ромба являются вершинами прямоугольника.
  6. Диагонали ромба являются перпендикулярными осями его симметрии.
  7. В любой ромб можно вписать окружность, центр которой лежит на пересечении его диагоналей.

Признаки[править | править код]

Параллелограмм является ромбом тогда и только тогда, когда выполняется хотя бы одно из следующих условий[2]:

  1. Две его смежные стороны равны (отсюда следует, что все стороны равны, ).
  2. Его диагонали пересекаются под прямым углом (ACBD).
  3. Одна из диагоналей делит содержащие её углы пополам.

Предположим, что заранее не известно, что четырёхугольник является параллелограммом, но дано, что все его стороны равны. Тогда этот четырёхугольник есть ромб[1].

Квадрат, как частный случай ромба[править | править код]

Из определения квадрата, как четырёхугольника, у которого все стороны и углы равны, следует, что квадрат — частный случай ромба. Иногда квадрат определяют, как ромб, у которого все углы равны.

Однако иногда под ромбом может пониматься только четырёхугольник с непрямыми углами, то есть с парой острых и парой тупых углов[3][4].

Уравнение ромба[править | править код]

Уравнение ромба с центром в точке и диагоналями, параллельными осям координат, может быть записано в виде:

где — половины длин диагоналей ромба по осям соответственно.

Длина стороны ромба равна Площадь ромба равна Левый угол ромба рассчитывается по формуле:

Второй угол дополняет его до 180°.

В случае a = b уравнение отображает повёрнутый на 45° квадрат:

где сторона квадрата равна а его диагональ равна Соответственно площадь квадрата равна

Из уравнения видно, что ромб можно рассматривать как суперэллипс степени 1.

Площадь ромба[править | править код]

  • Площадь ромба равна половине произведения его диагоналей.
  • Поскольку ромб является параллелограммом, его площадь также равна произведению его стороны на высоту.
  • Кроме того, площадь ромба может быть вычислена по формуле:

,

где  — угол между двумя смежными сторонами ромба.

  • Также площадь ромба можно рассчитать по формуле, где присутствует радиус вписанной окружности и угол :

Радиус вписанной окружности[править | править код]

Радиус вписанной окружности r может быть выражен через диагонали p и q в виде:[5]

В геральдике[править | править код]

Ромб является простой геральдической фигурой.

  • Червлёный ромб в серебряном поле

  • В червлёном поле 3 сквозных ромба: 2 и 1

  • Просверленный червлёный ромб в серебряном поле

  • В лазури левая перевязь, составленная из пяти вертикальных золотых ромбов

Симметрия[править | править код]

Ромб симметричен относительно любой из своих диагоналей, поэтому часто используется в орнаментах и паркетах.

  • Ромбический орнамент

  • Ромбические звёзды

  • Более сложный орнамент

См. другие примеры на Викискладе.

См. также[править | править код]

  • Дельтоид
  • Звезда (геометрия)
  • Ромбододекаэдр
  • Ромбоид

Примечания[править | править код]

Литература[править | править код]

  • Выгодский М. Я. Справочник по элементарной математике. — М.: Наука, 1978.
  • Зайцев В. В., Рыжков В. В., Сканави М. И. Элементарная математика. Повторительный курс. — Издание третье, стереотипное. — М.: Наука, 1976. — 591 с.
Читайте также:  У каких элементов больше выражены металлические свойство

Источник

Определение.

Ромб — это параллелограмм, который имеет равные стороны. Если у ромба все углы прямые, тогда он называется квадратом.

Ромбы отличаются между собой размером стороны и размером углов.

Признаки ромба

Параллелограмм ABCD будет ромбом, если выполняется хотя бы одно из следующих условий:

1. Две его смежные стороны равны (отсюда следует, что все стороны равны):

АВ = ВС = СD = AD

2. Его диагонали пересекаются под прямым углом:

AC┴BD

3. Одна из диагоналей (биссектриса) делит содержащие её углы пополам:

∠BAC = ∠CAD или ∠BDA = ∠BDC

4. Если все высоты равны:

BN = DL = BM = DK

5. Если диагонали делят параллелограмм на четыре равных прямоугольных треугольника:

Δ ABO = Δ BCO = Δ CDO = Δ ADO

6. Если в параллелограмм можно вписать круг.

Основные свойства ромба

2. Диагонали перпендикулярны:

AC┴BD

3. Диагонали являются биссектрисами его углов:

∠BAC = ∠CAD, ∠ABD = ∠DBC, ∠BCA = ∠ACD, ∠ADB = ∠BDC

4. Сумма квадратов диагоналей равна квадрату стороны умноженному на четыре:

AC2 + BD2 = 4AB2

5. Точка пересечения диагоналей называется центром симметрии ромба.

6. В любой ромб можно вписать окружность.

7. Центром окружности вписанной в ромб будет точка пересечения его диагоналей.

Сторона ромба

Формулы определения длины стороны ромба:

1. Формула стороны ромба через площадь и высоту:

2. Формула стороны ромба через площадь и синус угла:

3. Формула стороны ромба через площадь и радиус вписанной окружности:

4. Формула стороны ромба через две диагонали:

5. Формула стороны ромба через диагональ и косинус острого угла (cos α) или косинус тупого угла (cos β):

6. Формула стороны ромба через большую диагональ и половинный угол:

7. Формула стороны ромба через малую диагональ и половинный угол:

8. Формула стороны ромба через периметр:

Диагонали ромба

Определение.

Диагональю ромба называется любой отрезок соединяющий две вершины противоположных углов ромба.

Ромб имеет две диагонали – длинную d1, и короткую – d2

Формулы определения длины диагонали ромба:

1. Формулы большой диагонали ромба через сторону и косинус острого угла (cosα) или косинус тупого угла (cosβ)

d1 = a√2 + 2 · cosα

d1 = a√2 – 2 · cosβ

2. Формулы малой диагонали ромба через сторону и косинус острого угла (cosα) или косинус тупого угла (cosβ)

d2 = a√2 + 2 · cosβ

d2 = a√2 – 2 · cosα

3. Формулы большой диагонали ромба через сторону и половинный угол:

d1 = 2a · cos(α/2)

d1 = 2a · sin(β/2)

4. Формулы малой диагонали ромба через сторону и половинный угол:

d2 = 2a · sin(α/2)

d2 = 2a · cos(β/2)

5. Формулы диагоналей ромба через сторону и другую диагональ:

d1 = √4a2 – d22

d2 = √4a2 – d12

6. Формулы диагоналей через тангенс острого tgα или тупого tgβ угла и другую диагональ:

d1 = d2 · tg(β/2)

d2 = d1 · tg(α/2)

7. Формулы диагоналей через площадь и другую диагональ:

8. Формулы диагоналей через синус половинного угла и радиус вписанной окружности:

Периметр ромба

Определение.

Периметром ромба называется сумма длин всех сторон ромба.

Длину стороны ромба можно найти за формулами указанными выше.

Формула определения длины периметра ромба:

Формула периметра ромба через сторону ромба:

P = 4a

Площадь ромба

Определение.

Площадью ромба называется пространство ограниченное сторонами ромба, т.е. в пределах периметра ромба.

Формулы определения площади ромба:

1. Формула площади ромба через сторону и высоту:

S = a · ha

2. Формула площади ромба через сторону и синус любого угла:

S = a2 · sinα

3. Формула площади ромба через сторону и радиус:

S = 2a · r

4. Формула площади ромба через две диагонали:

5. Формула площади ромба через синус угла и радиус вписанной окружности:

6. Формулы площади через большую диагональ и тангенс острого угла (tgα) или малую диагональ и тангенс тупого угла (tgβ):

Читайте также:  На какие свойства влияет степень увлажнения материала

Окружность вписанная в ромб

Определение.

Кругом вписанным в ромб называется круг, который примыкает ко всем сторонам ромба и имеет центр на пересечении диагоналей ромба.

Формулы определения радиуса круга вписанного в ромб:

1. Формула радиуса круга вписанного в ромб через высоту ромба:

2. Формула радиуса круга вписанного в ромб через площадь и сторону ромба:

3. Формула радиуса круга вписанного в ромб через площадь и синус угла:

4. Формулы радиуса круга вписанного в ромб через сторону и синус любого угла:

5. Формулы радиуса круга вписанного в ромб через диагональ и синус угла:

6. Формула радиуса круга вписанного в ромб через две диагонали:

7. Формула радиуса круга вписанного в ромб через две диагонали и сторону:

Источник

3. Геометрия на плоскости (планиметрия). Часть I

1. Вспоминай формулы по каждой теме

2. Решай новые задачи каждый день

3. Вдумчиво разбирай решения

Сумма внутренних углов любого четырехугольника равна (360^circ).

Какими свойствами обладает ромб

Свойства ромба:

(blacktriangleright) Те же, что и у параллелограмма:

(sim) Противоположные стороны попарно равны;

(sim) Диагонали точкой пересечения делятся пополам;

(sim) Противоположные углы попарно равны, а сумма соседних равна (180^circ);

(blacktriangleright) Диагонали взаимно перпендикулярны и являются биссектрисами углов ромба.

Какими свойствами обладает ромб

Признаки ромба.
Если для выпуклого четырехугольника выполнено одно из следующих условий, то это – ромб:

(blacktriangleright) все стороны равны;

(blacktriangleright) диагонали взаимно перпендикулярны и он является параллелограммом;

(blacktriangleright) диагонали являются биссектрисами углов и он является параллелограммом.

Площадь ромба

1. Т.к. ромб является параллелограммом, то для него верна та же формула площади. Таким образом, площадь ромба равна произведению высоты на основание, к которому эта высота проведена.

Какими свойствами обладает ромб

2. Площадь ромба равна половине произведения его диагоналей.

Какими свойствами обладает ромб

Задание
1

#2716

Уровень задания: Легче ЕГЭ

В ромбе (ABCD): (angle ACD = 26^{circ}). Найдите (angle ABD). Ответ дайте в градусах.

Какими свойствами обладает ромб

В ромбе диагонали перпендикулярны, тогда (angle CDB = 90^{circ} – angle ACD = 64^{circ}).

(BC = CD), тогда (angle CBD = angle CDB = 64^{circ}).

Так как диагонали ромба делят его углы пополам, то (angle ABD = angle CBD = 64^{circ}).

Ответ: 64

Задание
2

#2717

Уровень задания: Равен ЕГЭ

Найдите большую диагональ ромба (ABCD), если (AB = 2sqrt{3}), а острый угол равен половине тупого.

Какими свойствами обладает ромб

Так как сумма односторонних углов при параллельных прямых и секущей равна (180^{circ}), то сумма острого и тупого углов ромба равна (180^{circ}).

Так как в данном ромбе острый угол равен половине тупого, то острый угол ромба (ABCD) равен (60^{circ}).

Треугольник (ABD) – равнобедренный, один из углов которого равен (60^{circ}), тогда треугольник (ABD) – равносторонний и (BD = 2sqrt{3}).

Пусть (O) – точка пересечения диагоналей ромба, тогда (OD = 0,5 BD = sqrt{3}), следовательно, по теореме Пифагора находим: (AO^2 + OD^2 = AD^2), тогда (AO^2 + 3 = 12), откуда находим (AO = 3). В ромбе, как и в любом другом параллелограмме, диагонали точкой пересечения делятся пополам, значит, (AC = 6).

Ответ: 6

Задание
3

#2715

Уровень задания: Равен ЕГЭ

Острый угол ромба (ABCD) равен (60^{circ}), одна из его сторон равна 10. Найдите меньшую из диагоналей этого ромба.

Какими свойствами обладает ромб

Пусть (angle A = 60^{circ}). В ромбе все стороны равны, тогда треугольник (ABD) – равнобедренный, у которого один из углов равен (60^{circ}), следовательно, треугольник (ABD) – равносторонний и (BD = 10).

Треугольник (ABC) – тупоугольный. В треугольнике против большего угла лежит большая сторона, тогда (AC > AB = BD), значит, (BD) – меньшая из диагоналей.

Ответ: 10

Задание
4

#1794

Уровень задания: Равен ЕГЭ

Расстояние от точки пересечения диагоналей ромба до одной из его сторон равно (3), а острый угол ромба равен (60^circ). Найдите большую диагональ ромба.

Читайте также:  Мерой каких свойств тела является его масса

Какими свойствами обладает ромб

Пусть в ромбе (ABCD): (O) – точка пересечения диагоналей, (OH) – расстояние до стороны (AB), (angle DAB = 60^circ), тогда (angle
OAB = 30^circ). Получаем, что (OH) – катет лежащий напротив угла в (30^circ), значит (AO = 2cdot OH = 6). Т.к. (AC) и есть большая диагональ, то (AC = 2cdot AO = 12).

Ответ: 12

Задание
5

#1757

Уровень задания: Равен ЕГЭ

Сторона ромба равна (4). Расстояние от точки пересечения его диагоналей до одной из сторон равно (1). Найдите площадь ромба.

Какими свойствами обладает ромб

Пусть в ромбе (ABCD): (O) – точка пересечения диагоналей, (OH) – расстояние до стороны (AB), тогда (S_{triangle ABO} = frac{1}{2}cdot 1 cdot 4 = 2). Диагонали ромба делят его на (4) равных прямоугольных треугольника (Rightarrow) (S_{ABCD} = 4cdot 2 = 8).

Ответ: 8

Задание
6

#2718

Уровень задания: Равен ЕГЭ

Периметр ромба равен (40), а диагонали относятся, как (3:4). Найдите площадь ромба.

Половины диагоналей находятся в таком же отношении, как и диагонали, то есть в отношении (3:4). Зная периметр, найдем сторону ромба: (40
: 4 = 10). Сторона и половинки диагоналей образуют прямоугольный треугольник (AOB).

Какими свойствами обладает ромб

Пусть (AO=4x), (BO=3x).
Тогда по теореме Пифагора: ((3x)^2 + (4x)^2 = 10^2) (Rightarrow) (25x^2 = 100) (Rightarrow) (x^2 = 4) (Rightarrow) (x = 2). Диагонали равны (BD=2BO=12) и (AC=2AO=16) (Rightarrow) (S_{ABCD} =
frac{1}{2}cdot12cdot16 = 96).

Ответ: 96

Задание
7

#2719

Уровень задания: Равен ЕГЭ

Какими свойствами обладает ромб

Во сколько раз отличаются площади ромбов, имеющие по равному углу, у которых стороны относятся как (3:1)?

Пусть (angle B) и (angle B_1) – равные углы ромбов. Так как стороны ромбов относятся как (3:1), то можно обозначить их за (3x) и (x) соответственно.

Какими свойствами обладает ромб

Тогда и (angle D=angle D_1) (так как у ромба противоположные углы равны). Следовательно, (triangle ABCsim triangle A_1B_1C_1) и (triangle ADCsimtriangle A_1D_1C_1) по двум пропорциональным сторонам и углу между ними, причем коэффициент подобия этих треугольников равен (3). Следовательно, их площади относятся как (9:1). А так как (S_{ABC}+S_{ADC}=S_{ABCD}) и (S_{A_1B_1C_1}+S_{A_1D_1C_1}=S_{A_1B_1C_1D_1}), то (S_1:S_2=9:1).

Ответ: 9

Геометрические задачи на тему «Свойства ромба» в обязательном порядке включаются в ЕГЭ по математике. Причем, в зависимости от условия задания, учащийся может давать как краткий, так и развернутый ответ. Именно поэтому на этапе подготовки к сдаче ЕГЭ школьникам непременно стоит понять принцип решения задач на применение свойств и признаков ромба.

Еще раз повторить данную тему и восполнить пробелы в знаниях вам поможет образовательный проект «Школково». С помощью нашего сайта можно легко и эффективно подготовиться к ЕГЭ по математике.

Чтобы успешно справляться с геометрическими заданиями, учащимся старших классов стоит повторить базовые понятия и определения: свойства углов ромба и других четырехугольников, признаки этой фигуры, а также формулу для нахождения ее площади. Данный материал представлен в разделе «Теоретическая справка» на сайте «Школково». Информация, которую подготовили наши специалисты, изложена в максимально доступной форме.

Повторив основные свойства диагоналей ромба, а также его углов и биссектрис, учащиеся могут попрактиковаться в выполнении упражнений. Большая подборка заданий по данной теме, а также по решению нестандартных задач по математике представлена в разделе «Каталог». Найти правильный ответ выпускники смогут, предварительно освежив в памяти свойства биссектрис ромба, в также углов и диагоналей этой фигуры. Подробный алгоритм решения каждой задачи прописан нашими специалистами.

Выполнять простые и более сложные задания по теме «Ромб и его свойства», а также на нахождение площади квадрата на этапе подготовки к ЕГЭ по математике школьники из Москвы и других городов могут в режиме онлайн. При необходимости любое упражнение можно сохранить в разделе «Избранное». Это позволит в дальнейшем быстро найти это задание и, к примеру, обсудить алгоритм его решения со школьным преподавателем.

Источник