Какими свойствами обладает потенциал электростатического поля
Потенциальность электростатического поля
Пусть точечный заряд $q$ перемещается по произвольной траектории в электростатическом поле из точки $1$ в точку $2$ под действием нескольких сил. Нас интересует сила $vec{F_{э}}$, действующая на заряд со стороны электростатического поля. При заданном перемещении заряда она совершает работу $A_{э}$.
Электростатическое поле обладает удивительным свойством. Оказывается, что эта работа не зависит от траектории, по которой перемещается заряд в электростатическом поле, а определяется только его начальным и конечным положениями (расположением точек $1$ и $2$). Это свойство называется потенциальностью (консервативностью). Следует понимать, что именно электростатическое поле является потенциальным, произвольное электрическое $-$ нет.
Потенциальная энергия точечного заряда
В связи с этим свойством для удобного расчета работы $A_{э}$ сил электростатического поля вводится понятие потенциальной энергии $textrm{П}$ точечного заряда в электростатическом поле.
Потенциальной энергией $textrm{П}$ точечного заряда $q$ в электростатическом поле называется скалярная (числовая) функция $textrm{П}=textrm{П}(x,y,z)$ координат пространства такая, что работа сил $A_{э}$ электростатического поля при перемещении этого заряда по произвольной траектории из точки $1$ в точку $2$ равна разности значений этой функции в этих точках:
$A_{э}=textrm{П}_1-textrm{П}_2{textrm{,}}$
где $textrm{П}_1=textrm{П}(x_1,y_1,z_1)$ $-$ потенциальная энергия в точке $1$, $textrm{П}_2=textrm{П}(x_2,y_2,z_2)$ $-$ потенциальная энергия в точке $2$.
Из определения видно, что потенциальная энергия $textrm{П}$ определяется с точностью до постоянной. Чтобы определить значение потенциальной энергии, требуется выбрать нуль потенциальной энергии (точку отсчета). Понятно, что физический смысл имеет лишь разность потенциальных энергий.
Потенциальная энергия $textrm{П}$ точечного заряда зависит как от электростатического поля, так и от величины самого заряда. Выходит, различные точечные заряды в одной и той же точке имеют разные потенциальные энергии, что не очень удобно. В связи с этим было введено понятие электрического потенциала $varphi$. Каким образом? Было установлено, что отношение $textrm{П}/q$ не зависит от величины $q$, следовательно, является характеристикой только электростатического поля. Ее и назвали электрическим потенциалом $varphi$:
$varphi=textrm{П}/q{textrm{.}}$
Электрический потенциал $varphi$ $-$ энергетическая характеристика электростатического поля. Также потенциал $varphi$ можно определить подобно тому, как была определена потенциальная энергия $textrm{П}$.
Потенциал электростатического поля
Потенциалом $varphi$ электростатического поля называется скалярная (числовая) функция $varphi=varphi(x,y,z)$ координат пространства такая, что работа сил $A_{э}$ электростатического поля при перемещении произвольного точечного заряда $q$ по произвольной траектории из точки $1$ в точку $2$ равна разности значений этой функции в этих точках, умноженной на $q$:
$A_{э}=q{cdot}(varphi_1-varphi_2){textrm{,}}$
где $varphi_1=varphi(x_1,y_1,z_1)$ $-$ потенциальная энергия в точке $1$, $varphi_2=varphi(x_2,y_2,z_2)$ $-$ потенциальная энергия в точке $2$.
Из определения видно, что потенциал $varphi$ электростатического поля определяется с точностью до постоянной. Чтобы определить значение потенциала, требуется выбрать нуль потенциальной энергии (точку отсчета). Понятно, что физический смысл имеет лишь разность потенциалов.
Выводы.
Работа $A_{э}$ сил электростатического поля по перемещению точечного заряда $q$ не зависит от траектории его движения, а определяется только начальным и конечным положениями заряда.
Для удобного расчета работы сил электростатического поля вводятся понятия потенциальной энергии $textrm{П}$ и потенциала $varphi$: $A_{э}=textrm{П}_1-textrm{П}_2=q{cdot}(varphi_1-varphi_2)$.
Потенциальная энергия $textrm{П}$ зависит как от заряда $q$, так и от электростатического поля. Потенциал электростатического поля $varphi$ зависит только от свойств самого поля.
Источник
У этого термина существуют и другие значения, см. Потенциал.
Электростатический потенциа́л — скалярная энергетическая характеристика электростатического поля, характеризующая потенциальную энергию, которой обладает единичный положительный пробный заряд, помещённый в данную точку поля. Единицей измерения потенциала в Международной системе единиц (СИ) является вольт (русское обозначение: В; международное: V), 1 В = 1 Дж/Кл (подробнее о единицах измерения — см. ниже).
Электростатический потенциал — специальный термин для возможной замены общего термина электродинамики скалярный потенциал в частном случае электростатики (исторически электростатический потенциал появился первым, а скалярный потенциал электродинамики — его обобщение). Употребление термина электростатический потенциал определяет собой наличие именно электростатического контекста. Если такой контекст уже очевиден, часто говорят просто о потенциале без уточняющих прилагательных.
Электростатический потенциал равен отношению потенциальной энергии взаимодействия заряда с полем к величине этого заряда:
Напряжённость электростатического поля и потенциал связаны соотношением[1]
или обратно[2]:
Здесь — оператор набла, то есть в правой части равенства стоит минус градиент потенциала — вектор с компонентами, равными частным производным от потенциала по соответствующим (прямоугольным) декартовым координатам, взятый с противоположным знаком.
Воспользовавшись этим соотношением и теоремой Гаусса для напряжённости поля , легко увидеть, что электростатический потенциал удовлетворяет уравнению Пуассона в вакууме. В единицах системы СИ:
где — электростатический потенциал (в вольтах), — объёмная плотность заряда (в кулонах на кубический метр), а — электрическая постоянная (в фарадах на метр).
Неоднозначность определения потенциала[править | править код]
Поскольку потенциал (как и потенциальная энергия) может быть определён с точностью до произвольной постоянной (и все величины, которые можно измерить, а именно напряженности поля, силы, работы — не изменятся, если мы выберем эту постоянную так или по-другому), непосредственный физический смысл (по крайней мере, пока речь не идет о квантовых эффектах) имеет не сам потенциал, а разность потенциалов, которая определяется как:
где:
— потенциал в точке 1,
— потенциал в точке 2,
— работа, совершаемая полем при переносе пробного заряда из точки 1 в точку 2.
При этом считается, что все остальные заряды при такой операции «заморожены» — то есть неподвижны во время этого перемещения (имеется в виду вообще говоря скорее воображаемое, а не реальное перемещение, хотя в случае, если остальные заряды действительно закреплены — или пробный заряд исчезающе мал по величине — чтобы не вносить заметного возмущения в положения других — и переносится достаточно быстро, чтобы остальные заряды не успели заметно переместиться за это время, формула оказывается верной и для вполне реальной работы при реальном перемещении).
Впрочем, иногда для снятия неоднозначности используют какие-нибудь «естественные» условия. Например, часто потенциал определяют таким образом, чтобы он был равен нулю на бесконечности для любого точечного заряда — и тогда для любой конечной системы зарядов выполнится на бесконечности это же условие, а над произволом выбора константы можно не задумываться (конечно, можно было бы выбрать вместо нуля любое другое число, но ноль — «проще»).
Единицы измерения[править | править код]
В СИ за единицу разности потенциалов принимают вольт (В).
Разность потенциалов между двумя точками поля равна одному вольту, если для перемещения между ними заряда в один кулон нужно совершить работу в один джоуль: 1 В = 1 Дж/Кл (L²MT−3I−1).
В СГС единица измерения потенциала не получила специального названия. Разность потенциалов между двумя точками равна одной единице потенциала СГСЭ, если для перемещения между ними заряда величиной одна единица заряда СГСЭ нужно совершить работу в один эрг.
Приближенное соответствие между величинами: 1 В = 1/300 ед. потенциала СГСЭ.
Использование термина[править | править код]
Широко используемые термины напряжение и электрический потенциал имеют несколько иной смысл, хотя нередко используются неточно как синонимы электростатического потенциала. В отсутствие меняющихся магнитных полей напряжение равно разности потенциалов.
Кулоновский потенциал[править | править код]
Иногда термин кулоновский потенциал используется просто для обозначения электростатического потенциала как полный синоним. Однако можно сказать, что в целом эти термины несколько различаются по оттенку и преимущественной области применения.
Также под кулоновским могут понимать потенциал любой природы (то есть не обязательно электрический), который при точечном или сферически симметричном источнике имеет зависимость от расстояния (например, гравитационный потенциал в теории тяготения Ньютона, хотя последний чаще всё же называют ньютоновским, так как он был изучен в целом раньше), особенно если надо как-то обозначить весь этот класс потенциалов в отличие от потенциалов с другими зависимостями от расстояния.
Формула электростатического потенциала (кулоновского потенциала) точечного заряда в вакууме:
где обозначен коэффициент, зависящий от системы единиц измерения — например, в СИ:
= 9·109 В·м/Кл,
— величина заряда, — расстояние от заряда-источника до точки, для которой рассчитывается потенциал.
- Можно показать, что эта формула верна не только для точечных зарядов, но и для любого сферически симметричного заряда конечного размера, например, равномерно заряженного шара, правда, только в свободном от заряда пространстве — то есть, например, над поверхностью шара, а не внутри его.
- Кулоновский потенциал в приведенном выше виде используется в формуле кулоновской потенциальной энергии (потенциальной энергии взаимодействия системы электростатически взаимодействующих зарядов):
В электродинамике[править | править код]
Когда присутствуют изменяющиеся во времени магнитные поля (что справедливо, при изменяющихся во времени электрических полей и наоборот), то невозможно описать электрическое поле в терминах скалярного потенциала V, поскольку электрическое поле больше не является консервативным: циркуляция зависит от пути, потому что (см. Закон индукции Фарадея).
Вместо этого всё ещё можно определить скалярный потенциал, дополнив его магнитным векторным потенциалом A. В частности, А определен так чтобы
где B — магнитное поле. Поскольку дивергенция магнитного поля всегда равно нулю из-за отсутствия магнитных монополей, то A всегда существует. Учитывая это, величина
является консервативным полем по закону Фарадея, и поэтому можно написать
где V — скалярный потенциал, определённый консервативным полем F.
Электростатический потенциал — это частный случай этого определения, где A не зависит от времени. С другой стороны, для изменяющихся во времени полей,
в отличие от электростатики.
См. также[править | править код]
- Гальвани-потенциал
- Вольта-потенциал
- Векторный потенциал электромагнитного поля
- 4-потенциал
- Стандартный электродный потенциал
- Степень окисления
- Гравитационный потенциал
- Ядерный потенциал
Примечания[править | править код]
Источник
Электростатическое поле и его характеристики
Электрический заряд, помещенный в некоторую точку пространства, изменяет свойства данного пространства. То есть заряд порождает вокруг себя электрическое поле. Электростатическое поле – особый вид материи.
Электростатическое поле существующий вокруг неподвижный заряженных тел, действует на заряд с некоторой силой, вблизи заряда – сильнее.
Электростатическое поле не изменяется во времени.
Силовой характеристикой электрического поля является напряженность
Напряженностью электрического поля в данной точке называется векторная физическая величина, численно равная силе, действующей на единичный положительный заряд, помещенный в данную точку поля.
За единицу измерения напряженности электрического поля в СИ принимают
Если на пробный заряд, действуют силы со стороны нескольких зарядов, то эти силы по принципу суперпозиции сил независимы, и результирующая этих сил равна векторной сумме сил. Принцип суперпозиции (наложения) электрических полей: Напряженность электрического поля системы зарядов в данной точке пространства равна векторной сумме напряженностей электрических полей, создаваемых в данной точке пространства, каждым зарядом системы в отдельности:
или
Электрическое поле удобно представлять графически с помощью силовых линий.
Силовыми линиями (линиями напряженности электрического поля) называют линии, касательные к которым в каждой точке поля совпадают с направлением вектора напряженности в данной точке.
Силовые линии начинаются на положительном заряде и заканчиваются на
отрицательном (Силовые линии электростатических полей точечных зарядов.).
Густота линий напряженности характеризует напряженность поля (чем
плотнее располагаются линии, тем поле сильнее).
Электростатическое поле точечного заряда неоднородно (ближе к заряду поле сильнее).
Силовые линии электростатических полей бесконечных равномерно заряженных плоскостей.
Электростатическое поле бесконечных равномерно заряженных плоскостей однородно. Электрическое поле, напряженность во всех точках которого одинакова, называется однородным.
Силовые линии электростатических полей двух точечных зарядов.
Потенциал – энергетическая характеристика электрического поля.
Потенциал – скалярная физическая величина, равная отношению потенциальной энергии, которой облает электрический заряд в данной точке электрического поля, к величине этого заряда.
Потенциал показывает какой потенциальной энергией будет обладать единичный положительный заряд, помещенный в данную точку электрического поля. φ = W / q
где φ – потенциал в данной точке поля, W- потенциальная энергия заряда в данной точке поля.
За единицу измерения потенциала в системе СИ принимают [φ] = В (1В = 1Дж/Кл )
За единицу потенциала принимают потенциал в такой точке, для перемещения в которую из бесконечности электрического заряда 1 Кл, требуется совершить работу, равную 1 Дж.
Рассматривая электрическое поле, созданное системой зарядов, следует для определения потенциала поля использовать принцип суперпозиции:
Потенциал электрического поля системы зарядов в данной точке пространства равен алгебраической сумме потенциалов электрических полей, создаваемых в данной точке пространства, каждым зарядом системы в отдельности:
Вектор напряженности в данной точке поля всегда направлен в область уменьшения потенциала.
Воображаемая поверхность, во всех точках которой потенциал принимает одинаковые значения, называется эквипотенциальной поверхностью. При перемещении электрического заряда от точки к точке вдоль эквипотенциальной поверхности энергия его не меняется. Эквипотенциальных поверхностей для заданного электростатического поля может быть построено бесконечное множество.
Вектор напряженности в каждой точке поля всегда перпендикулярен к эквипотенциальной поверхности, проведенной через данную точку поля.
Источник
Потенциал. Эквипотенциальные поверхности.
В механике взаимодействие тел характеризует силой или потенциальной энергией. Электрическое поле, которое обеспечивает взаимодействие между электрически заряженными телами, также характеризуют двумя величинами. Напряженность электрического поля — это силовая характеристика. Теперь введем энергетическую характеристику — потенциал. С помощью этой величины можно будет сравнивать между собой любые точки электрического поля. Таким образом, потенциал как характеристика поля должен зависеть от значения заряда, содержащегося в этих точках. Поделим обе части формулы A = W1 — W2 на заряд q, получим
Отношение W/q не зависит от значения заряда и принимается за энергетическую характеристику, которую называют потенциалом поля в данной точке. Обозначают потенциал буквой φ.
Потенциал электрического поля φ — скалярная энергетическая характеристика поля, которая определяется отношением потенциальной энергии W положительного заряда q в данной точке поля к величине этого заряда:
Единица потенциала — вольт:
Подобно потенциальной энергии значения потенциала в данной точке зависит от выбора нулевого уровня для отсчета потенциала. Чаще всего в электродинамике за нулевой уровень берут потенциал точки, лежащей в бесконечности, а в электротехнике — на поверхности Земли.
С введением потенциала формулу для определения работы по перемещению заряда между точками 1 и 2 можно записать в виде
Поскольку при перемещении положительного заряда в направлении вектора напряженности электрическое поле выполняет положительную работу A = q (φ1 — φ2 )> 0, то потенциал φ1 больше чем потенциал φ2 . Таким образом, напряженность электрического поля направлена в сторону уменьшения потенциала.
Если заряд перемещать с определенной точки поля в бесконечность, то работа A = q (φ — φ∞ ). Поскольку φ∞ = 0, то A = qφ. Таким образом, величина потенциала φ определенной точки поля определяется работой, которую выполняет электрическое поле, перемещая единичный положительный заряд из этой точки в бесконечность,
Если электрическое поле создается точечным зарядом q, то в точке, лежащей на расстоянии r от него, потенциал вычисляют по формуле
По этой формуле рассчитывают и потенциал поля заряженного шара. В таком случае r — это расстояние от центра шара до выбранной точки поля. С этой формулы видно, что на одинаковых расстояниях от точечного заряда, который создает поле, потенциал одинаков. Все эти точки лежат на поверхности сферы, описанной радиусом r вокруг точечного заряда. Такую сферу называют эквипотенциальной поверхностью.
Эквипотенциальные поверхности — геометрическое место точек в электрическом поле, которые имеют одинаковый потенциал, — один из методов наглядного изображения электрических полей.
Эквипотенциальные поверхности электрических полей, созданных точечными зарядами разных знаков
Силовые линии всегда перпендикулярны эквипотенциальных поверхностей. Это означает, что работа сил поля по перемещению заряда по эквипотенциальной поверхности равна нулю.
В случае наложения электрических полей, созданных несколькими зарядами, потенциал электрического поля равен алгебраической сумме потенциалов полей, созданных отдельными зарядами, φ = φ1 + φ2 + φ3 . Эквипотенциальные поверхности таких систем имеют сложную форму. Например, для системы из двух одинаковых по значению одноименных зарядов эквипотенциальные поверхности имеют вид, изображенный на рисунке. Эквипотенциальные поверхности однородного поля явлются плоскостями.
Эквипотенциальные поверхности: а — поля двух одинаковых зарядов б — однородного поля
Разность потенциалов
Практическое значение имеет не сам потенциал в точке, а изменение (разница) потенциала φ1 — φ2 , которое не зависит от выбора нулевого уровня отсчета потенциала. Разность потенциалов φ1 — φ2 еще называют напряжением и обозначают латинской буквой U. Тогда формула для работы по перемещению заряда приобретает вид
Напряжение U — это физическая величина, определяемая работой электрического поля по перемещению единичного положительного заряда между двумя точками поля,
Единица разности потенциалов (напряжения), как и потенциала, — вольт,
Поскольку работа сил поля по перемещению заряда зависит только от разности потенциалов, то в случае перемещения заряда с первой эквипотенциальной поверхности на другую (потенциалы которых соответственно φ1 и φ2 ) выполненная полем работа не зависит от траектории этого движения.
Связь напряженности электрического поля с напряжением
Из формул A = Eqd и A = qU можно установить связь между напряженностью и напряжением электрического поля: Ed = U. С этой формулы следует:
- чем меньше меняется потенциал на расстоянии d, тем меньше есть напряженность электрического поля;
- если потенциал не меняется, то напряженность равна нулю;
- напряженность электрического поля направлена в сторону уменьшения потенциала.
Поскольку
то именно из этой формулы и выводится еще одна единица напряженности — вольт на метр,
Источник