Какими свойствами обладает оксид хром

Какими свойствами обладает оксид хром thumbnail

Низший оксид для элементов 6-й группы состава MeO получен только для хрома.

Физические свойства CrO(II):

  • тугоплавкий порошок черного цвета;
  • нерастворим в воде;
  • устойчив на воздухе.

Химические свойства CrO(II):

  • типичный основной оксид;
  • реагирует с кислотами:
    CrO+2HCl = CrCl2+H2O;
  • является сильным восстановителем;
  • воспламеняется при нагревании или растирании на воздухе, сгорая до Cr2O3;
  • при высокой температуре (1000°C) “забирает” кислород у углекислого газа:
  • 2CrO+CO2 → Cr2O3+CO;
  • в инертной атмосфере нагревание CrO (700°C) приводит к диспропорционированию:
    3CrO → Cr2O3+Cr
  • CrO(II) получают путем воздействия на амальгаму хрома кислородом воздуха:
    2Cr+O2 = 2CrO

Гидроксид хрома Cr(OH)2(II)

Физические свойства Cr(OH)2(II):

  • вещество коричнево-желтого цвета;
  • нерастворим в воде;
  • быстро окисляется на воздухе.

Химические свойства Cr(OH)2(II):

  • проявляет оснОвные свойства;
  • реагирует с кислотами:
    Cr(OH)2+H2SO4 = CrSO4+2H2O
  • Cr(OH)2(II) получают, как продукт реакции солей хрома с щелочью в отсутствии кислорода:
    CrCl2+2NaOH = Cr(OH)2↓+2NaCl

Соединения хрома со степенью окисления +2 являются неустойчивыми, легко окисляются кислородом воздуха в более устойчивые соединения хрома со степенью окисления +3:
4Cr(OH)2+O2+2H2O = 4Cr(OH)3

Оксид хрома Cr2O3(III) – хромовая охра

Cr2O3 в мелкоизмельченном состоянии применяют в качестве абразивного материала (паста ГОИ), зеленого пигмента, катализатора в органическом синтезе. Оксид хрома (III) является основной добавкой к корунду при выращивании искусственных рубинов, используемых в ювелирной промышленности и часовом деле, а также в качестве лазерного материала в оптоэлектронике.

Физические свойства Cr2O3(III):

  • тугоплавкий порошок серо-зеленого цвета, имеющий структуру корунда (α-Al2O3);
  • нерастворим в воде;
  • обладает высокой твердостью;
  • меняет свой цвет от светло-зеленого до черного в зависимости от размеров кристаллов;
  • при н.у. является полупроводником;
  • при нагревании порошок приобретает коричневый цвет, при охлаждении зеленая окраска возвращается;
  • Cr2O3 с корундом образует твердые растворы, в которых катионы хрома и алюминия заполняют пустоты анионной решетки, такие твердые растворы с содержанием Cr2O3 до 10% имеют красный цвет, и в природе известны под названием рубин, который является драгоценным камнем-минералом. Твердые растворы в которых содержание оксида хрома превышает 10%, имеют зеленый цвет (окраска твердого раствора зависит от расстояния связи металл-кислород).

Химические свойства Cr2O3(III):

  • Cr2O3 амфотерный оксид – самое устойчивое соединение хрома;
  • при н.у. плохо растворим в кислотах и щелочах;
  • при сплавлении с щелочами (карбонатами щелочных металлов) образует метахромиты:
    Cr2O3+2KOH = 2KCrO2+H2O
    Cr2O3+Na2CO3 = 2NaCrO2+CO2↑
  • с кислотами образует соли:
    Cr2O3+6HCl = 2CrCl3+3H2O
  • с щелочами образует комплексные соединения хрома:
    Cr2O3+6KOH+3H2O = 2K2[Cr(OH)6]
  • в промышленности Cr2O3 получают восстановлением дихромата калия серой или коксом:
    K2Cr2O7+S = Cr2O3+K2SO4
  • Cr2O3 также можно получить разложением дихромата аммония или прокаливанием гидроксида хрома:
    (NH4)Cr2O7 = Cr2O3+N2+4H2O
    2Cr(OH)3 = Cr2O3+3H2O

Гидроксид хрома Cr(OH)3(III)

Физические свойства Cr(OH)3(III):

  • амфотерный малоустойчивый гидроксид различной окраски (голубой, фиолетовой, зеленой), которая зависит от условий получения;
  • имеет различную химическую активность;
  • плохо растворим в воде.

Химические свойства Cr(OH)3(III):

  • реагирует с кислотами с образованием солей:
    Cr(OH)3+3H2SO4 = Cr2(SO4)3+6H2O
  • реагирует с щелочами с образованием комплексных соединений хрома:
    Cr(OH)3+NaOH = Na[Cr(OH)4]
  • осаждается при действии щелочей на соли хрома:
    Cr(OH)3+3NaOH = Cr(OH)3↓+3NaCl
  • выпавший в осадок гидрооксид хрома растворим в кислотах:
    Cr(OH)3+3HCl = CrCl3+3H2O
  • и в избытке щелочей:
    Cr(OH)3+3NaOH = Na3[Cr(OH)6]

Оксид хрома CrO2(IV) (диоксид хрома)

Диоксид хрома применяется в производстве элементов памяти для компьютеров.

  • все диоксиды элементов 6-й группы (Cr, Mo, W) имеют структуру рутила;
  • не реагируют с водой и щелочами;
  • диоксид хрома имеет черную окраску, обладает металлической проводимостью, является ферромагнетиком;
  • диоксиды, как промежуточный прдукт реакции, получают при разложении или восстановлении высших оксидов (VI) соответствующих металлов, при темературах 250°(Cr), 450°C(Mo), 600°C(W):
    3(NH4)Cr2O7 → 6CrO2+2N2+9H2O+2NH3
    MoO3+H2 → MoO2+H2O
    WO3+H2 → WO2+H2O
  • диоксид хрома получают нагреванием Cr2O3 в кислороде при 300°C и высоком давлении;
  • устойчивость диоксида возрастает в ряду от хрома к вольфраму.

Оксид хрома CrO3(VI) (хромовый ангидрид)

Физические свойства CrO3(VI):

  • кристаллы красно-фиолетового цвета;
  • разлагаются при комнатной температуре;
  • расплывается на воздухе по причине высокой гигроскопичности;
  • хорошо растворим в воде.

Химические свойства CrO3(VI):

  • CrO3(VI) является кислотным оксидом;
  • растворяясь в воде, образует хромовые кислоты:
    • хромовая кислота: CrO3+H2O(изб) = H2CrO4
    • дихромовая кислота: 2CrO3+H2O(нед) = H2Cr2O7
  • реагирует с основаниями:
    CrO3+2KOH = K2CrO4+H2O
  • CrO3 окисляет углерод, серу, фосфор, йод, образуя оксид хрома (III):
    4CrO3+3S = 3SO2+2Cr2O3
  • нагретый до температуры выше 250°C, триоксид хрома разлагается на молекулярный кислород и оксид хрома (III):
    4CrO3 = 2Cr2O3+3O2

Триоксид хрома получают действием концентрированной серной кислоты на концентрированные растворы хроматов/дихроматов калия/натрия:
K2Cr2O7+H2SO4 = 2CrO3↓+K2SO4+H2O

Гидроксиды хрома

К гидроксидам хрома относятся две кислоты – хромовая и дихромовая, существующие только в водных растворах, но образующие очень устойчивые соли – хроматы и дихроматы соответственно. Хроматы окрашивают раствор в желтый цвет; дихроматы – в оранжевый.

Кислоты образуются в результате взаимодействия с водой триоксида хрома – если вода присутствует в избытке, образуется хромовая кислота, если в недостатке – дихромовая:

CrO3+H2O(изб) = H2CrO4
2CrO3+H2O(нед) = H2Cr2O7

Примечательно, что хромат-ионы и дихромат-ионы при изменении среды растворов без проблем переходят друг в друга, меняя при этом окраску раствора:

  • в кислой среде хроматы переходят в дихроматы, меняя желтый цвет раствора на оранжевый:
    2CrO42-+2H+ ↔ Cr2O72-+H2O
    2K2CrO4+H2SO4 ↔ K2Cr2O7+K2SO4+H2O
  • в щелочной среде все происходит наоборот – дихроматы переходят в хроматы, а оранжевый цвет раствора меняется на желтый:
    Cr2O72-+2OH- ↔ 2CrO42-+H2O
    K2Cr2O7+2KOH = 2K2CrO4+H2O

Хроматы получают сплавлением хромистого железняка или оксида хрома (III) с карбонатами в присутствии кислорода (t=1000°C):
4Fe(CrO2)2+8Na2CO3+7O2 = 8Na2CrO4+2Fe2O3+8CO2

Дихроматы получают из растворов хроматов, подкисляя их.

Источник

Оксид хрома (III)
Оксид хрома (III)
Оксид хрома (III)
Систематическое
наименование
Оксид хрома (III), эсколаит
Традиционные названиясесквиоксид хрома, хромовая зелень
Хим. формулаCr2O3
Состояниетвёрдый тугоплавкий порошок зелёного цвета
Молярная масса152 г/моль
Плотность5,21 г/см³
Температура
 • плавления2435 °C
 • кипения4000 °C
Уд. теплоёмк.781 Дж/(кг·К)
Энтальпия
 • образования−1128 кДж/моль
Удельная теплота плавления822000 Дж/кг
ГОСТГОСТ 2912-79
Рег. номер CAS1308-38-9
PubChem517277
Рег. номер EINECS215-160-9
SMILES

O=[Cr]O[Cr]=O

InChI

1S/2Cr.3O

QDOXWKRWXJOMAK-UHFFFAOYSA-N

RTECSGB6475000
ChEBI48242
ChemSpider451305
Пиктограммы ECB
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное.

Оксид хрома (III)

Оксид хрома (III) Cr2O3 (сесквиоксид хрома, хромовая зелень, эсколаит) — очень твёрдый тугоплавкий порошок зелёного цвета. Температура плавления 2435 °C, кипения ок. 4000 °C. Плотность 5,21 г/см³ (из иностранных источников 5,22 г/см³). Нерастворим в воде. По твердости близок к корунду, поэтому его вводят в состав полирующих средств.

Способы получения

  • Разложение дихромата аммония (начинается при 168—185 °С):

 (NH4)2Cr2O7 → Cr2O3 + N2 + 4H2O

При разложении дихромата аммония ощущается слабый запах аммиака (так как одна из параллельных реакций идет с образованием аммиака) и получается оксид хрома (III) с содержанием по основному продукту 95-97 %, нестехиометрического кислорода содержится 3 — 5 %. Прокалкой при 1000 °С в течение 3-4 часов получен оксид хрома (III) с содержанием по основному продукту до 99,5 %.

Читайте также:  Какие свойства воды обеспечивают ей способность быть хорошим растворителем

Реакция разложения бихромата аммония на воздухе протекает спокойно (Шидловский А.А., Оранжереев С.А. Исследование процесса горения неорганических солей бихромата и трихромата аммония.  Статья// Журнал Прикладной Химии (ЖПХ), 1953, т. XXVI, №1. — 5 с.)                                                                                                                В случае проведения реакции разложения в герметичной аппаратуре возможен взрыв. Попытка высушить бихромат аммония в герметичном реакторе привела к взрыву и многочисленным человеческим жертвам: в январе 1986 года двое рабочих погибли и 14 пострадали в США при взрыве 900 килограмм бихромата аммония во время сушки. (Diamond, S. The New York Times, 1986, p. 22. ).

  • Разложение дихромата калия (при 500—600 °С):

 4K2Cr2O7 → 2Cr2O3 + 4K2CrO4 + 3O2 

  • Разложение гидроксида хрома(III) (при 430—1000 °С):

 2Cr(OH)3 → Cr2O3 + 3H2O 

  • Разложение оксида хрома (VI):

 4CrO3 → 2Cr2O3 + 3O2 

  • Восстановление дихромата калия:

 K2Cr2O7 + S → K2SO4 + Cr2O3 

Химические свойства

Относится к группе амфотерных оксидов. В высокодисперсном состоянии растворяется в сильных кислотах с образованием солей хрома(III):

 Cr2O3 + 6HCl → 2CrCl3 + 3H2O 

В сильнокислой среде может идти реакция:

 Cr2O3 + 6H+ + 9H2O → 2[Cr(H2O)6]3+

При сплавлении со щелочами и содой даёт растворимые соли Cr3+ (в отсутствие окислителей):

 Cr2O3 + 2KOH → 2KCrO2 + H2O Cr2O3 + Na2CO3 → 2NaCrO2 + CO2 

Поскольку Cr2O3 — соединение хрома в промежуточной степени окисления, в присутствии сильного окислителя в щелочной среде он окисляется до хромата:

 Cr2O3 + 3KNO3 + 2Na2CO3 → 2Na2CrO4 + 3KNO2 + 2CO2

а сильные восстановители его восстанавливают:

 Cr2O3 + 2Al → Al2O3 + 2Cr Оксид хрома (III)

Применение

  • основной пигмент для зелёной краски
  • абразив — компонент полировальных паст (например ГОИ)
  • катализатор в ряде органических реакций
  • компонент шихт для получения шпинелей и искусственных драгоценных камней
  • компонент термитных смесей и других реакций СВС
  • компонент ТРТ
  • компонент магнезиальных огнеупоров

Токсичность

Оксид хрома (III) токсичен, при попадании на кожу вызывает дерматит, но по токсичности уступает шестивалентному оксиду. В России класс опасности 3, максимальная разовая ПДК в воздухе рабочей зоны 1 мг/м3, аллерген (1998 год).

Источник

Среди многообразия химических элементов и их соединений сложно выделить наиболее полезное для человечества вещество. Каждое уникально по своим свойствам и возможностям применения. Технический прогресс значительно облегчает исследовательский процесс, но и ставит перед ним новые задачи. Химические элементы, открытые несколько сотен лет назад и изученные во всех проявлениях, получают в современном мире более технологичные направления использования. Данная тенденция распространяется на соединения, существующие в природе и созданные людьми.

Оксид

В земной коре и на просторах Вселенной существует множество химических соединений, которые отличаются по классам, типам, характеристикам. Одним из самых распространенных видов соединений является оксид (окись, окисел). К нему относят песок, воду, углекислый газ, т. е. основополагающие вещества для существования человечества и всей биосферы Земли. Оксидами называют вещества, которые имеют в составе атомы кислорода со степенью окисления -2, при этом связь между элементами является бинарной. Их образование происходит в результате химической реакции, условия которой разнятся в зависимости от состава оксида.

Характерными признаками данного вещества являются три позиции: вещество сложное, состоит из двух атомов, один из них – кислород. Большое количество существующих оксидов объясняется тем, что многие химические элементы образуют несколько веществ. Они идентичны по составу, но атом, вступающий в реакцию с кислородом, проявляет несколько степеней валентности. Например, оксид хрома (2, 3, 4, 6), азота (1, 2, 3, 4 ,5) и т. д. При этом их свойства зависят от степени валентности элемента, вступающего в окислительную реакцию.

По принятой классификации оксиды бывают основными и кислотными. Также выделяется амфотерный вид, который проявляет свойства основного окисла. Кислотные оксиды – это соединения неметаллов или элементов с высокой валентностью, их гидратами являются кислоты. К основным окислам относят все вещества, имеющие связь кислород + металл, их гидратами являются основания.

оксид хрома

Хром

В 18 веке химик И. Г. Леман обнаружил неизвестный минерал, который был назван красным сибирским свинцом. Профессор Парижской минералогической школы Вокелен провел ряд химических реакций с полученным образцом, в результате которых был выделен неизвестный металл. Основными свойствами, обозначенными ученым, стали его устойчивость к кислотным средам и тугоплавкость (жаропрочность). Название “хром” (Chromium) возникло из-за широкой цветовой гаммы, которая характеризуется соединениям элемента. Металл достаточно инертен, в чистом виде не встречается в природных условиях.

Основными минералами, содержащими хром, являются: хромит (FeCr2O4), меланохроит, вокеленит, дитцеит, тарапакаит. Химический элемент Cr располагается в 6 группе периодической системы Д. И. Менделеева, имеет атомный номер 24. Электронная конфигурация атома хрома позволяет элементу иметь валентность +2, +3, +6, при этом наиболее устойчивыми являются соединения трехвалентного металла. Возможны реакции, при которых степень окисления равна +1, +5, +4. Хром химически не активен, поверхность металла покрывается пленкой (эффект пассивирования), предотвращающей реакции с кислородом и водой при нормальных условиях. Оксид хрома, образующийся на поверхности, предохраняет металл от взаимодействия с кислотами и галогенами при отсутствии катализаторов. Соединения с простыми веществами (не металлами) возможны при температуре от 300 оС (хлор, бром, сера).

При взаимодействии со сложными веществами требуются дополнительные условия, например, с раствором щелочи реакция не происходит, с ее расплавами процесс происходит очень медленно. С кислотами хром вступает в реакцию при наличии в качестве катализатора высокой температуры. Оксид хрома можно получить из различных минералов путем воздействия температуры. В зависимости от будущей степени окисления элемента применяются концентрированные кислоты. При этом валентность хрома в соединении варьируется от +2 до +6 (высший оксид хрома).

оксид хрома 3

Применение

За счет уникальных антикоррозийных свойств и жаропрочности большое практическое значение имеют сплавы на основе хрома. При этом в процентном соотношении его доля не должна превышать половины общего объема. Большим недостатком хрома является его хрупкость, что уменьшает возможности обработки сплавов. Наиболее распространенным способом применения металла является изготовление покрытий (хромирование). Защитная пленка может составлять слой в 0,005 мм, но она будет надежно предохранять металлическое изделие от коррозии и внешних воздействий. Соединения хрома используются для изготовления жаропрочных конструкций в металлургической промышленности (плавильные печи). Антикоррозийные покрытия декоративного направления (металлокерамика), специальная легированная сталь, электроды для сварочных аппаратов, сплавы на основе кремния, алюминия являются востребованными на мировых рынках. Оксид хрома за счет низкой возможности окисления и высокой жаропрочности служит катализатором многих химических реакций, протекающих при высоких температурах (1000 оС).

Читайте также:  Какие признаки являются отличительными для свойств личности

оксид хрома 6

Двухвалентные соединения

Оксид хрома (2) CrO (закись) является порошком ярко-красного или черного цвета. В воде нерастворим, при нормальных условиях не окисляется, проявляет ярко выраженные основные свойства. Вещество твердое, тугоплавкое (1550 оС), не является токсичным. В процессе нагревания до 100 оС окисляется до Cr2O3. В слабых растворах азотной и серной кислот не растворяется, реакция происходит с хлороводородной кислотой.

оксид хрома 2

Получение, применение

Данное вещество считается низшим оксидом. Имеет достаточно узкую сферу применения. В химической промышленности оксид хрома 2 используется для очистки углеводородов от кислорода, который он притягивает в процессе окисления при температуре свыше 100 оС. Получить закись двухвалентного хрома можно тремя способами:

  1. Разложением карбонила Cr(CO)6 при наличии в качестве катализатора высокой температуры.
  2. Восстанавливая при помощи фосфорной кислоты оксид хрома 3.
  3. Амальгама хрома окисляется кислородом или азотной кислотой.

Трехвалентные соединения

оксид хрома формула

Для оксидов хрома степень окисления +3 является самой устойчивой формой вещества. Cr2O3 (хромовая зелень, сесквиоксид, эсколаид) в химическом отношении инертен, нерастворим в воде, имеет высокую температуру плавления (более 2000 оС). Оксид хрома 3 – зеленый тугоплавкий порошок, очень твердый, имеет амфотерные свойства. Вещество растворимо в концентрированных кислотах, реакция со щелочами происходит в результате сплавления. Может восстанавливаться до чистого металла при взаимодействии с сильным восстановителем.

Получение и применение

За счет высокой твердости (сопоставимой с корундом) наиболее распространено использование вещества в абразивных и полирующих материалах. Оксид хрома (формула Cr2O3) имеет зеленый цвет, поэтому его применяют в качестве пигмента при изготовлении стекол, красок, керамики. Для химической промышленности данное вещество используется как катализатор для протекания реакций с органическими соединениями (синтез аммиака). Трехвалентный оксид хрома применяется для создания искусственных драгоценных камней и шпинелей. Для получения используется несколько видов химических реакций:

  1. Окисление закиси хрома.
  2. Нагревание (прокаливанием) бихромата или хромата аммония.
  3. Разложение гидроксида трехвалентного хрома или шестивалентного оксида.
  4. Прокаливание хромата или бихромата ртути.

Шестивалентные соединения

высший оксид хрома

Формула высшего оксида хрома – CrO3. Вещество фиолетового или темно-красного цвета, может существовать в виде кристаллов, игл, пластин. Химически активен, токсичен, при взаимодействии с органическими соединениями существует опасность самовозгорания и взрыва. Оксид хрома 6 – хромовый ангидрид, трёхокись хрома – хорошо растворим в воде, при нормальных условиях взаимодействует с воздухом (расплывается), температура плавления – 196 оС. Вещество имеет ярко выраженные кислотные характеристики. При химической реакции с водой образуется дихромовая или хромовая кислота, без дополнительных катализаторов взаимодействует со щелочами (хроматы желтого цвета). Для галогенов (йод, сера, фосфор) является сильным окислителем. В результате нагревания свыше 250 оС образуется свободный кислород и трехвалентный оксид хрома.

формула высшего оксида хрома

Как получают и где применяют

Оксид хрома 6 получают обработкой хроматов (бихроматов) натрия или калия концентрированной серной кислотой либо при реакции хромата серебра с хлороводородной кислотой. Высокая химическая активность вещества обуславливает основные направления его применения:

  1. Получение чистого металла – хрома.
  2. В процессе хромирования поверхностей, в том числе электролитическим способом.
  3. Окисление спиртов (органических соединений) в химической промышленности.
  4. В ракетной технике используется в качестве воспламенителя топлива.
  5. В химических лабораториях очищает посуду от органических соединений.
  6. Используется в пиротехнической отрасли.

Источник

Чистый хром – очень твердый тугоплавкий металл голубовато-серебристого цвета. Имеет самую большую твердость из всех применяемых в промышленности металлов. Т. пл. 1890°С, плотность 7,19 г/см.

24Cr [Ar]3d54s1

Изотопы:

50Cr (4.35 %)

52Cr (83,79 %)

53Cr (9.50 %)

54Cr (2.36 %)

ЭО 1,6

E°Cr0/Cr3+ -0,74 В

При образовании соединений с другими элементами хром может использовать от 1 до 6 валентных электронов. Наибольшую устойчивость и практическую значимость имеют соединения, в которых атомы Сг находятся в степенях окисления +2, +3, +6.

С повышением степени окисления атомов Сг в оксидах и гидроксидах их основный характер ослабевает,а кислотный – усиливается. В этом же направлении происходит замена восстановительной активности на окислительную.

Cr+2

Cr+3

Cr+6

Оксиды

CrOосновный

Cr2O3амфотерный

CrO3кислотный

Гидроксиды

Cr(OH)2слабое основание

Cr(OH)3 ↔ HCrO2 + H2Oамфотерный гидроксид

2H2CrO4 ↔ H2Cr2O7 + H2O сильные кислоты

Соли

CrCl2,
CrSO4,
Cr(NO3)2,
CrS

Тип ICrCl3,
Cr(SO4)3,
Cr(NO3)3

Тип IIKCrO2,
Ca(CrO2)2,
Fe(CrO2)2хромиты

хроматыK2CrO4,
Na2(CrO4)2,
BaCrO4,PbCrO4

дихроматыK2Cr2O7,
Na2Cr2O7,
(NH4)2Cr2O7

Окислительно-восстановительная функция

Сильные восстановители

Окислители и восстановители

Сильные окислители

1. Алюминотермический: Сr2O3 + 2Al = Аl2O3 + 2Сr

2. Силикотермический: 2Сr2O3 + 3Si = 3SiO2 + 4Cr

3. Электролитический: 2CrCl3 = 2Сr + 3Cl2

Поверхностная оксидная пленка является причиной инертности хрома при обычной температуре, благодаря чему этот металл не подвергается атмосферной коррозии (в отличие от железа).

При нагревании хром проявляет свойства довольно активного металла, что соответствует его положению в электрохимическом ряду напряжений.

Тонкоизмельченный хром интенсивно горит в токе кислорода. На воздухе реакция с O2 происходит лишь на поверхности металла.

4Сr + 3O2 = 2Сr2O3

При осторожном окислении амальгамированного хрома образуется низший оксид CrO.

(Сr не взаимодействует с Н2, но поглощает его в больших количествах)

2Cr + 3Cl2 = 2CrCl3

Cr + S = CrS

CrCl3 и CrS – ионные соединения.

2Cr + N2 = 2CrN

Cr + C → CrxCy

CrN и rxCy – ковалентные тугоплавкие инертные вещества, по твердости сравнимы с алмазом.

Сr + 2HCl = СrСl2 + Н2↑

Сr + H2SO4 = CrSO4 + Н2↑

Эти кислоты не растворяют хром при обычной температуре, они переводят его в «пассивное» состояние.

Пассивацию можно частично снять сильным нагреванием, после чего хром начинает очень медленно растворяться в кипящих конц. HNO3, H2SO4, «царской водке».

Сr + 6HNO3 = Cr(NO3)3 + 3NO2↑ + 3H2O

2Сr + 6H2SO4 = Cr2(SO4)3 + 3SO2↑ + 6H2O

Царская водка – смесь концентрированных HNO33 и НСl (1:3), растворяет золото и платиновые металлы (Pd,Os,Ru).

Сr + CuSO4 = CrSO4 + Сu

Сr + Pb(NO3)2 = Cr(NO3)2 + Pb

2Сr + KIO3 = Сr2O3 + KCl

2Сr + 3NaNO3 = Сr2O3 + 3NaNO2

Соединения Cr (II)

СrO – оксид хрома (II). Твердое черное вещество, н. р. в Н2O.

1) медленное окисление хрома, растворенного в ртути

2Сr + O2 = 2СrO

2) обезвоживание Сr(ОН)2 в восстановительной атмосфере:

Сr(ОН)2 = СrO + H2O

СrO – неустойчивое вещество, легко окисляется при небольшом нагревании до Сr2O3; при более высоких Т диспропорционирует:

3СrО = Сr + Сr2O3

СrO – типичный основный оксид, проявляет характерные для этого класса свойства. Реакции необходимо проводить в восстановительной среде.

Сr(OН)2 – гидроксид хрома (II) твердое желтое вещество, н. р. в Н2O.

Читайте также:  Какое основное свойство p n перехода

Получают обменными реакциями из солей Сr2+:

CrCl2 + 2NaOH = Сr(ОН)2 + 2NaCl

Неустойчивое вещество, разлагается при нагревании; на воздухе быстро окисляется с образованием зеленого гидроксида хрома (III);

4Сr(ОН)2 + O2 + 2Н2O = 4Сr(ОН)3

желтый → зеленый

Наиболее важные: CrCl2, CrSO4, (СН3СОО)2Сr. Гидратированный ион Сr2+ имеет бледно-голубую окраску.

1. Сr + неметалл (S, Hal2)

Сr + 2HCl(r) = CrCl2 + Н2

2. Восстановление солей Сr3+:

2СrСl3 + Н2 = 2CrCl2 + 2HCl

1. Соли Сr2+ – сильные восстановители, так как очень легко окисляются до солей Сr3+

4CrCl2 + 4HCl + O2 = 4СrСl3 + 2Н2О

2. Раствор CrSO4 в разбавленной H2SO4 – превосходный поглотитель кислорода:

4CrSO4 + O2 + 2H2SO4 = 2Cr2(SO4)3 + 2Н2О

3. С аммиаком соли Сr2+ образуют комплексные соли – аммиакаты:

CrCl2 + 6NH3 = [Cr(NH3)6]Cl2

Для Сr2+ характерно образование двойных сульфатов, например: K2Cr(SO4)2• 6Н2O

Соединения Сr(III)

Сr2О3 – оксид хрома (III), важнейшее природное соединение хрома. Сr2О3, полученный химическими методами, представляет собой темно-зеленый порошок.

1. Синтез из простых веществ:

4Сr + 3O2 = 2Сr2О3

2. Термическое разложение гидроксида хрома (III) или дихромата аммония:

2Сr(ОН)3 = Сr2O3 + 3Н2O

(NH4)2Cr2O7 = Сr2O3 + N2 + 4Н2O

3. Восстановление дихроматов углеродом или серой:

К2Сr2O7 + S = Сr2O3 + K2SO4

Сr2O3 используется для изготовления краски «хромовая зеленая», обладающей термо- и влагоустойчивостью.

Сr2O3 – типичный амфотерный оксид

В порошкообразном виде реагирует с сильными кислотами и сильными щелочами, в кристаллическом виде – химически инертное вещество.

К наиболее практически важным реакциям относятся следующие:

1. Восстановление с целью получения металлического хрома:

Сr2O3 + 2Al = 2Сr + Аl2O3

2. Сплавление с оксидами и карбонатами активных металлов:

Сr2O3 + МgО = Мg(СrO2)2

Сr2O3 + Na2CO3 = 2NaCrO2 + CO2

Образующиеся метахромиты являются производными метахромистой кислоты НСrO2.

3. Получение хлорида хрома (III):

Сr2O3 + ЗС + 3Cl2 = 2СrСl3 + ЗСО

Сr2O3 + ЗССl4 = 2СrСl3 + ЗСОСl2

Образуется в виде синевато-серого осадка при действии щелочей на соли Сr3+:

СrСl3 + 3NaOH = Сr(ОН)3 + 3NaCl

Практически нерастворимый в воде гидроксид может существовать в виде коллоидных растворов.

В твердом состоянии гидроксид хрома (III) имеет переменный состав Сr2O3• nН2O. Теряя молекулу воды, Сr(ОН)3 превращается в метагидроксид СrО(ОН).

Сr(ОН)3 – амфотерный гидроксид, способный растворяться как в кислотах, так и в щелочах:

Cr(OH)3 + 3HCl = СrСl3 + ЗН2O

Сr(ОН)3 + ЗН+ = Сr3+ + ЗН2O

Сr(ОН)3 + 3NaOH = Na3(Cr(OH)6]

Сr(ОН)3 + ЗОН- = [Cr(OH)6]3-гексагидроксохромитанион

При сплавлении с твердыми щелочами образуются метахромиты:

Сr(ОН)3 + NaOH = NaCrO2 + 2Н2O

Растворением осадка Сr(ОН)3 в кислотах получают нитрат Cr(NO3)3, хлорид СrСl3, сульфат Cr2(SO4)3 и другие соли. В твердом состоянии чаще всего содержат в составе молекул кристаллизационную воду, от количества которой зависит окраска соли.

Самой распространенной является двойная соль КСr(SO4)2• 12H2O – хромокалиевые квасцы (сине-фиолетовые кристаллы).

Хромиты, или хроматы (III) – соли, содержащие Сr3+ в составе аниона. Безводные хромиты получают сплавлением Сr2O3 с оксидами двухвалентных металлов:

Сr2O3 + МеО = Ме(СrO2)2 метахромиты

В водных растворах хромиты существуют в виде гидроксокомплексов.

К наиболее характерным свойствам солей Cr(III) относятся следующие:

1. Осаждение катиона Сг3+ под действием щелочей:

Сr3+ + ЗОН- = Сr(ОН)3

Характерный цвет осадка и его способность растворяться в избытке щелочи используется для отличия ионов Сг3+ от других катионов.

2. Легкая гидролизуемость в водных растворах, обусловливающая сильнокислый характер среды:

Сr3+ + Н2O = СrОН2+ + Н+

Соли Сr (III) с анионами слабых и летучих кислот в водных растворах не существуют; так как подвергаются необратимому гидролизу, например:

Cr2S3 + 6Н2O = 2Сr(ОН)3 + 3H2S

3. Окислительно-восстановительная активность:

а) окислитель: соли Cr(III) → соли(VI)

см. «Получение солей Cr(VI)»

б) восстановительь: соли Cr(III) → соли(II)

см. «Получение солей Cr(II)»

4. Способность к образованию комплексных соединений – аммиакатов и аквакомплексов, например:

СrСl3 + 6NH3 = [Cr(NH3)6]Cl3

Соединения Cr(VI)

Кристаллическое вещество темно-красного цвета, очень гигроскопичное, легко растворимое в воде. Основной способ получения:

К2Сr2O7(кр.) + H2SO4 = 2CrO3 + K2SO4 + Н2O

СrО3 – кислотный оксид, активно взаимодействует с водой и щелочами, образуя хромовые кислоты и хроматы.

Хромовый ангидрид – чрезвычайно энергичный окислитель. Например, этанол воспламеняется при соприкосновении с СrO3:

С2Н6ОН + 4СrO3 = 2CO2 + ЗН2O + 2Сr2O3

Продуктом восстановления хромового ангидрида, как правило, является Сr2O3.

Хромовые кислоты – Н2СrO4, Н2Сr2O7.

При растворении CrO3 в воде образуются 2 кислоты:

CrO3 + Н2O = Н2СrO4 хромовая

2CrO3 + Н2O = Н2Сr2O7 дихромовая

Обе кислоты существуют только в водных растворах. Между ними устанавливается равновесие:

2Н2СrO4 = Н2Сr2O7 + Н2O

Обе кислоты очень сильные, по первой ступени диссоциированы практически полностью:

Н2СrO4 = Н+ + НCrO4-

Н2Сr2O7 = Н+ + НСr2O7-

Хроматы (VI)
– соли, содержащие анионы хромовой кислоты CrO42-. Почти все имеют желтую окраску (реже – красную). В воде хорошо растворяются только хроматы щелочных металлов и аммония. Хроматы тяжелых металлов н. р. в Н2O. Наиболее распространены: Na2CrO4, К2CrO4, РЬCrO4 (желтый крон).

1. Сплавление CrO3 с основными оксидами, основаниями:

CrO3 + 2NaOH = Na2CrO4 + Н2O

2. Окисление соединений Cr(III) в присутствии щелочей:

2К3[Сr(ОН)6]+ ЗВr2+ 4КОН = 2К2СrO4 + 6КВr + 8Н2O

3. Сплавление Сr2O3 со щелочами в присутствии окислителя:

Сr2О3 + 4КOН + КClO3 = 2К2СrO4 + KCl + 2Н2O

Хроматы существуют только в разбавленных щелочных растворах, которые имеют желтую окраску, характерную для анионов СrO42-. При подкислении раствора эти анионы превращаются в оранжевые дихромат-анионы:

2СrO42- + 2Н+ = Сr2O72- + Н2O Это равновесие мгновенно сдвигается в ту или иную сторону при изменении рН растворов.

Хроматы – сильные окислители.

При нагревании хроматы тяжелых металлов разлагаются; например:

4Нg2СrO4 = 2Сr2O3 + 8Нg + 5O2

Дихроматы (VI)
– соли, содержащие анионы дихромовой кислоты Сr2O72-

В отличие от монохроматов имеют оранжево-красную окраску и обладают значительно лучшей растворимостью в воде. Наиболее важные дихроматы – К2Сr2O7, Na2Cr2O7, (NH4)2Cr2O7.

Их получают из соответствующих хроматов под действием кислот, даже очень слабых, например:

2Na2CrO4 + 2СO2 + Н2O → Na2Cr2O7 + 2NaHCO3

Водные растворы дихроматов имеют кислую среду вследствие устанавливаемого равновесия с хроматанионами (см. выше). Окислительные свойства дихроматов наиболее сильно проявляются в подкисленных растворах:

Сr2O72- + 14Н+ + 6e- = 2Сr3+ + 7Н2O

При добавлении восстановителей к кислым растворам дихроматов окраска резко изменяется от оранжевой до зеленой, характерной для соединений Сг3+.

K2Cr2O7 + 14HCl = 2CrCl3 + 3Cl2↑ + 2KCl +7Н2О

K2Cr2O7 + 3H2S + 4H2SO4 = Cr2(SO4)3 + 3S↓ + K2SO4

K2Cr2O7 + 3SO2 + H2SO4 = Cr2(SO4)3 + K2SO4 + H2O

Эта реакция используется для получения хромокалиееых квасцов KCr(SO4)2 • 12H2O

K2Cr2O7 + 6HI + 4H2SO4 = Cr2(SO4)3 + 3I2↓ + K2SO4 + 7H2O

K2Cr2O7 + 6FeSO4 +7H2SO4 = 3Fe2(SO4)3 + Cr2(SO4)3 + K2SO4 + 7H2O

K2Cr2O7 + H2O2 + 4H2SO4 = Cr2(SO4)3 + K2SO4 + 3O2↑ + 7H2O

2K2Cr2O7 + 3CH3OH + 8H2SO4 = Cr2(SO4)3 + 3HCOOH + 2K2SO4 + 11H2O

8K2Cr2O7 + 3C12H22O11 + 32H2SO4 = 8Cr2(SO4)3 + 12CO2↑ + 8K2SO4 + 43H2O

Сплавление:

Na2Cr2O7 + 2C = Cr2O3 + Na2CO3 + CO↑

Очень сильным окислителем является «хромовая смесь» – насыщенный раствор K2Cr2O7 или Na2Cr2O7 в концентрированной H2SO4.

Источник