Какими свойствами обладает клетка из каких процессов

Какими свойствами обладает клетка из каких процессов thumbnail

Вспомните:

1. Вопрос

Что общего в строении всех живых организмов?

Ответ:

Общим в строении всех живых организмов является клетка — элементарная биологическая единица, структурно — функциональная основа всего живого. Клетка осуществляет самостоятельный обмен веществ, способна к делению (воспроизводству) и саморегуляции. Каждая клетка является микроносителем жизни, поскольку в ней заключена такая генетическая информация, которая достаточна для воспроизведения всего организма.

2. Вопрос

Чем животные клетки отличаются от растительных?

Ответ:

Особенность строения растительной клетки:

— есть пластиды;

— присутствует прочная целлюлозная оболочка;

— автотрофный тип питания, запасной углевод — крахмал;

— синтез макроэргических соединений, который происходит в хлоропластах и митохондриях;

— наличие крупных вакуолей;

— ядерный центр присутствует только у низших растений;

— минеральные соли находятся в виде кристаллов (включений).

Особенность строения животной клетки:

— пластиды отсутствуют;

— непрочная клеточная оболочка, которая называется гликокаликсом;

— гетеротрофный тип питания, запасной углевод — гликоген;

— синтез макроэргических соединений (атф) осуществляется исключительно в митохондриях;

— вакуоли только мелкие, крупные отсутствуют;

— ядерный центр есть у всех эукариот;

— минеральные соли растворены в цитоплазме.

1. Вопрос

Назовите основные части клетки и объясните их назначение.

Ответ:

Основные части клетки: цитоплазма и ядро.

Важнейшая роль бесцветной полужидкой цитоплазмы — объединение всех клеточных структур (компонентов) и обеспечение их химического взаимодействия. Она выполняет и другие функции, в частности, поддерживает тургор клетки.

В ядре содержатся одно или несколько ядрышек, которые, в свою очередь, синтезируют белок и структуры рнк, так же в ядре находятся хромосомы. Они содержат гены, определяющие наследственность организма

2. Вопрос

Какую функцию выполняют клеточные органоиды? Заполните таблицу в рабочей тетради.

Какую функцию выполняют клеточные органоиды? Заполните таблицу в рабочей тетради

3. Вопрос

Из каких основных веществ состоит клетка?

Ответ:

Клетка состоит из неорганических и органических веществ.

Неорганические вещества — это вода и минеральные соли. Особенностью клеток живых организмов является наличие органических веществ. Наиболее важные из них — белки, жиры, углеводы и нуклеиновые, кислоты (дезоксирибонуклеиновая кислота — днк и рибонуклеиновая кислота — рнк). Белки, жиры и углеводы — основной строительный материал цитоплазмы, ядра и органоидов.

4. Вопрос

Может ли клетка функционировать без воды? Ответ объясните.

Ответ:

Основное содержимое клетки это цитоплазма с органоидами. Основное вещество цитоплазмы — вода. Многие вещества цитоплазмы: минеральные соли, глюкоза, аминокислоты образуют истинный раствор, белки — коллоидный. Цитоплазма постоянно движется, перетекает внутри живой клетки, перемещая вместе с собой различные вещества, включения и органоиды.

Если клетку лишить воды, то цитоплазма перестанет существовать, что приведет к гибели клетки.

5*. Вопрос

Прочитайте в приложении текст «о ферментах*. Выполните описанные там опыты и объясните, почему вареный картофельный клубень не способен разложить пероксид водорода. Ответьте на вопрос: стоит ли кипятить белье в мыльном порошке, содержащем ферменты? Поясните ответ.

Ответ:

Вареный клубень картофеля не способен разложить пероксид водорода потому, что фермент каталаза, разлагающий пероксид водорода — это белок, который при кипячении утрачивает свою силу вследствии денатурации.

Ферменты — это белки, которые при высокой температуре подвергаются процессу денатурации — разрушения, и теряют свою эффективность. На пачках мыльного стирального порошка содержащего специальные вещества — ферменты расщепляющие жиры и очищающие ткань от жирных загрязнений, всегда указана температура воды для стирки.

6*. Вопрос

Какими свойствами обладает клетка? Из каких процессов складывается происходящий в ней обмен веществ? В чем проявляется возбудимость клетки?

Ответ:

К общим свойствам клеток организма, поддающимся объективной регистрации и обуславливающим их функции, относят:

— раздражимость — способность клетки отвечать на раздражитель физической, химической или электрической природы;

— возбудимость — способность клетки отвечать реакцией возбуждения на действие раздражителя;

— проводимость — волна возбуждения, распространяющаяся по клеточной поверхности от места действия раздражителя;

— сократимость — укорочение клетки в ответ на раздражение;

— поглощение и усвоение — способность клетки поглощать и использовать питательные вещества с ее поверхности;

— секрецию — способность клетки синтезировать новые вещества и выделять их для использования другими клетками организма;

— экскрецию — способность клетки выделять через свою поверхность конечные продукты метаболизма — чужеродные вещества, остатки клеточных органелл;

— дыхание — способность окислять пищевые вещества, высвобождая из них энергию,

Рост — увеличение массы;

— размножение — воспроизводство подобных клеток.

Обмен веществ между клеткой и внешней средой происходит через кровь и идет постоянно. Кровь приносит к клетке различные питательные вещества, кислород. Из этих питательных веществ образуются более сложные органические вещества (белки, жиры, углеводы) — клетка растет, а затем делится (размножается). Энергия, освободившаяся в результате биологического окисления органических веществ, идет на синтез молекул атф, а затем используется по мере надобности. Продукты распада и окисления органических веществ — более простые органические и неорганические соединения (вода, углекислый газ, мочевина и др.) — выводятся из клетки, а затем из организма.

Клетка обладает возбудимостью, т. е. Способностью реагировать на различные раздражители деятельностью, определенной наследственностью. При возбуждении мышечные клетки сокращаются, железистые клетки выделяют различные жидкости, например пот, слюну или желудочный сок, нервные клетки вырабатывают нервные импульсы — электрохимические сигналы, регулирующие работу органов.

7. Вопрос

Какую роль выполняют молекулы атф?

Читайте также:  Определение состава и свойств какого либо вещества

Ответ:

При расщеплении молекулы атф выделяется энергия необходимая для осуществления жизненных функций в клетке. Синтез атф осуществляется главным образом в митохондриях (животная клетка) и хлоропластах (растительная клетка). Образовавшаяся атф направляется в те участки клетки, где возникает потребность в энергии. Атф — это главный универсальный поставщик энергии в клетках всех живых организмов.

8. Вопрос

Как происходит деление клетки?

Ответ:

Деление клетки начинается с расхождения центриолей — двух особых телец клеточного центра к разным полюсам клетки. От каждой из них отходят нити веретена деления. Хромосомы скручиваются в спираль. Ядерная оболочка исчезает, и хромосомы оказываются в цитоплазме, выстраиваясь у экватора. К парным хромосомам подходят нити веретена деления, соединяя каждую хромосому пары со своей центриолью. Когда хромосомы начинают расходиться, каждая из них направляется к своей центриоли. В образующихся при этом дочерних клетках оказывается по 46 хромосом, причем каждая дочерняя клетка получает одинаковые молекулы днк, а следовательно, и одинаковые гены. После расхождения хромосомы раскручиваются. Наряду с расхождением хромосом происходит деление органоидов цитоплазмы и синтез новых структур. В результате образуется ядерная оболочка в каждой из дочерних клеток, цитоплазма перешнуровывается, и вокруг каждой из только что образованных клеток возникает клеточная мембрана. Каждая образовавшаяся клетка растет и развивается.

9. Вопрос

Чем отличается рост от развития?

Ответ:

Рост клетки — это увеличение ее размеров и массы;

Развитие клетки — это процесс ее созревания, в результате которого клетка специализируется, становится способной совершать свойственную ей работу (функцию): сокращаться, выделять сок и др.

Источник

Клетка – это элементарная часть организма, способная к самостоятельному существованию, самовоспроизводству и развитию. Все живые организмы (за исключением вирусов) состоят из клеток и в данной статье пойдет речь о клетке, ее строении и общих свойствах

Что такое клетка?

Клетка – основа строения и жизнедеятельности всех живых организмов и растений. Клетки могут существовать как самостоятельные организмы, так и в составе многоклеточных организмов ( клетки ткани ). Термин «Клетка» предложен английским микроскопистом Р. Гуком (1665). Клетка — предмет изучения особого раздела биологии — цитологии. Активное и систематизированное изучение клеток началось в девятнадцатом. Одной из крупнейших научных теорий того времени была Клеточная теория, утверждавшая единство строения всей живой природы. Изучение любой жизни на клеточном уровне лежит в основе современных биологических исследований.

В строении и функциях каждой клетки обнаруживаются признаки, общие для всех клеток, что отражает единство их происхождения из первичных органических веществ. Частные особенности различных клеток — результат их специализации в процессе эволюции. Так, все клетки одинаково регулируют обмен веществ, удваивают и используют свой наследственный материал, получают и утилизируют энергию. В то же время разные одноклеточные организмы (амёбы, туфельки, инфузории и т.д.) довольно сильно различаются размерами, формой, поведением. Не менее резко различаются клетки многоклеточных организмов. Так, у человека имеются лимфоидные клетки — небольшие (диаметром около 10 мкм) округлые клетки, участвующие в иммунологических реакциях, и нервные клетки, часть которых имеет отростки длиной более метра; эти клетки осуществляют основные регуляторные функции в организме.

Первым цитологическим методом исследования была микроскопия живых клеток. Современные варианты прижизненной световой микроскопии — фазово-контрастная, люминесцентная, интерференционная и др. — позволяют изучать форму клеток и общее строение некоторых её структур, движение клеток и их деление. Детали строения клетки обнаруживаются лишь после специального контрастирования, что достигается окраской убитой клетки. Новый этап изучения структуры клетки — электронная микроскопия, имеющая значительно большее разрешение структуры клетки по сравнению со световой микроскопией. Химический состав клеток изучается цито – и гистохимическими методами, позволяющими выяснить локализацию и концентрацию вещества в клеточных структурах, интенсивность синтеза веществ и их перемещение в клетках. Цитофизиологические методы позволяют изучать функции клеток.

Более подробно можно узнать в статье Методы цитологии. Клеточная теория

Общие свойства клеток

В любой клетке различаются две основные части — ядро и цитоплазма, в которых, в свою очередь, можно выделить структуры, различающиеся по форме, размерам, внутреннему строению, химическим свойствам и функциям. Одни из них — так называемые органоиды — жизненно необходимы клетке и обнаруживаются во всех клетках. Другие — продукты активности клеток, представляют временные образования. В специализированных структурах осуществляется разделение различных биохимических функций, что способствует осуществлению в одной и той же клетке различных процессов, включающих синтез и распад многих веществ.

В ядерных органоидах — хромосомах, в их основном компоненте — ДНК, хранится вся генетическая информация о строении белков, свойственных организму определённого вида. Другое важнейшее свойство ДНК — способность к самовоспроизведению, что обеспечивает как стабильность наследственной информации, так и её непрерывность — передачу следующим поколениям. На ограниченных участках ДНК, охватывающих несколько генов, как на матрицах, синтезируются рибонуклеиновые кислоты — непосредственные участники синтеза белка. Перенос (Транскрипция) кода ДНК происходит при синтезе информационных РНК (и-РНК).

Синтез белка представляется как считывание информации с матрицы РНК. В этом процессе, называемом трансляцией, принимают участие транспортные РНК (т-РНК) и специальные органоиды — рибосомы, образующиеся в ядрышке. Размеры ядрышка определяются главным образом потребностью клетки в рибосомах; поэтому особенно велико оно в клетках, интенсивно синтезирующих белок. Синтез белка — конечный итог реализации функций хромосом — осуществляется главным образом в цитоплазме. Белки — ферменты, детали структур и регуляторы разных процессов, включая и транскрипцию — определяют в конечном счёте все стороны жизни клеток, позволяя им сохранять свою индивидуальность, несмотря на постоянно меняющееся окружение.

Читайте также:  Какие свойства животного организма

Если в бактериальной клетке синтезируется около 1000 различных белков, то почти в любой клетке человека — свыше 10000. Таким образом, разнообразие внутриклеточных процессов в ходе эволюции организмов существенно увеличивается.

Оболочка ядра, отделяющая его содержимое от цитоплазмы, состоит из двух мембран, пронизанных порами — специализированных участков для транспорта некоторых соединений из ядра в цитоплазму и обратно. Другие вещества проходят сквозь мембраны путём диффузии или активного транспорта, требующего затрат энергии. Многие процессы происходят в цитоплазме клетки при участии мембран эндоплазматической сети — основной синтезирующей системы клетки, а также комплекса Гольджи и митохондрий.

Отличия мембран разных органоидов определяются свойствами образующих их белков и липидов. К некоторым мембранам эндоплазматической сети прикреплены рибосомы; здесь происходит интенсивный синтез белка. Такая гранулярная эндоплазматическая сеть особенно развита в клетках, секретирующих или интенсивно обновляющих белок, например у человека в клетках печени, поджелудочной железы, нервных клеток. В состав других биологических мембран, лишённых рибосом, входят ферменты, участвующие в синтезе углеводно-белковых и липидных комплексов.

В каналах эндоплазматической сети могут временно накапливаться продукты деятельности клеток; в некоторых клетках по каналам происходит направленный транспорт веществ. Перед выведением из клетки, вещество концентрируется в пластинчатом комплексе (комплексе Гольджи). Здесь обособляются различные включения клетки, например, секреторные или пигментные гранулы, образуются лизосомы — пузырьки, содержащие гидролитические ферменты и участвующие во внутриклеточном переваривании многих веществ. Система окруженных мембранами каналов, вакуолей и пузырьков представляет единое целое. Так, эндоплазматическая сеть может без перерыва переходить в мембраны, окружающие ядро, соединяться с цитоплазматической мембраной, формировать комплекс Гольджи. Однако связи эти нестабильны. Нередко, а во многих клетках обычно разные мембранные структуры разобщены и обмениваются веществами через гиалоплазму. Энергетика клетки во многом зависит от работы митохондрий.

Число митохондрий в клетках разного типа колеблется от десятков до нескольких тысяч. Например, в печёночной клетке человека около 2 тыс. митохондрий; их общий объём не менее 20% объёма клетки. Внешняя мембрана митохондрии отграничивает её от цитоплазмы, на внутренней — происходят основные энергетические превращения веществ, в результате которых образуется соединение, богатое энергией, — аденозинтрифосфорная кислота (АТФ) — универсальный переносчик энергии в клетках. Митохондрии содержат ДНК и способны к самовоспроизведению; однако автономность митохондрий относительна, их репродукция и деятельность зависят от ядра. За счет энергии АТФ в клетках осуществляются различные синтезы, транспорт и выделение веществ, механическая работа, регуляция процессов и т.д.

В делении клеток, а иногда и в их движении, участвуют структуры, имеющие вид трубочек субмикроскопических размеров. «Сборка» таких структур и их функционирование зависят от центриолей, при участии которых организуется Веретено деления клетки, с чем связано перемещение хромосом и ориентация оси деления клетки. Базальные тельца — производные центриолей — необходимы для построения и нормальной работы жгутиков и ресничек — локомоторных и чувствительных образований клетки, строение которых у простейших и в различных клетках многоклеточных однотипно.

От внеклеточной среды клетка отделена плазматической мембраной, через которую происходит поступление ионов и молекул в клетку и выведение их из клетки. Отношение поверхности клетки к ее объему уменьшается с увеличением объема, и чем крупнее клетка, тем более затруднены ее связи с внешней средой. Величина клетки не может быть особенно большой.

Для живых клеток характерен активный транспорт ионов, требующий затраты энергии, специальных ферментов и, возможно, переносчиков. Благодаря активному и избирательному переносу в клетку одних ионов и непрерывному удалению из нее других, создается разность концентраций ионов в клетке и окружающей среде. Этот эффект может быть обусловлен и связыванием ионов компонентами клетки. Многие ионы необходимы как активаторы внутриклеточных синтезов и как стабилизаторы структуры органоидов. Обратимые изменения соотношения ионов в клетке и среде лежат в основе биоэлектрической активности клетки — одного из важных факторов передачи сигналов от одной клетки к другой. Образуя вмятины, которые затем замыкаются и отделяются в виде пузырьков внутрь клетки, плазматическая мембрана способна захватывать растворы крупных молекул или даже отдельные частицы величиной в несколько мкм. Так осуществляется питание некоторых клеток, перенос веществ через клетку, захват бактерий фагоцитами. Со свойствами плазматической мембраны связаны и силы сцепления, удерживающие во многих случаях клетки друг около друга, например, в покровах тела или внутренних органах. Сцепление и связь клеток обеспечиваются химическим взаимодействием мембран и специальными структурами мембраны — десмосомами.

Рассмотренная в общей форме схема строения клеток свойственна в основных чертах как животным, так и растительным клеткам. Но есть и существенные различия в особенностях метаболизма и строения растительных и животных клеток.

Клетка (растения, животного, гриба) строениеКлетка (растения, животного, гриба) строение

Клетки растений

Поверх плазматической мембраны растительные клетки покрыты твёрдой внешней оболочкой (она может отсутствовать лишь у половых клеток), состоящей у большинства растений главным образом из полисахаридов: целлюлозы, пектиновых веществ и гемицеллюлоз, а у грибов и некоторых водорослей — из хитина. Оболочки снабжены порами, через которые с помощью выростов цитоплазмы соседние клетки связаны друг с другом. Состав и строение оболочки меняются по мере роста и развития клеток. Часто у клеток, прекративших рост, оболочка пропитывается лигнином, кремнезёмом или другим веществом, которое делает её более прочной. Оболочки клеток определяют механические свойства растения. Клетки некоторых растительных тканей отличаются особенно толстыми и прочными стенками, сохраняющими свои скелетные функции после гибели клетки. Дифференцированные растительные клетки имеют несколько вакуолей или одну центральную вакуоль, занимающую обычно большую часть объёма клетки. Содержимое вакуолей — раствор различных солей, углеводов, органических кислот, алкалоидов, аминокислот, белков, а также запас воды. В вакуолях могут откладываться питательные вещества. В цитоплазме растительной клетки имеются специальные органоиды — пластиды, лейкопласты (в них часто откладывается крахмал), хлоропласты (содержат преимущественно хлорофилл и осуществляют Фотосинтез) и хромопласты (содержат пигменты из группы каротиноидов). Пластиды, как и митохондрии, способны к самовоспроизведению. Комплекс Гольджи в растительной клетке представлен рассеянными по цитоплазме диктиосомами.

Читайте также:  Какие свойства характерны для водной среды обитания

Одноклеточные организмы

В строении и функциях одноклеточных, или простейших, черты, свойственные любой клетке, сочетаются с признаками самостоятельных организмов. Так, у простейших такой же набор органоидов, как и у многоклеточных; идентично и ультрастроение их органоидов; при делении простейших в них обнаруживаются типичные хромосомы. Однако приспособление простейших к разным средам обитания (водной или наземной, к свободному или паразитическому существованию) обусловило существенное разнообразие их строения и физиологии. Многие простейшие (жгутиковые, инфузории) обладают сложным двигательным аппаратом и имеют органеллы, связанные с захватом пищи и пищеварением. Изучение простейших представляет большой интерес для выяснения филогенетических возможностей клеток: эволюционные изменения организма протекают у них на клеточном уровне.

В отличие от простейших и многоклеточных организмов, бактерии, синезеленые водоросли, актиномицеты не имеют оформленного ядра и хромосом. Их генетический аппарат, называется нуклеоидом, представлен нитями ДНК и не окружен оболочкой. Еще более отличаются от многоклеточных организмов и от простейших вирусы, у которых отсутствуют основные, необходимые для обмена веществ ферменты. Поэтому вирусы могут расти и размножаться, лишь проникая в клетки и используя их ферментные системы.

Специальные функции клеток

В процессе эволюции многоклеточных возникло разделение функций между клетками, что привело к расширению возможностей приспособления животных и растений к меняющимся условиям среды. Закрепившиеся наследственно различия в форме клеток, их размерах и некоторых сторонах метаболизма реализуются в процессе индивидуального развития организма. Основное проявление развития — дифференцировка клетки, их структурная и функциональная специализация. Дифференцированные клетки имеют такой же набор хромосом, как и оплодотворенная яйцеклетка. Это доказывается пересадкой ядра дифференцированной клетки в предварительно лишенную ядра яйцеклетку, после чего может развиваться полноценный организм. Таким образом, различия между дифференцированными клетками обусловливаются разными соотношениями активных и неактивных генов, каждый из которых кодирует биосинтез определённого белка. Судя по составу белков, в дифференцированных клетках активна (способна к транскрипции) лишь небольшая часть (порядка 10%) генов, свойственных клеткам данного вида организмов. Среди них лишь немногие ответственны за специальную функцию клеток, а остальные обеспечивают общеклеточные функции. Так, в мышечных клетках активны гены, кодирующие структуру сократимых белков, в эритроидных клетках — гены, кодирующие биосинтез гемоглобина, и т.д. Однако в каждой клетке должны быть активны гены, определяющие биосинтез веществ и структур, необходимых для всех клеток, например ферментов, участвующих в энергетических превращениях веществ.

В процессе специализации клетки отдельные общеклеточные функции их могут развиваться особенно сильно. Так, в железистых клетках более всего выражена синтетическая активность, мышечные — наиболее сократимы, нервные — наиболее возбудимы. В узкоспециализированных клетках обнаруживаются структуры, характерные лишь для этих клеток (например, у животных — миофибриллы мышц, тонофибриллы и реснички некоторых покровных клетках, нейрофибриллы нервных клеток, жгутики у простейших или у сперматозоидов многоклеточных организмов). Иногда специализация сопровождается утратой некоторых свойств (например, нервные клетки утрачивают способность к размножению; ядра клеток кишечного эпителия млекопитающих не могут в зрелом состоянии синтезировать РНК; зрелые эритроциты млекопитающих лишены ядра).

Выполнение важных для организма функций включает иногда гибель клеток. Так, клетки эпидермиса кожи постепенно ороговевают и гибнут, но остаются некоторое время в пласте, предохраняя подлежащие ткани от повреждения и инфекции. В сальных железах клетки постепенно превращаются в капли жира, который используется организмом или выделяется.

Для выполнения некоторых тканевых функций клетки образуют неклеточные структуры. Основные пути их образования — секреция или превращения компонентов цитоплазмы. Так, значительная по объёму часть подкожной клетчатки, хряща и кости составляет межуточное вещество — производное клетки соединительной ткани. Клетки крови обитают в жидкой среде (плазме крови), содержащей белки, сахара и др. вещества, вырабатываемые разными клетками организма. Клетки эпителия, образующие пласт, окружены тонкой прослойкой диффузно распределённых веществ, главным образом гликопротеидов (так называемый цемент, или надмембранный компонент). Внешние покровы членистоногих и раковины моллюсков — также продукты выделения клеток. Взаимодействие специализированных клеток — необходимое условие жизни организма и нередко самих этих клеток. Лишённые связей друг с другом, например в культуре, клетки быстро утрачивают особенности присущих им специальных функций.

Читайте так же 

  • Клетка и ее строение

  • Деление и обновление клеток

Источник krovanalis.ru

Источник