Какими свойствами обладает касательная к окружности
- Главная
- Справочники
- Справочник по геометрии 7-9 класс
- Окружность
- Касательная к окружности
Касательная к окружности – прямая, имеющая с окружностью одну общую точку, которая называется точкой касания прямой и окружности. На рисунке 1 прямая – касательная к окружности, точка Н – точка касания прямой и окружности с центром в точке О.
Свойство касательной к окружности
Теорема
Доказательство
Дано: – касательная к окружности с центром в точке О, Н – точка касания (Рис. 2).
Доказать: ОН.
Доказательство:
Предположим, что ОН. Тогда радиус ОН является наклонной к прямой . При этом перпендикуляр, проведенный из точки О к прямой , меньше наклонной ОН, тогда расстояние от центра О окружности до прямой меньше радиуса. Следовательно прямая и окружность будут иметь две общие точки, что противоречит условию: прямая – касательная. Поэтому наше предположение неверно, значит, ОН . Теорема доказана.
Отрезки касательных к окружности, проведенные из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.
Доказательство
Дано: АВ и АС – касательные к окружности с центром в точке О, В и С – точки касания (Рис. 3).
Доказать: АВ = АС и 3 =4.
Доказательство:
1 =2 = 900, т.к. ОВАВ, ОСАС по теореме о свойстве касательной (смотри выше), поэтому АВО и АСО прямоугольные. При этом ОВ = ОС (радиусы), АО – общая, следовательно, АВО =АСО (по гипотенузе и катету). Из равенства треугольников следует, что АВ = АС и 3 =4. Что и требовалось доказать.
Теорема, обратная теореме о свойстве касательной (признак касательной)
Теорема
Доказательство
Дано: ОН – радиус окружности с центром в точке О, Н, ОН (Рис. 4).
Доказать: – касательная.
Доказательство:
По условию радиус ОН , поэтому расстояние от центра окружности до прямой равно радиусу, и, следовательно, прямая и окружность имеют только одну общую точку, значит, данная прямая является касательной к окружности (по определению касательной). Теорема доказана.
Задача
Через данную точку А окружности с центром О провести касательную к этой окружности.
Дано: точка А лежит на окружности с центром в точке О.
Провести касательную к окружности так, что А.
Решение:
Строим с помощью циркуля окружность с центром в точкеО, отмечаем на данной окружности точку А.
Далее проводим прямую ОА и строим прямую , проходящую через точку А перпендикулярно к прямой ОА. Для этого с помощью циркуля строим окружность произвольного радиуса с центром в точке А (всю окружность строить необязательно, смотри выделенное красным). Точки пересечения данной окружности с прямой ОА обозначаем буквами В и С.
Затем строим две окружности радиуса ВС с центрами в точках В и С (полностью окружности строить необязательно, смотри выделенное синим и зеленым цветом). Данные окружности пересекаются в двух точках, обозначим их Р и Q. Через точки Р и Q с помощью линейки проводим прямую , которая будет перпендикулярна к прямой ОА.
Итак, ОА, ОА – радиус, следовательно, – искомая касательная к окружности с центром в точке О радиуса ОА (по признаку касательной).
Поделись с друзьями в социальных сетях:
Советуем посмотреть:
Взаимное расположение прямой и окружности
Градусная мера дуги окружности
Теорема о вписанном угле
Свойство биссектрисы угла
Свойства серединного перпендикуляра к отрезку
Теорема о пересечении высот треугольника
Вписанная окружность
Описанная окружность
Окружность
Правило встречается в следующих упражнениях:
7 класс
Задание 664,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 690,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 693,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 7,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 23,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 712,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 725,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 795,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 892,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Задание 1105,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник
Источник
Общие сведения
Важно знать терминологию, соотношения и теоремы для решения задач этого класса. Касательной к окружности называется прямая, которая имеет с ней только одну точку соприкосновения. Прямая — это линия, не имеющая границ, т. е. она ничем не ограничена. Окружностью называется геометрическое место точек, удаленных от центра на одинаковые расстояния.
Следует отметить, что касательные бывают внешними и внутренними. Внешней называет прямая линия, проходящая с внешней стороны окружности. Внутренние касательные пересекают отрезок, который соединяет центры двух окружностей. Последний тип прямых не существует, когда два круга пересекаются. Касательные нужно уметь правильно строить, поскольку от этого зависит правильность решения задачи.
Построение касательных
Для построения касательной к окружности следует на последней отметить произвольную точку. Затем необходимо через нее провести прямую. Нужно отметить, что у круга может быть несколько таких прямых. Когда даны две окружности, тогда можно проводить не только внешние, но и внутренние. Существует определенный алгоритм, по которому можно построить первый тип:
- Начертить 2 окружности с центрами в точках О1 и О2. При этом должно соблюдаться условие r1 > r2, где r1 и r2 — радиусы I и II соответственно.
- Нарисовать III окружность с центром в О1 и радиусом r3 = r1 — r2.
- Провести 2 касательные из точки О2 к III. Они параллельны искомым, поскольку радиусы I и II уменьшаются на r2.
Существует более простая модель построения таких прямых. Для этого следует начертить один круг, а затем отметить две произвольные точки на его противоположных сторонах. Далее начертить II круг, превышающий I по радиусу. Отметить на нем точки, воспользовавшись подобием, т. е. они должны быть в тех же местах, что и на I. Затем провести прямые, которые должны соприкасаться с I и II кругами только в одной точке.
Для построения внутренних касательных существует определенная методика. В интернете можно найти много информации. В одних источниках алгоритм построения является сложным, а в других — простым. Однако есть один метод, позволяющий осуществить данную операцию. Специалисты описали его на «понятном» языке для новичков. Суть методики заключается в следующем:
- Необходимо построить два круга, которые не пересекаются, с радиусами r1 и r2. Расстояния между ними должно составлять r1 + r2.
- Соединить их центры (середины) отрезком.
- Отметить на нем среднюю точку, которая делит его на две равные части.
- Через точку, полученную на третьем шаге методики, провести прямую. Она должна иметь только одну точку соприкосновения с I и II окружностями.
- Аналогично провести еще одну прямую.
- Искомые прямые являются внутренними касательными.
Далее нужно рассмотреть некоторые свойства, на основании которых можно решать задачи и доказывать геометрические тождества.
Основные свойства
Свойства — утверждения, полученные в результате доказательства теорем о касательной к окружности. Первые нет необходимости доказывать, поскольку об этом уже позаботились математики. Они выделяют всего 4 свойства касательных к окружности:
- Если провести из одной точки две касательные к некоторой окружности, то отрезки, лежащие на них, будут равны. Искомый угол будет делиться радиусом пополам.
- Любая касательная и радиус, проведенный к ее точке, образуют прямой угол. Справедливо и обратное утверждение: радиус, который проведен в точку касания, перпендикулярен данной прямой.
- Вся секущая, умноженная на свою внешнюю часть, равна квадрату расстояния касательной, которая проведена из общей с ней точки.
- Образованный угол между касательной и секущей, эквивалентен градусной мере угла, который опирается на образованную хорду.
Для рассмотрения I свойства необходимо начертить окружность с центром О1. Затем нужно отметить точку М вне окружности. Из М провести одну прямую, которая соприкасается с кругом в точке А. Такую же операцию следует проделать и для другой касательной. Точку соприкосновения назвать В. Отрезки АМ и ВМ равны между собой.
Если провести радиусы к точкам А и В, то можно сделать вывод, что углы являются прямыми. Чтобы понять третье свойство, необходимо начертить окружность и отметить некоторую точку М за ее пределами. После этого следует из искомой точки провести секущую и касательную. Первой называется прямая, проходящая через окружность и пересекающая ее в двух точках. Для касательной точку соприкосновения необходимо обозначить А. Тогда секущая пересекает круг в точках В (ближняя) и С (дальняя). В результате этого получается такое соотношение: АМ 2 = АВ * МС.
Когда для произвольной окружности существуют касательная и секущая, тогда между ними образуется некоторый угол.
Хорда, полученная в результате прохождения через окружность, образует также угол. Он опирается на искомую хорду и является вписанным. Следовательно, по свойству градусные меры углов равны между собой. Далее нужно разобрать частные случаи, на основании которых можно сделать вывод о количестве касательных.
Когда окружность вписана в ромб, тогда их точки касания нужно рассматривать по первому свойству. Радиус окружности можно найти по следующим формулам:
- Через диагонали (d1, d2) и сторону (a): r = (d1 * d2) / 4а.
- Только по диагоналям: r = (d1 * d2) / [(d1)^2 + (d2)^2]^(½).
Следует отметить, что у ромба две диагонали. Они различаются по размеру. Одна из них больше другой (d1 > d2).
Частные случаи
В некоторых задачах нужно определить количество касательных у двух окружностей. Можно выполнить ряд сложных и трудоемких доказательств. В результате этого будет потрачено много времени, а можно воспользоваться уже готовыми дополнительными свойствами:
- Четыре касательных: круги не соприкасаются, т. е. d > r1 + r2 (значение диаметра больше суммы радиусов r1 и r2).
- Две общие внешние и одна внутренняя: окружности соприкасаются только в одной точке (d = r1 + r2).
- Только две внешние: пересечение окружностей в двух точках (|r1 — r2| < d < r1 + r2).
- Одна общая внешняя: окружности касаются внутри друг друга (d = |r1 — r2|).
- Отсутствуют: один круг находится внутри другого (d < |r1 — r2|).
В последнем случае любая касательная будет являться секущей для другой окружности. Существует еще одно положение, когда окружности совпадают. Тогда любая касательная считается общей. В высшей математике разбирается также «отрицательный» радиус. Тогда вышеперечисленные свойства можно править следующим образом:
- Нет касательных: окружности не соприкасаются, и для них выполняется условие d < – (r1 + r2).
- Две внутренние (общие) и одна внешняя: круги соприкасаются в одной точке (d = -r1 — r2).
- Одна пара внутренних: пересечение в 2 точках (|r1 — r2| > d > – r1 — r2).
- Внутренняя общая (одна): соприкасаются внутри (d = |r2 — r1|).
- Четыре: при d > |r1 — r2|.
Когда заданы окружности, радиус одной из которых равен 0, тогда «нулевой» круг эквивалентен двойной точке. Прямая является двойной и проходит через эту точку. В этом случае математики определяют всего две внешних. Если r1 = r2 = 0, то всего 4 внешних общих касательных. Далее для решения задач нужно разобрать доказательства некоторых свойств.
Доказательства утверждений
Очень важно знать доказательства некоторых свойств и теорем, поскольку одним из типов задач считаются упражнения повышенной сложности, требующие логических расчетов в общем виде. Например, нужно доказать, что касательная образует с радиусом, проведенным к точке касания, прямой угол. Существует тип доказательства от противного.
Для этого следует предположить, что искомый угол не равен 90 градусам. Пусть дана некоторая касательная р. Она имеет с кругом общую точку А. Нужно провести к ней перпендикуляр (радиус). Далее нужно провести из центра О отрезок ОВ на р. Образуется прямоугольный треугольник АВО с гипотенузой ОВ. Если опираться на утверждение от противного, то гипотенуза будет меньше катета (d < r). Однако радиус не может быть больше диаметра, поскольку он рассчитывается по следующей формуле: d = 2 * r. Следовательно, утверждение доказано.
Аналогично доказывается и обратное свойство. Его формулировка имеет такой вид: прямая, проходящая под прямым углом через точку, которая образована радиусом, является касательной. В этом случае можно доказывать не от противного. Расстояние от прямой до центра окружности эквивалентно некоторой величине и является радиусом. Из определения следует, что прямая и окружность имеют общую точку, и только одну. Следовательно, она и есть касательная.
Доказательство об отрезках, проведенных из одной точки, тоже нужно разобрать, поскольку такой прием применяется в решении сложных задач. Отрезки равны между собой и образуют с прямой, проведенной к центру круга, эквивалентные углы.
Следует выполнить построение окружности с центром Р. Далее нужно обозначить точку А за ее пределами и провести из нее лучи-касательные к искомой окружности. Они образуют на круге точки А и В. Кроме того, следует доказать равенство углов ОАВ и САО. При построении образовалось два треугольника ОВА и ОСА. Фигуры являются прямоугольными на основании свойства о касательной и радиусе.
Далее необходимо доказать равенство фигур ОВА и ОСА. Это сделать довольно просто: гипотенуза — общая, катеты ОВ и ОС равны (радиусы) и углы АВО = АСО = 90. Следовательно, они равны по первому признаку, а также эквивалентны друг другу стороны АВ и АС. Кроме того, угол ОАВ = САО. Утверждение доказано. Гипотенуза является также и биссектрисой. В некоторых источниках можно встретить доказательство равенства тангенсов углов.
Пример решения задачи
Нужно составить уравнения касательных к окружности (описанной графиком функции х 2 + y 2 = 2x + 6y + 19), проходящих через координаты х =0 у= -14. Для решения задачи следует действовать по такому алгоритму:
- Перенести все слагаемые, кроме 19, в левую сторону: х 2 + y 2 — 2x — 6y = 19.
- Выделить полный квадрат для окончательной записи уравнения окружности: х 2 — 2x + 1 — 1 + y 2 — 6y +9 — 9 = (х — 1)^2 + (y — 3)^2 = 29.
- Уравнение прямой, проходящей через (0;-14) в общем виде: y — (-14) = k * (x — 0) или у = кх — 14.
- Составить систему уравнений: (х — 1)^2 + (y — 3)^2 = 29 и у = кх — 14.
- Подставить второе в первое: (х — 1)^2 + (кх — 14 — 3)^2 = 29.
- Упростить выражение: (х — 1)^2 + (кх — 14 — 3)^2 — 29 = х 2 — 2x + 1 +k 2 * x 2 — 34kx + 289 — 29 = (1 + k 2 ) * x 2 — 2 * (17k + 1) + 261.
- Решением уравнения должен быть один корень: D/4 = 0.
- Упростить тождество: D/4 = (-(17k + 1))^2 — 261 (1 + k 2 ) = 289k 2 + 34k + 1 — 261 — 261k 2 = 28k 2 + 34k — 260 = 0.
- Найти значение D: 17 2 — 28 * (-260) = 289 + 7280 = 7569.
- Первый коэффициент к1 = (-17 — 87) / 28 = -26/7.
- Коэффициент к2 = (-17 + 87) / 28 = 5/2.
- Записать уравнения прямых с учетом к1 и к2: у1 = (-26/7) * х — 14 (26х + 7у + 98 = 0) и у2 = (5/2) * х — 14 (5х — 2у — 28 = 0).
Следует отметить, что уравнение окружности с радиусом, равным единице, описывается функцией x2 + y 2 = 1. Эта запись применяется для решения задач в общем виде. Прямая — функция, описанная прямой пропорциональностью у = кх + b. Чтобы связать окружность и касательные, нужно составить систему уравнений. Этот математический ход объясняется тем, что у функций должны быть общие решения (точка на окружности). После решения можно выполнить проверочные вычисления, подставив корни в систему.
Таким образом, для решения задач об окружности и касательной следует знать общие понятия, а также основные свойства и теоремы.
Источник
Относительное положение прямой и окружности
Прямая относительно окружности может находиться в следующих трех положениях:
- Расстояние от центра окружности до прямой больше радиуса. В этом случае все точки прямой лежат вне круга.
- Расстояние от центра окружности до прямой меньше радиуса. В этом случае прямая имеет точки, лежащие внутри круга и так как прямая бесконечна в обе стороны, то она пересекается сокружностью в 2 точках.
- Расстояние от центра окружности до прямой равно радиусу. Прямая – касательная.
Прямая, имеющая с окружностью только одну общую точку, называется касательной к окружности.
Общая точка называется в этом случае точкой касания.
Возможность существования касательной, и притом проведенной через любую точку окружности, как точку касания, доказывается следующей теоремой.
Теорема. Если прямая перпендикулярна к радиусу в его конце, лежащем на окружности, то эта прямая – касательная.
Пусть O (рис) – центр некоторого круга и OA какой-нибудь его радиус. Через его конец A проведем MN ^ OA.
Требуется доказать, что прямая MN – касательная, т.е. что эта прямая имеет с окружностью только одну общую точку A.
Допустим противное: пусть MN имеет с окружностью еще другую общую точку, например B.
Тогда прямая OB была бы радиусом и, следовательно, равнялась бы OA.
Но этого быть не может, так как, если OA -перпендикуляр, то OB должна быть наклонной к MN, а наклонная больше перпендикуляра.
Обратная теорема. Если прямая касательна к окружности, то радиус, проведенный в точку касания, перпендикулярен к ней.
Пусть MN – касательная к окружности, A – точка касания и O – центр этой окружности.
Требуется доказать, что OA^MN.
Допустим противное, т.е. предположим, что перпендикуляром, опущенным из O на MN, будет не OA , а какая-нибудь другая прямая, например, OB.
Возьмем BС = AB и проведем OС.
Тогда OA и OС будут наклонные, одинаково удаленные от перпендикуляра OB, и следовательно, OС = OA.
Из этого следует, что окружность, учитывая наше предположение, будет иметь с прямой MN две общие точки: A и С , т.е. MN будет не касательная, а секущая, что противоречит условию.
Следствие. Через всякую данную на окружности точку можно провести касательную к этой окружности и притом только одну, так как через эту точку можно провести перпендикуляр, и притом только один, к радиусу, проведенному в нее.
Теорема. Касательная, параллельная хорде, делит в точке касания дугу, стягиваемую хордой, пополам.
Пусть прямая AB (рис.) касается окружности в точке M и параллельна хорде СD.
Требуется доказать, что ÈCM = ÈMD.
Проведя через точку касания диаметр ME, получаем: EM ^ AB, и следовательно, EM ^ СВ.
Поэтому СM=MD.
Задача. Через данную точку провести касательную к данной окружности.
Если данная точка находится на окружности, то проводят через нее радиус и через конец радиуса перпендикулярную прямую. Эта прямая будет искомой касательной.
Рассмотрим тот случай, когда точка дана вне круга.
Пусть требуется (рис.) провести к окружности с центром O касательную через точку A.
Для этого из точки A, как из центра, описываем дугу радиусом AO, а из точки O, как центра, пересекаем эту дугу в точках B и С раствором циркуля, равным диаметру данного круга.
Проведя затем хорды OB и OС, соединим точку A с точками D и E, в которых эти хорды пересекаются с данной окружностью.
Прямые AD и AE – касательные к окружности O.
Действительно, из построения видно, что тр-ки AOB и AOС равнобедренные (AO = AB =AС ) с основаниями OB и OС, равными диаметру круга O.
Так как OD и OE – радиусы, то D – середина OB, а E – середина OС, значит AD и AE – медианы, проведенные к основаниям равнобедренных тр-ков, и потому перпендикулярны к этим основаниям. Если же прямые DA и EA перпендикулярны к радиусам OD и OE, то они – касательные.
Следствие. Две касательные, проведенные из одной точки к окружности, равны и образуют равные углы с прямой, соединяющей эту точку с центром.
Так AD=AE и ÐOAD = ÐOAE (рис.), потому что прямоугольные тр-ки AOD и AOE, имеющие общую гипотенузу AO и равные катеты OD и OE (как радиусы), равны.
Заметим, что здесь под словом “касательная” подразумевается собственно “отрезок касательной” от данной точки до точки касания.
Задача. Провести касательную к данной окружности O параллельно данной прямой AB (рис.).
Опускаем на AB из центра O перпендикуляр OС и через точку D, в которой этот перпендикуляр пересекается с окружностью, проводим EF || AB.
Искомая касательная будет EF.
Действительно, так как OС ^ AB и EF || AB, то EF ^ OD, а прямая, перпендикулярная к радиусу в его конце, лежащем на окружности – касательная.
Задача. К двум окружностям O и O1 провести общую касательную (рис.).
Анализ. Предположим, что задача решена.
Пусть AB будет общая касательная, A и B – точки касания.
Очевидно, что если мы найдем одну из этих точек, например, A, то затем легко найдем и другую.
Проведем радиусы OA и O1B. Эти радиусы, будучи перпендикулярны к общей касательной, параллельны между собой.
Поэтому, если из O1 проведем O1С || BA, то тр-к OСO1 будет прямоугольный при вершине С.
Вследствие этого, если опишем из O, как центра, радиусом OС окружность, то она будет касаться прямой O1С в точке С.
Радиус этой вспомогательной окружности известен: он равен OA – СA= OA – O1B, т.е. он равен разности радиусов данных окружностей.
Построение. Из центра O описываем окружность радиусом, равным разности данных радиусов.
Из O1 проводим к этой окружности касательную O1С (способом, указанным в предыдущей задаче).
Через точку касания С проводим радиус OС и продолжаем его до встречи с данной окружностью в точке A. Наконец из A проводим AB параллельно СO1.
Совершенно таким же способом мы можем построить другую общую касательную A1B1 (рис.). Прямые AB и A1B1 называют внешними общими касательными.
Можно еще провести две внутренние касательные следующим образом:
Анализ. Предположим, что задача решена (рис.). Пусть AB – искомая касательная.
Проведем радиусы OA и O1B в точки касания A и B. Так как эти радиусы оба перпендикулярны к общей касательной, то они параллельны между собой.
Поэтому, если из O1 проведем O1С || BA и продолжим OA до точки С, то OС будет перпендикуляр к O1С.
Вследствие этого окружность, описанная радиусом OС из точки O, как центра, будет касаться прямой O1С в точке С.
Радиус этой вспомогательной окружности известен: он равен OA+AС = OA+O1B, т.е. он равен сумме радиусов данных окружностей.
Построение. Из O как центра, описываем окружность радиусом, равным сумме данных радиусов.
Из O1 проводим к этой окружности касательную O1С.
Точку касания С соединяем с O.
Наконец через точку A, в которой OС пересекается с данной окружностью, проводим AB = O1С.
Подобным же способом можем построить другую внутреннюю касательную A1B1.
Общее определение касательной
Пусть к окружности с центром (рис.) проведены через точку A касательная AT и какая-нибудь секущая AM.
Станем вращать эту секущую вокруг точки A так, чтобы другая точка пересечения B все ближе и ближе придвигалась к A.
Тогда перпендикуляр OD, опущенный из центра на секущую, будет все больше и больше приближаться к радиусу OA, и угол AOD может стать меньше всякого малого угла.
Угол MAT, образованный секущей и касательной, равен углу AOD (вследствие перпендикулярности их сторон).
Поэтому при неограниченном приближении точки B к A угол MAT также может стать как угодно мал.
Это выражают иными словами так:
касательная есть предельное положение, к которому стремится секущая, проведенная через точку касания, когда вторая точка пересечения неограниченно приближается к точке касания.
Это свойство принимают за определение касательной, когда речь идет о какой угодно кривой.
Так, касательной к кривой AB (рис.) называется предельное положение MT, к которому стремится секущая MN, когда точка пересечения P неограниченно приближается к M.
Заметим,что определяемая таким образом касательная может иметь с кривой более одной общей точки (как это видно на рис).
Другие материалы по теме: Отрезки. Прямые
Источник