Какими свойствами обладает импульс тел составляющих замкнутую систему

Какими свойствами обладает импульс тел составляющих замкнутую систему thumbnail

Подробности

Просмотров: 85

1. Что называют импульсом тела?

Импульсом тела называется величина, равная произведению массы тела на его скорость.

Какими свойствами обладает импульс тел составляющих замкнутую систему

Какими свойствами обладает импульс тел составляющих замкнутую систему

Иногда вместо термина «импульс» используется термин «количество движения».

2. Что можно сказать о направлениях векторов импульса и скорости движущегося тела?

Импульс – векторная величина.
Направление вектора импульса тела всегда совпадает с направлением вектора скорости движения тела.

3. Что принимают за единицу импульса?

За единицу импульса в СИ принимают импульс тела массой 1 кг, движущегося со скоростью 1 м/с.
Единицей импульса тела в СИ является 1 кг • м/с.

4. Как рассчитать импульс тела?

При расчетах величины импульса тела пользуются уравнением для проекций векторов:

Какими свойствами обладает импульс тел составляющих замкнутую систему

В зависимости от направления вектора скорости по отношению к выбранной оси X и, соответственно, от знака его проекции,

проекция вектора импульса может быть как положительной, так и отрицательной.

5. Можно ли сказать, что тело обладает импульсом потому, что на него действует сила?

Нет, сила, действующая на тело, является причиной изменения импульса тела.

6. Может ли импульс тела равняться нулю?

Если скорость тела равна нулю, т.е. тело находится в состоянии покоя, то и импульс тела равен нулю.

7. О чём свидетельствует опыт?

При взаимодействии тел их импульсы могут изменяться.

Какими свойствами обладает импульс тел составляющих замкнутую систему

Два шарика одинаковой массы подвешивают на нитяных петлях к укрепленной на кольце штатива деревянной линейке.

Шарик 2 отклоняют от вертикали на угол а и отпускают.
Вернувшись в прежнее положение, он ударяет по шарику I и останавливается.
При этом шарик 1 приходит в движение и отклоняется на тот же угол а.
В результате взаимодействия шаров импульс каждого из них изменился:

на сколько уменьшился импульс правого шара, на, столько же увеличился импульс левого шара. |

Импульс каждого из тел, входящих в замкнутую систему, может меняться в результате их взаимодействия друг с другом.

8. Что такое замкнутая система тел?

Если два или несколько тел взаимодействуют только между собой, т. е. не подвергаются воздействию внешних сил, то эти тела образуют замкнутую систему.
Импульс каждого из тел, входящих в замкнутую систему, может меняться в результате их взаимодействия друг с другом.

9. Что такое незамкнутая система тел?

Незамкнутая система тел — это система тел, взаимодействующих между собой, на которую, кроме того, действуют и какие-то внешние силы.
В таком случае общий импульс системы не будет сохраняться.
Он изменяется.
А изменение импульса равно импульсу той силы, которая приложена к системе.

Например:

Стоящего на льду конькобежца может заставить сдвинуться с места (изменить импульс) толчок его товарища, то есть сила извне системы.
Но если конькобежец будет тянуть одной своей рукой другую, то это не изменит его импульс.


10. В чем состоит закон сохранения импульса?

Закон сохранения импульса:

Векторная сумма импульсов тел, составляющих замкнутую систему, не меняется с течением времени при любых движениях и взаимодействиях этих тел.

Формула закона сохранения импульса в векторном виде:

Какими свойствами обладает импульс тел составляющих замкнутую систему
где
слева – сумма импульсов тел до взаимодействия
справа – сумма импульсов тел после взаимодействия

11. В каких случаях выполняется закон сохранения импульса?

а) Закон сохранения импульса выполняется для замкнутых систем, т.е. когда на систему не действуют внешние силы.

б) Закон сохранения импульса выполняется
и в том случае, если на тела системы действуют внешние силы, но векторная сумма их равна нулю.


12. Какова формула закона сохранения импульса в виде уравнения, в которое входили бы массы и скорости этих тел, для замкнутой системы?

Формула закона сохранения импульса в векторном виде:
Какими свойствами обладает импульс тел составляющих замкнутую систему
или
Какими свойствами обладает импульс тел составляющих замкнутую систему

Расчетная формула закона сохранения импульса в проекциях векторов для решения задач:

Какими свойствами обладает импульс тел составляющих замкнутую систему

где
m1 и m2 – массы взаимодействующих тел (кг),
v1x и v2x – проекции векторов скорости тел (м/с)
(со штрихом – до взаимодействия, без штриха – после взаимодействия).

Следующая страница – смотреть

Назад в “Оглавление” – смотреть

Источник

Рассмотрим изменение импульсов тел при их взаимодействии друг с другом.

Если два или несколько тел взаимодействуют только между собой (то есть не подвергаются воздействию внешних сил), то эти тела образуют замкнутую систему.

Импульс, равный векторной сумме импульсов тел, входящих в замкнутую систему, называется суммарным импульсом этой системы.

Таким образом, чтобы найти суммарный импульс замкнутой системы (n) тел, необходимо найти векторную сумму импульсов всех тел, входящих в данную систему:

pсум→=p1→+p2→+…+pn→.

Импульс каждого из тел, входящих в замкнутую систему, может меняться в результате их взаимодействия друг с другом.

Векторная сумма импульсов тел, составляющих замкнутую систему, не меняется с течением времени при любых движениях и взаимодействиях этих тел.

В этом заключается закон сохранения импульса, который называют также законом сохранения количества движения.

Закон сохранения импульса впервые был сформулирован Р. Декартом. В одном из своих писем он написал:

Читайте также:  Железо витамины какие свойства

«Я принимаю, что во Вселенной, во всей созданной материи есть известное количество движения, которое никогда не увеличивается, не уменьшается, и, таким образом, если одно тело приводит в движение другое, то теряет столько своего движения, сколько его сообщает».

Рассмотрим систему, состоящую только из двух тел — шаров массами m1 и m2, которые движутся прямолинейно навстречу друг другу со скоростями v1 и v2. Шары обладают импульсами p1→=m1v1→ и p2→=m2v2→ соответственно.

Через некоторое время шары столкнутся. Во время столкновения, длящегося в течение очень короткого промежутка времени (t), возникнут силы взаимодействия F1→ и F2→, приложенные соответственно к первому и второму шару. В результате действия этих сил скорости шаров изменятся. Обозначим скорости шаров после соударения v1′ и v2′. И импульсы шаров станут p1→′=m1v1→′ и  p2→′=m2v2→′ соответственно.

Тогда, согласно закону сохранения импульса, имеют место равенства:

или

m1v1→+m2v2→=m1v1→′+m2v2→′.

Данные равенства являются математической записью закона сохранения импульса.

Закон сохранения импульса выполняется и в том случае, если на тела системы действуют внешние силы, векторная сумма которых равна нулю.

Таким образом, более точно закон сохранения импульса формулируется так:

векторная сумма импульсов всех тел замкнутой системы — величина постоянная, если внешние силы, действующие на неё, отсутствуют, или же их векторная сумма равна нулю.

Импульс системы тел может измениться только в результате действия на систему внешних сил. И тогда закон сохранения импульса действовать не будет.

Пример:

при стрельбе из пушки возникает отдача: снаряд летит вперёд, а само орудие откатывается назад. Почему?

Снаряд и пушка — замкнутая система, в которой действует закон сохранения импульса. В результате выстрела из пушки импульс самой пушки и импульс снаряда изменятся. Но сумма импульсов пушки и находящегося в ней снаряда до выстрела останется равной сумме импульсов откатывающейся пушки и летящего снаряда после выстрела.

Обрати внимание!

В природе замкнутых систем не существует. Но если время действия внешних сил очень мало, например, во время взрыва, выстрела и т. п., то в этом случае воздействием внешних сил на систему пренебрегают, а саму систему рассматривают как замкнутую.

Кроме того, если на систему действуют внешние силы, но сумма их проекций на одну из координатных осей равна нулю (то есть силы уравновешены в направлении этой оси), то в этом направлении закон сохранения импульса выполняется.

Великий учёный Исаак Ньютон изобрёл наглядную демонстрацию закона сохранения импульса — маятник, или её ещё называют «колыбель». Это устройство представляет собой конструкцию из пяти одинаковых металлических шаров, каждый из которых крепится с помощью двух тросов к каркасу, а тот в свою очередь — к прочному основанию П-образной формы.

Маятник Ньютона устроен так, что начальный шар передаёт импульс второму шарику, а затем замирает. Нашему глазу на первый взгляд не заметно, как следующий шарик принимает импульс от предыдущего, мы не можем проследить его скорость. Но, если взглянуть пристальнее, можно заметить, как шарик немножко «вздрагивает». Это объясняется тем, что он совершает движения с посланной ему скоростью, но поскольку расстояние очень маленькое, ему некуда разогнаться, то он может на своём коротком пути передать импульс третьему шарику и в итоге остановиться.

Такое же действие совершает и следующий шарик и т. д. Последнему шарику некуда передавать свой импульс, поэтому он свободно колеблется, поднимаясь на определённую высоту, а затем возвращается, и весь процесс передачи импульсов повторяется в обратном порядке.

Самый яркий пример применения закона сохранения импульса — реактивное движение.

Источники:

Пёрышкин А. В., Гутник Е. М. Физика, 9 кл.: учебник. — М.: Дрофа, 2014. — 319 с.
www.klassnoedelo.ru, сайт «Классное дело — новые технологии в образовании»

www.barvinok80.narod.ru, сайт дошкольного учреждения образования «Барвинок»

www.hottabich.com.ua, сайт «Hottabich»

www.thegreenhead.com, сайт «Green Head»

www.askskb.net, сайт «Интерактивная физика»

Источник

Физика
Учебник для 9 класса

   
   

Законы Ньютона позволяют решать различные практически важные задачи, касающиеся взаимодействия и движения тел. Большое число таких задач связано, например, с нахождением ускорения движущегося тела, если известны все действующие на это тело силы. А затем по ускорению определяют и другие величины (мгновенную скорость, перемещение и др.).

Но часто бывает очень сложно определить действующие на тело силы. Поэтому для решения многих задач используют ещё одну важнейшую физическую величину — импульс тела.

  • Импульсом тела р называется векторная физическая величина, равная произведению массы тела на его скорость

p = mv.

Импульс — векторная величина. Направление вектора импульса тела всегда совпадает с направлением вектора скорости движения.

За единицу импульса в СИ принимают импульс тела массой 1 кг, движущегося со скоростью 1 м/с. Значит, единицей импульса тела в СИ является 1 кг • м/с.

При расчётах пользуются уравнением для проекций векторов:

рх = mvx.

В зависимости от направления вектора скорости по отношению к выбранной оси X проекция вектора импульса может быть как положительной, так и отрицательной.

Читайте также:  Фтор какими свойствами обладает

Слово «импульс» (impulsus) в переводе с латинского означает «толчок». В некоторых книгах вместо термина «импульс» используется термин «количество движения».

Эта величина была введена в науку примерно в тот же период времени, когда Ньютоном были открыты законы, названные впоследствии его именем (т. е. в конце XVII в.).

При взаимодействии тел их импульсы могут изменяться. В этом можно убедиться на простом опыте.

Два шарика одинаковой массы подвешивают на нитяных петлях к укреплённой на кольце штатива деревянной линейке, как показано на рисунке 44, а.

Демонстрация закона сохранения импульса

Рис. 44. Демонстрация закона сохранения импульса

Шарик 2 отклоняют от вертикали на угол а (рис. 44, б) и отпускают. Вернувшись в прежнее положение, он ударяет по шарику 1 и останавливается. При этом шарик 1 приходит в движение и отклоняется на тот же угол а (рис. 44, в).

В данном случае очевидно, что в результате взаимодействия шаров импульс каждого из них изменился: на сколько уменьшился импульс шара 2, на столько же увеличился импульс шара 1.

Если два или несколько тел взаимодействуют только между собой (т. е. не подвергаются воздействию внешних сил), то эти тела образуют замкнутую систему.

Импульс каждого из тел, входящих в замкнутую систему, может меняться в результате их взаимодействия друг с другом. Но

  • векторная сумма импульсов тел, составляющих замкнутую систему, не меняется с течением времени при любых движениях и взаимодействиях этих тел

В этом заключается закон сохранения импульса.

Закон сохранения импульса выполняется и в том случае, если на тела системы действуют внешние силы, векторная сумма которых равна нулю. Покажем это, воспользовавшись для вывода закона сохранения импульса вторым и третьим законами Ньютона. Для простоты рассмотрим систему, состоящую только из двух тел — шаров массами m1 и m2, которые движутся прямолинейно навстречу друг другу со скоростями v1 и v2 (рис. 45).

Система из двух тел — шаров, движущихся прямолинейно навстречу друг другу

Рис. 45. Система из двух тел — шаров, движущихся прямолинейно навстречу друг другу

Силы тяжести, действующие на каждый из шаров, уравновешиваются силами упругости поверхности, по которой они катятся. Значит, действие этих сил можно не учитывать. Силы сопротивления движению в данном случае малы, поэтому их влияние мы тоже не будем учитывать. Таким образом, можно считать, что шары взаимодействуют только друг с другом.

Из рисунка 45 видно, что через некоторое время шары столкнутся. Во время столкновения, длящегося в течение очень короткого промежутка времени t, возникнут силы взаимодействия F1 и F2, приложенные соответственно к первому и второму шару. В результате действия сил скорости шаров изменятся. Обозначим скорости шаров после соударения буквами v1 и v2.

В соответствии с третьим законом Ньютона силы взаимодействия шаров равны по модулю и направлены в противоположные стороны:

По второму закону Ньютона каждую из этих сил можно заменить произведением массы и ускорения, полученного каждым из шаров при взаимодействии:

m1а1 = -m2а2.

Ускорения, как вы знаете, определяются из равенств:

Какими свойствами обладает импульс тел составляющих замкнутую систему

Заменив в уравнении для сил ускорения соответствующими выражениями, получим:

Какими свойствами обладает импульс тел составляющих замкнутую систему

В результате сокращения обеих частей равенства на t получим:

m1(v’1 – v1) = -m2(v’2 – v2).

Сгруппируем члены этого уравнения следующим образом:

m1v1′ + m2v2′ = m1v1 = m2v2. (1)

Учитывая, что mv = p, запишем уравнение (1) в таком виде:

P’1 + Р’2 = P1 + Р2.(2)

Левые части уравнений (1) и (2) представляют собой суммарный импульс шаров после их взаимодействия, а правые — суммарный импульс до взаимодействия.

Значит, несмотря на то, что импульс каждого из шаров при взаимодействии изменился, векторная сумма их импульсов после взаимодействия осталась такой же, как и до взаимодействия.

Уравнения (1) и (2) являются математической записью закона сохранения импульса.

Поскольку в данном курсе рассматриваются только взаимодействия тел, движущихся вдоль одной прямой, то для записи закона сохранения импульса в скалярной форме достаточно одного уравнения, в которое входят проекции векторных величин на ось X:

m1v’1x + m2v’2х= m1v1x + m2v2x.

Вопросы

  1. Что называют импульсом тела?
  2. Что можно сказать о направлениях векторов импульса и скорости движущегося тела?
  3. Расскажите о ходе опыта, изображённого на рисунке 44. О чём он свидетельствует?
  4. Что означает утверждение о том, что несколько тел образуют замкнутую систему?
  5. Сформулируйте закон сохранения импульса.
  6. Для замкнутой системы, состоящей из двух тел, запишите закон сохранения импульса в виде уравнения, в которое входили бы массы и скорости этих тел. Поясните, что означает каждый символ в этом уравнении.

Упражнение 20

  1. Две игрушечные заводные машины, массой по 0,2 кг каждая, движутся прямолинейно навстречу друг другу. Скорость каждой машины относительно земли равна 0,1 м/с. Равны ли векторы импульсов машин; модули векторов импульсов? Определите проекцию импульса каждой из машин на ось X, параллельную их траектории.
  2. На сколько изменится (по модулю) импульс автомобиля массой 1 т при изменении его скорости от 54 до 72 км/ч?
  3. Человек сидит в лодке, покоящейся на поверхности озера. В какой-то момент он встаёт и идёт с кормы на нос. Что произойдёт при этом с лодкой? Объясните явление на основе закона сохранения импульса.
  4. Железнодорожный вагон массой 35 т подъезжает к стоящему на том же пути неподвижному вагону массой 28 т и автоматически сцепляется с ним. После сцепки вагоны движутся прямолинейно со скоростью 0,5 м/с. Какова была скорость вагона массой 35 т перед сцепкой?
Читайте также:  Какой камень аметист фото свойства и значение

Источник

Какими свойствами обладает импульс тел составляющих замкнутую систему

ТОП 10:

Замкнутая система тел

Это система тел, которые взаимодействуют только друг с другом. Нет внешних сил взаимодействия.

В реальном мире такой системы не может быть, нет возможности убрать всякое внешнее взаимодействие. Замкнутая система тел – это физическая модель, как и материальная точкаявляется моделью. Это модель системы тел, которые якобы взаимодействуют только друг с другом, внешние силы не берутся во внимание, ими пренебрегают.

Закон сохранения импульса

В замкнутой системе тел векторная сумма импульсов тел не изменяется при взаимодействии тел. Если импульс одного тела увеличился, то это означает, что у какого-то другого тела (или нескольких тел) в этот момент импульс уменьшился ровно на такую же величину.

Рассмотрим такой пример. Девочка и мальчик катаются на коньках. Замкнутая система тел – девочка и мальчик (трением и другими внешними силами пренебрегаем). Девочка стоит на месте, ее импульс равен нулю, так как скорость нулевая. После того как мальчик, движущийся с некоторой скоростью, столкнется с девочкой, она тоже начнет двигаться. Теперь ее тело обладает импульсом. Численное значение импульса девочки ровно такое же, на сколько уменьшился после столкновения импульс мальчика.

Одно тело массой 20кг движется со скоростью , второе тело массой 4кг движется в том же направлении со скоростью . Чему равны импульсы каждого тела. Чему равен импульс системы?

Импульс системы тел – это векторная сумма импульсов всех тел, входящих в систему. В нашем примере, это сумма двух векторов (так как рассматриваются два тела), которые направлены в одну сторону, поэтому

Сейчас вычислим импульс системы тел из предыдущего примера, если второе тело двигается в обратном направлении.

Так как тела двигаются в противоположных направлениях, получаем векторную сумму импульсов разнонаправленных. Подробнее о сумме векторов.

4.Действие законов Ньютона на примере замкнутой системы

Первый закон Ньютона

  • Первый закон Ньютона гласит, что замкнутая система продолжает оставаться в состоянии покоя или прямолинейного равномерного движения. По сути, этот закон постулирует инертность тел. Это может казаться очевидным сейчас, но это не было очевидно на заре исследований природы. Так, например, Аристотель утверждал, что причиной всякого движения является сила, т. е. у него не было движения по инерции.

Второй закон Ньютона

  • На что на самом деле влияет сила, диктует второй закон Ньютона: сила, действующая на систему извне, приводит к ускорению системы F = ma. Заметим, что если система замкнута, то на неё не действует никаких сил, следовательно, по второму закону Ньютона, её ускорение равно нулю, а значит, она может двигаться только с постоянной скоростью. Таким образом, первый закон Ньютона является частным случаем второго.

Третий закон Ньютона

  • Третий закон Ньютона объясняет, что происходит с двумя взаимодействующими телами. Возьмём для примера замкнутую систему, состоящую из двух тел. Первое тело может действовать на второе с некоторой силой F12, а второе — на первое с силой F21. Как соотносятся силы? Третий закон Ньютона утверждает: сила действия равна по модулю и противоположна по направлению силе противодействия, F21 = −F12. Подчеркнём, что эти силы приложены к разным телам, а потому вовсе не компенсируются.

Выводы

Из законов Ньютона сразу же следуют некоторые интересные выводы. Так, третий закон Ньютона говорит, что, как бы тела ни взаимодействовали, они не могут изменить свой суммарныйимпульс: возникает закон сохранения импульса. Далее, оказывается, что многие силы вокруг нас (в частности, поле сил гравитации) обладают свойством потенциальности: работа внешних сил по переносу тела из одной точки в другую не зависит от конкретного пути (на языке математики: ротор силового поля тождественно равен нулю). В этом случае силу (векторную величину) можно представить как градиент некоторой скалярной величины — потенциала. Для того, чтобы третий закон Ньютона автоматически выполнялся, надо потребовать, чтобы потенциал взаимодействия двух тел зависел только от модуля разности координат этих тел U(|r1-r2|). Тогда возникает закон сохранения суммарной механической энергиивзаимодействующих тел:

{m {v}_1^2 over 2} + {m {v}_2^2 over 2} + U(|{r}_1 – {r}_2|) = const.



Источник