Какими свойствами обладает фокус линзы

Какими свойствами обладает фокус линзы thumbnail

Линза (оптическая) – прозрачное тело, ограниченное двумя сферическими или одной сферической и другой плоской поверхностями. Линзы бывают также параболическими, цилиндрическими и другими криволинейными поверхностями.

Сферические поверхности линз могут иметь различную кривизну (различную степень выпуклости или вогнутости), отстоять одна от другой на различном расстоянии и могут быть обращены в одну сторону или в противоположные.

Все это приводит к большому разнообразию линз, однако разнообразие это может быть сведено к шести типам, показанным в разрезе на иллюстрации.

Типы сферических линз

Первые три линзы называются выпуклыми, или положительными (1, 2 и 3). Они в центре толще, чем по краям. Следующие три называются вогнутыми, или отрицательными (4, 5 и 6), и отличаются от первых тем, что они в центре тоньше, чем по краям.

Разновидности оптических линз

На иллюстрации:

  • 1) двояковыпуклая;
  • 2) плоско-выпуклая;
  • 3) вогнуто-выпуклая;
  • 4) двояковогнутая;
  • 5) плоско-вогнутая;
  • 6) выгнуто-вогнутая.

На рисунке приведены элементы двояковыпуклой линзы. C1 и C2 – центры ограничивающих сферических поверхностей, называемые центрами кривизны; R1 и R2 – радиусы сферических поверхностей, называемые радиусами кривизны. Прямая, соединяющая центры кривизны C1 и C2, называется главной оптической осью. Для плоско-выпуклой или плоско-вогнутой линзы главной оптической осью является прямая, проходящая через центр кривизны перпендикулярно к плоской поверхности линзы. Точки пересечения главной оптической оси с поверхностью А и Б называются вершинами линзы. Расстояние между вершинами АБ называется осевой толщиной.

Свойства линз

Наиважнейшей особенностью положительных линз является способность давать изображение предметов. Действие положительных линз состоит в том, что они собирают падающие лучи, поэтому их называют собирательными.

Это свойство объясняется тем, что собирательная линза представляет собой совокупность множества трехгранных призм, расположенных по кругу и обращенных к центру круга своими основаниями. Поскольку такие призмы отклоняют падающие на них лучи к своим основаниям, пучок лучей, падающий на всю поверхность собирательной линзы, собирается в направлении к оси круга, т.е. к оптической оси.

Собирающая линза

Если из светящейся точки S, лежащей на оптической оси собирательной линзы, направить пучок расходящихся лучей света, то расходящийся пучок превратится в сходящийся, и в точке схода лучей образуется действительное изображение S` светящейся точки S. Поместив в точке S` какой-либо экран, можно увидеть на нем изображение светящейся точки S. Его называют действительным изображением.

Образование действительного изображения светящейся точкиОбразование действительного изображения светящейся точки. S` – действительное изображение точки S

Отрицательные линзы, в противоположность положительным, рассеивают падающие на них лучи. Поэтому они называются рассеивающими.

Действие рассеивающей линзыДействие рассеивающей линзы

Если такой же пучок расходящихся лучей направить на рассеивающую линзу, то, пройдя сквозь нее, лучи отклоняются в стороны от оптической оси. Вследствие этого рассеивающие линзы не дают действительного изображения. В оптических системах, дающих действительное изображение, и, в частности, в фотообъективах рассеивающие линзы применяются только совместно с собирательными.

Фокус и фокусное расстояние

Если из точки, лежащей в бесконечности на главной оптической оси, направить на линзу пучок света (такие лучи можно считать практически параллельными), то лучи соберутся в одной точке F, лежащей также на главной оптической оси. Эта точка называется главным фокусом, расстояние f от линзы до этой точки – главным фокусным расстоянием, а плоскость MN, проходящая через главный фокус перпендикулярно оптической оси линзы, – главной фокальной плоскостью.

Главный фокус и главное фокусное расстояние линзыГлавный фокус F и главное фокусное расстояние f линзы

Фокусное расстояние линзы зависит от кривизны ее выпуклых поверхностей. Чем меньше радиусы кривизны, т.е. чем выпуклее стекло, тем короче ее фокусное расстояние.

Оптическая сила линзы

Оптической силой линзы называется ее преломляющая способность (способность сильнее или слабее отклонять лучи света). Чем больше фокусное расстояние, тем меньше преломляющая способность. Оптическая сила линзы обратно пропорциональна фокусному расстоянию.

Единицей измерения оптической силы является диоптрия, обозначаемая буквой D. Выражение оптической силы в диоптриях удобно тем, что, во-первых, оно позволяет по знаку определить, с какой линзой (собирательной или рассеивающей) имеют дело и, во-вторых, тем, что позволяет легко определить оптическую силу системы из двух и большего числа линз.

Образование картинки

Падая на предмет, лучи света отражаются от каждой точки его поверхности во всех возможных направлениях. Если перед освещенным предметом поместить собирательную линзу, то от каждой точки предмета на линзу упадет конический пучок лучей.

Схема образования действительного изображенияСхема образования действительного изображения

Пройдя через линзу, лучи снова соберутся в одну точку, и в месте схода лучей возникнет действительное изображение взятой точки предмета, а совокупность изображений всех точек предмета образует изображение всего предмета. Рисунок позволяет также легко уяснить причину того, почему изображение предметов всегда получается перевернутым.

Подобным же образом возникает изображение предметов в фотоаппарате при помощи фотографического объектива, который представляет собой собирательную оптическую систему и действует подобно положительной линзе.

Пространство, которое находится перед объективом и в котором расположены фотографируемые предметы, называется предметным пространством, а расположенное за объективом пространство, в котором визуализируются предметы, называется пространством изображений.

Автор: Коллектив авторов. Компиляция: Hyosan. 20 июня 2013 в 09:38
Тэги: Технология фотографии (профессиональная, прикладная)

Источник

Линзой называется прозрачное тело, ограниченное двумя сферическими поверхностями. Если толщина самой линзы мала по сравнению с радиусами кривизны сферических поверхностей, то линзу называют тонкой. Линзы входят в состав практически всех оптических приборов. Линзы бывают собирающими и рассеивающими. Собирающая линза в середине толще, чем у краев, рассеивающая линза, наоборот, в средней части тоньше.

Собирающие (a) и рассеивающие (b) линзы и их условные обозначения.

Прямая, проходящая через центры кривизны O₁ и O₂ сферических поверхностей и оптическим центром линзы O, называется главной оптической осью линзы. Луч света проходя через оптический центр линзы, не отклоняется от первоначального направления. Все прямые, проходящие через оптический центр, называются побочными оптическими осями. Если на линзу направить пучок лучей, параллельных главной оптической оси, то после прохождения через линзу лучи (или их продолжения) соберутся в одной точке F, которая называется главным фокусом линзы. Расстояние между оптическим центром линзы O и главным фокусом F называется фокусным расстоянием.

Читайте также:  Какие свойства имеет каменный уголь

У тонкой линзы имеются два главных фокуса, симметрично расположенных относительно линзы на главной оптической оси. У собирающих линз фокусы действительные, у рассеивающих – мнимые. Пучки лучей, параллельных одной из побочных оптических осей, также фокусируются после прохождения через линзу в точку F’, которая расположена при пересечении побочной оси с фокальной плоскостью Ф, то есть плоскостью перпендикулярной главной оптической оси и проходящей через главный фокус.

Преломление параллельного пучка лучей в собирающей (a) и рассеивающей (b) линзах. Точки O₁ и O₂ – центры сферических поверхностей, O₁O₂ – главная оптическая ось, O – оптический центр, F – главный фокус, F’ – побочный фокус, OF’ – побочная оптическая ось, Ф – фокальная плоскость.

Основное свойство линз – способность давать изображения предметов. Изображения бывают прямыми и перевернутыми, действительными и мнимыми, увеличенными и уменьшенными. Положение изображения и его характер можно определить с помощью геометрических построений. Для этого используют свойства некоторых стандартных лучей, ход которых известен. Это лучи, проходящие через оптический центр или один из фокусов линзы, а также лучи, параллельные главной или одной из побочных оптических осей.

Построение изображения в собирающей линзе

Если расстояние от предмета до линзы обозначить через d, а расстояние от линзы до изображения через f, то формулу тонкой линзы можно записать в виде:

Величину D, обратную фокусному расстоянию. называют оптической силой линзы. Единица измерения оптической силы является 1 диоптрия (дптр). Диоптрия – оптическая сила линзы с фокусным расстоянием 1 м:

1 дптр = м⁻¹

Линейным увеличением линзы Γ называют отношение линейных размеров изображения h’ и предмета h. Величине h’ удобно приписывать знаки плюс или минус в зависимости от того, является изображение прямым или перевернутым. Величина h всегда считается положительной. Поэтому для прямых изображений Γ > 0, для перевернутых Γ < 0. Из подобия треугольников на рисунке легко получить формулу для линейного увеличения тонкой линзы:

Оптическая сила D линзы зависит как от радиусов кривизны R1 и R2 ее сферических поверхностей, так и от показателя преломления n материала, из которого изготовлена линза. В курсах оптики доказывается следующая формула:

Радиус кривизны выпуклой поверхности считается положительным, вогнутой – отрицательным. Эта формула используется при изготовлении линз с заданной оптической силой.

Спасибо за внимание. Ставьте лайки и подписывайтесь 🙂

Источник

Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: линзы

Преломление света широко используется в различных оптических приборах: фотоаппаратах, биноклях, телескопах, микроскопах. . . Непременной и самой существенной деталью таких приборов является линза.

Линза – это оптически прозрачное однородное тело, ограниченное с двух сторон двумя сферическими (или одной сферической и одной плоской) поверхностями.

Линзы обычно изготавливаются из стекла или специальных прозрачных пластмасс. Говоря о материале линзы, мы будем называть его стеклом – особой роли это не играет.

Двояковыпуклая линза.

Рассмотрим сначала линзу, ограниченную с обеих сторон двумя выпуклыми сферическими поверхностями (рис. 1). Такая линза называется двояковыпуклой. Наша задача сейчас – понять ход лучей в этой линзе.

Какими свойствами обладает фокус линзы
Рис. 1. Преломление в двояковыпуклой линзе

Проще всего обстоит дело с лучом, идущим вдоль главной оптической оси – оси симметрии линзы. На рис. 1 этот луч выходит из точки . Главная оптическая ось перпендикулярна обеим сферическим поверхностям, поэтому данный луч идёт сквозь линзу, не преломляясь.

Теперь возьмём луч , идущий параллельно главной оптической оси. В точке падения
луча на линзу проведена нормаль к поверхности линзы; поскольку луч переходит из воздуха в оптически более плотное стекло, угол преломления меньше угла падения . Следовательно, преломлённый луч приближается к главной оптической оси.

В точке выхода луча из линзы также проведена нормаль . Луч переходит в оптически менее плотный воздух, поэтому угол преломления больше угла падения ; луч
преломляется опять-таки в сторону главной оптической оси и пересекает её в точке .

Таким образом, всякий луч, параллельный главной оптической оси, после преломления в линзе приближается к главной оптической оси и пересекает её. На рис. 2 изображена картина преломления достаточно широкого светового пучка, параллельного главной оптической оси.

Какими свойствами обладает фокус линзы
Рис. 2. Сферическая аберрация в двояковыпуклой линзе

Как видим, широкий пучок света не фокусируется линзой: чем дальше от главной оптической оси расположен падающий луч, тем ближе к линзе он пересекает главную оптическую ось после преломления. Это явление называется сферической аберрацией и относится к недостаткам линз – ведь хотелось бы всё же, чтобы линза сводила параллельный пучок лучей в одну точку.

Точная фокусировка широкого пучка действительно возможна, но для этого поверхность линзы должна иметь не сферическую, а более сложную форму. Шлифовать такие линзы – дело трудоёмкое и нецелесообразное. Проще уж изготавливать сферические линзы и бороться с появляющейся сферической аберрацией.
Кстати, аберрация называется сферической как раз потому, что возникает в результате замены оптимально фокусирующей сложной несферической линзы на простую сферическую.

Весьма приемлемой фокусировки можно добиться, если использовать узкий световой пучок, идущий вблизи главной оптической оси. Тогда сферическая аберрация почти незаметна – посмотрите на рис. 3.

Читайте также:  Какие из перечисленных веществ проявляют только окислительные свойства
Какими свойствами обладает фокус линзы
Рис. 3. Фокусировка узкого пучка собирающей линзой

Хорошо видно, что узкий пучок, параллельный главной оптической оси, после прохождения линзы собирается приблизительно в одной точке . По этой причине наша линза носит название собирающей.

Точка называется фокусом линзы. Вообще, линза имеет два фокуса, находящиеся на главной оптической оси справа и слева от линзы. Расстояния от фокусов до линзы не обязательно равны друг другу, но мы всегда будем иметь дело с ситуациями, когда фокусы расположены симметрично относительно линзы.

Двояковогнутая линза.

Теперь мы рассмотрим совсем другую линзу, ограниченную двумя вогнутыми сферическими поверхностями (рис. 4). Такая линза называется двояковогнутой. Так же, как и выше, мы проследим ход двух лучей, руководствуясь законом преломления.

Какими свойствами обладает фокус линзы
Рис. 4. Преломление в двояковогнутой линзе

Луч, выходящий из точки и идущий вдоль главной оптической оси, не преломляется – ведь главная оптическая ось, будучи осью симметрии линзы, перпендикулярна обеим сферическим поверхностям.

Луч , параллельный главной оптической оси, после первого преломления начинает удаляться от неё (так как при переходе из воздуха в стекло ), а после второго преломления удаляется от главной оптической оси ещё сильнее (так как при переходе из стекла в воздух ).

Двояковогнутая линза преобразует параллельный пучок света в расходящийся пучок (рис. 5) и называется поэтому рассеивающей.

Здесь также наблюдается сферическая аберрация: продолжения расходящихся лучей не пересекаются в одной точке. Мы видим, что чем дальше от главной оптической оси расположен падающий луч, тем ближе к линзе пересекает главную оптическую ось продолжение преломлённого луча.

Как и в случае двояковыпуклой линзы, сферическая аберрация будет практически незаметна для узкого приосевого пучка (рис. 6). Продолжения лучей, расходящихся от линзы, пересекаются приблизительно в одной точке – в фокусе линзы .

Если такой расходящийся пучок попадёт в наш глаз, то мы увидим за линзой светящуюся точку! Почему? Вспомните, как возникает изображение в плоском зеркале: наш мозг обладает способностью продолжать расходящиеся лучи до их пересечения и создавать в месте пересечения иллюзию светящегося объекта (так называемое мнимое изображение). Вот именно такое мнимое изображение, расположенное в фокусе линзы, мы и увидим в данном случае.

Какими свойствами обладает фокус линзы
Рис. 5. Сферическая аберрация в двояковогнутой линзе
Какими свойствами обладает фокус линзы
Рис. 6. Преломление узкого пучка в рассеивающей линзе

Виды собирающих и рассеивающих линз.

Мы рассмотрели две линзы: двояковыпуклую линзу, которая является собирающей, и двояковогнутую линзу, которая является рассеивающей. Существуют и другие примеры собирающих и рассеивающих линз.

Полный набор собирающих линз представлен на рис. 7.

Помимо известной нам двояковыпуклой линзы, здесь изображены:плосковыпуклая линза, у которой одна из поверхностей плоская, и вогнуто-выпуклая линза, сочетающая вогнутую и выпуклую граничные поверхности. Обратите внимание, что у вогнуто-выпуклой линзы выпуклая поверхность в большей степени искривлена (радиус её кривизны меньше); поэтому собирающее действие выпуклой преломляющей поверхности перевешивает рассеивающее действие вогнутой поверхности, и линза в целом оказывается собирающей.

Все возможные рассеивающие линзы изображены на рис. 8.

Наряду с двояковогнутой линзой мы видим плосковогнутую (одна из поверхностей которой плоская) и выпукло-вогнутую линзу. Вогнутая поверхность выпукло-вогнутой линзы искривлена в большей степени, так что рассеивающее действие вогнутой границы преобладает над собирающим действием выпуклой границы, и в целом линза оказывается рассеивающей.

Какими свойствами обладает фокус линзы
Рис. 7. Собирающие линзы
Какими свойствами обладает фокус линзы
Рис. 8. Рассеивающие линзы

Попробуйте самостоятельно построить ход лучей в тех видах линз, которые мы не рассмотрели, и убедиться, что они действительно являются собирающими или рассеивающими. Это отличное упражнение, и в нём нет ничего сложного – ровно те же самые построения, которые мы проделали выше!

Источник

Существуют объекты, которые способны изменять плотность падающего на них потока электромагнитного излучения, то есть либо увеличивать его, собирая в одну точку, либо уменьшать его путем рассеивания. Эти объекты называются линзами в физике. Рассмотрим подробнее этот вопрос.

Что представляют собой линзы в физике?

Под этим понятием подразумевают абсолютно любой объект, который способен изменять направление распространения электромагнитного излучения. Это общее определение линз в физике, под которое попадают оптические стекла, магнитные и гравитационные линзы.

В данной статье главное внимание будет уделено именно оптическим стеклам, которые представляют собой объекты, изготовленные из прозрачного материала, и ограниченные двумя поверхностями. Одна из этих поверхностей обязательно должна иметь кривизну (то есть являться частью сферы конечного радиуса), в противном случае объект не будет обладать свойством изменения направления распространения световых лучей.

Принцип работы линзы

Преломление луча

Суть работы этого незамысловатого оптического объекта заключается в явлении преломления солнечных лучей. В начале XVII века знаменитый голландский физик и астроном Виллеброрд Снелл ван Ройен опубликовал закон преломления, который в настоящее время носит его фамилию. Формулировка этого закона следующая: когда солнечный свет переходит через границу раздела двух оптически прозрачных сред, то произведение синуса угла падения между лучом и нормалью к поверхности на коэффициент преломления среды, в которой он распространяется, является величиной постоянной.

Виллеброрд Снелл ван Ройен

Для пояснения вышесказанного приведем пример: пусть свет падает на поверхность воды, при этом угол между нормалью к поверхности и лучом равен θ1. Затем, световой пучок преломляется и начинает свое распространение в воде уже под углом θ2 к нормали к поверхности. Согласно закону Снелла получим: sin(θ1)*n1 = sin(θ2)*n2, здесь n1 и n2 – коэффициенты преломления для воздуха и воды, соответственно. Что такое коэффициент преломления? Это величина, показывающая, во сколько раз скорость распространения электромагнитных волн в вакууме больше таковой для оптически прозрачной среды, то есть n = c/v, где c и v – скорости света в вакууме и в среде, соответственно.

Читайте также:  Какие свойства проявляет гидроксид меди

Физика возникновения преломления заключается в выполнении принципа Ферма, согласно которому свет движется таким образом, чтобы за наименьшее время преодолеть расстояние от одной точки к другой в пространстве.

Виды линз

Виды линз

Вид оптической линзы в физике определяется исключительно формой поверхностей, которые ее образуют. От этой формы зависит направление преломления падающего на них луча. Так, если кривизна поверхности будет положительной (выпуклой), то по выходе из линзы световой пучок будет распространяться ближе к ее оптической оси (см. ниже). Наоборот, если кривизна поверхности является отрицательной (вогнутой), тогда пройдя через оптическое стекло, луч станет удаляться от его центральной оси.

Отметим еще раз, что поверхность любой кривизны преломляет лучи одинаково (согласно закону Стелла), но нормали к ним имеют разный наклон относительно оптической оси, в результате получается разное поведение преломленного луча.

Линза, которая ограничена двумя выпуклыми поверхностями, называется собирающей. В свою очередь, если она образована двумя поверхностями с отрицательной кривизной, тогда она называется рассеивающей. Все остальные виды оптических стекол связаны с комбинацией указанных поверхностей, к которым добавляется еще и плоскость. Каким свойством будет обладать комбинированная линза (рассеивающим или собирающим), зависит от суммарной кривизны радиусов ее поверхностей.

Элементы линзы и свойства лучей

Оптические линзы

Для построения в линзах в физике изображений необходимо познакомиться с элементами этого объекта. Они приведены ниже:

  • Главная оптическая ось и центр. В первом случае имеют в виду прямую, проходящую перпендикулярно линзе через ее оптический центр. Последний, в свою очередь, представляет собой точку внутри линзы, проходя через которую, луч не испытывает преломления.
  • Фокусное расстояние и фокус – дистанция между центром и точкой на оптической оси, в которую собираются все падающие на линзу параллельно этой оси лучи. Это определение верно для собирающих оптических стекол. В случае рассеивающих линз собираться в точку будут не сами лучи, а мнимое их продолжение. Эта точка называется главным фокусом.
  • Оптическая сила. Так называется величина, обратная фокусному расстоянию, то есть D = 1/f. Измеряется она в диоптриях (дптр.), то есть 1 дптр. = 1 м-1.

Ниже приводятся основные свойства лучей, которые проходят через линзу:

  • пучок, проходящий через оптический центр, не изменяет направления своего движения;
  • лучи, падающие параллельно главной оптической оси, изменяют свое направление так, что проходят через главный фокус;
  • лучи, падающие на оптическое стекло под любым углом, но проходящие через его фокус, изменяют свое направление распространения таким образом, что становятся параллельными главной оптической оси.

Приведенные выше свойства лучей для тонких линз в физике (так их называют, потому что не важно, какими сферами они образованы, и какой толщиной обладают, имеют значение только оптические свойства объекта) используются для построения изображений в них.

Изображения в оптических стеклах: как строить?

Ниже приведен рисунок, где подробно разобраны схемы построения изображений в выпуклой и вогнутой линзах объекта (красной стрелки) в зависимости от его положения.

Построение изображений в линзах

Из анализа схем на рисунке следуют важные выводы:

  • Любое изображение строится всего на 2-х лучах (проходящем через центр и параллельном главной оптической оси).
  • Собирающие линзы (обозначаются со стрелками на концах, направленными наружу) могут давать как увеличенное, так и уменьшенное изображение, которое в свою очередь может быть реальным (действительным) или мнимым.
  • Если предмет расположен в фокусе, то линза не образует его изображения (см. нижнюю схему слева на рисунке).
  • Рассеивающие оптические стекла (обозначаются стрелками на их концах, направленными внутрь) дают независимо от положения предмета всегда уменьшенное и мнимое изображение.

Построение изображения свечи

Нахождение расстояния до изображения

Чтобы определять, на каком расстоянии появится изображение, зная положение самого предмета, приведем формулу линзы в физике: 1/f = 1/do + 1/di, где do и di – расстояние до предмета и до его изображения от оптического центра, соответственно, f – главный фокус. Если речь идет о собирающем оптическом стекле, тогда число f будет положительным. Наоборот, для рассеивающей линзы f – отрицательное.

Воспользуемся этой формулой и решим простую задачу: пусть предмет находится на расстоянии do = 2*f от центра собирающего оптического стекла. Где появится его изображение?

Из условия задачи имеем: 1/f = 1/(2*f)+1/di. Откуда: 1/di = 1/f – 1/(2*f) = 1/(2*f), то есть di = 2*f. Таким образом, изображение появится на расстоянии двух фокусов от линзы, но уже с другой стороны, чем сам предмет (об этом говорит положительный знак величины di).

Краткая история

Любопытно привести этимологию слова “линза”. Оно ведет происхождение от латинских слов lens и lentis, что означает “чечевица”, поскольку оптические объекты по своей форме действительно похожи на плод этого растения.

Преломляющая способность сферических прозрачных тел была известна еще древним римлянам. Для этой цели они применяли круглые стеклянные сосуды, наполненные водой. Сами же стеклянные линзы начали изготавливаться только в XIII веке в Европе. Использовались они в качестве инструмента для чтения (современные очки или лупа).

Активное использование оптических объектов при изготовлении телескопов и микроскопов относится к XVII (в начале этого века Галилей изобрел первый телескоп). Отметим, что математическая формулировка закона преломления Стелла, без знания которой невозможно изготавливать линзы с заданными свойствами, была опубликована голландским ученым в начале того же XVII века.

Другие виды линз

Пример гравитационной линзы

Как было отмечено выше, помимо оптических преломляющих объектов, существуют также магнитные и гравитационные. Примером первых являются магнитные линзы в электронном микроскопе, яркий пример вторых заключается в искажении направления светового потока, когда он проходит вблизи массивных космических тел (звезд, планет).

Источник