Какими свойствами обладает ферменты биология

Какими свойствами обладает ферменты биология thumbnail

Белки в живых организмах выполняют разнообразные функции, молекулы этих соединений определяют структуру и форму клетки, обеспечивают узнавание и связывание различных молекул, катализ и регуляцию химических реакций, протекающих в организме.
Функция белка теснейшим образом связана с его пространственной структурой, а она, в свою очередь, зависит от последовательности аминокислот в белке, которая закодирована в гене (ДНК).

1. Одна из важнейших функций белков — каталитическая. При той температуре и кислотности среды, которая характерна для живой клетки, скорость большинства химических реакций мала. Тем не менее реакции в клетке протекают с очень большой скоростью. Увеличение скорости химических реакций достигается за счет функционирования биологических катализаторов — ферментов.

Ферменты — самый крупный и специализированный класс белков. Именно ферменты обеспечивают протекание в клетке многочисленных химических реакций, совокупность которых составляет обмен веществ или метаболизм. В настоящее время известны десятки тысяч различных ферментов.

2. По сравнению с химическими катализаторами ферменты имеют ряд особенностей:

  • Их каталитическая эффективность необычайно высока: ферменты способны ускорять химические реакции в $mathrm{10^6-10^8}$раз, это значительно выше, чем эффективность химических катализаторов.

  • Ферменты очень специфичны: обычно фермент катализирует лишь одну реакцию (то есть превращение одного вещества, называемого субстратом) или нескольких реакций одного типа.

  • Кроме того, активность ферментов в большинстве случаев регулируется различными химическими соединениями, имеющимися в клетке. 

  • Важным свойством некоторых ферментов является способность сопрягать две химические реакции и таким образом осуществлять энергетически невыгодные процессы синтеза сложных веществ за счет энергии, выделяющейся, например, при гидролизе АТФ и других высокоэнергетических соединений.

3. Вторая важная функция белков — это структурная функция. Из структурных белков формируются элементы цитоскелета. К структурным белкам относится, например, фибриллярный белок $beta$-кератин, который образует промежуточные филаменты эпителиальных клеток, входит в состав волос, когтей, рогов и копыт млекопитающих, а также фибриллярный белок коллаген, основной структурный белок соединительной и костной ткани. Химическая структура этих белков, которые выдерживают очень большую нагрузку, идеально приспособлена к выполнению механической функции.  
4. Другие типы белков обеспечивают двигательную функцию. По цитоскелетным нитям — микротрубочкам и микрофиламентам — способны АТФ- или ГТФ-зависимо перемещаться моторные белки. Так, по микротрубочкам «ходят» динеины и кинезины, а по актиновым нитям — миозин. Актин и миозин входят не только в сократимые волокна мышечных клеток — миофибриллы, но и участвуют в изменении формы других типов клеток.

Рис. 1. Кинезин — моторный белок, «шагающий» по микротрубочке

5. Некоторые белки выполняют транспортную функцию.
а) Прежде всего, это белки мембран, осуществляющие активный перенос веществ из окружающей среды в клетку и обратно. К транспортным белкам относятся также некоторые белки, встроенные в биологические мембраны и формирующие в них поры (каналы).

Какими свойствами обладает ферменты биология
Рис. 2. Структура калиевого канала, встроенного в мембрану

б) Это также белки крови, которые связывают и переносят различные вещества. Наиболее известным из транспортных белков является гемоглобин, который осуществляет перенос кислорода из легких в ткани.

Какими свойствами обладает ферменты биология

Рис. 3. Структура гемоглобина: 4 субъединицы (тетрамер), каждая их которых содержит гем с ионом $Fe^{2+}$

Помимо кислорода с кровью переносятся и другие вещества: сывороточные липопротеиды переносят с током крови липиды, а сывороточный альбумин — свободные жирные кислоты. Ионы железа переносятся белком трансферрином, а ионы меди — белком церулоплазмином.

6. Белки способны также осуществлять защитную функцию. При попадании в организм животных или человека вирусов, бактерий, чужеродных белков или других полимеров в организме происходит синтез белков, которые называют антителами, или иммуноглобулинами. Антитела связываются с чужеродными полимерами, которые называют антигенами.

Какими свойствами обладает ферменты биология
Рис. 4. Антитело (гамма-глобулин) обладает четвертичной структурой, состоит из 2 тяжелых и 2 легких цепей и имеет 2 центра связывания антигена

7. Многие живые существа (растения, грибы, бактерии, беспозвоночные, рыбы, амфибии, змеи) для обеспечения защиты и нападения выделяют также белки и пептиды, называемые токсинами. Эти белки подавляют жизненно важные процессы в клетках других организмов, могут разрушать определенные клеточные полимеры, что приводит к гибели организма.

8. Еще одной важной функцией белков является регуляторная.

а) Прежде всего, эту функцию выполняют белки — активаторы и репрессоры генов. 
б) Кроме того, специализированные белки регулируют активность ферментов. 
в) В специализированных клетках животных осуществляется синтез биологически активных веществ, поступающих непосредственно в кровь, — гормонов. Гормоны способны в очень малых концентрациях обеспечивать регуляцию метаболизма. Часть гормонов (но не все) являются пептидами или белками. Наиболее известным из белковых гормонов является инсулин — гормон, вырабатываемый в поджелудочной железе и регулирующий уровень глюкозы в клетках организма. При недостатке инсулина в организме возникает заболевание, известное как сахарный диабет. 

Какими свойствами обладает ферменты биология
Рис. 5. Гексамер (6 молекул) инсулина, скоординированные ионом цинка, — основная биологически активная форма этого гормона. Желтым показаны дисульфидные мостики, которые стабилизируют структуру инсулина. Фиолетовые — остатки гистидина, связывающиеся с цинком

К белковым гормонам относятся и гормоны, продуцируемые передней долей гипофиза: гормон роста соматотропин, пролактин. Задняя доля гипофиза выделяет пептидные гормоны окситоцин и вазопрессин, каждый из которых состоит из восьми аминокислот и регулирует сокращение мускулатуры матки и сосудов соответственно.
г) Многие клетки в организме выделяют белки и пептиды, являющиеся биологически активными соединениями, которые влияют на функции соседних клеток. К ним, в частности, относятся многочисленные факторы роста, которые регулируют рост и развитие клеток определенных тканей, например фактор роста нервной ткани, фактор роста фибробластов.
д) Большая часть биологически активных соединений, оказывающих биологических эффект в очень низких концентрациях, в том числе гормоны и факторы роста, связываются со специфическими рецепторами, которые являются белками, часто гликопротеинами.
У каждого рецептора есть свой лиганд — вещество, с которым он связывается с крайне высокой специфичностью. Связывание биологически активного вещества (например, гормона или фактора роста) с соответствующим рецептором приводит к изменению конформации (пространственной структуры) рецептора, что является сигналом, инициирующим внутриклеточный каскад передачи сигнала. Результат работы каскада — изменение активности ферментов или генов.

Какими свойствами обладает ферменты биология
Рис. 6. Рецептор глутамата — медиатора в нервной системе. Видна внеклеточная часть, связывающая лиганд — глутамат, трансмембранная часть и внутриклеточная часть, передающая сигнал в клетку

Какими свойствами обладает ферменты биология

Рис. 7. Мембрана и встроенный в нее рецептор

Таким образом, биологически активные вещества белковой природы и их рецепторы обеспечивают регуляторную функцию белков.

9. Кроме того, белки пищи для животных выполняют энергетическую функцию и функцию источника незаменимых аминокислот. При голодании собственные белки используются в качестве энергетического субстрата в последнюю очередь — когда израсходованы запасы гликогена и жира. Это может приводить к падению мышечной массы, заболеваниям кожи, возникновению язв и др.
10. В ряде случаев белки выполняют запасающую функцию. Чаще всего это происходит в структурах, связанных с размножением. Такие белки откладываются в семенах многих растений (алейроновые зерна), в яйцах животных (овальбумин).

Таким образом, белки выполняют все основные функции в живом организме, кроме функций хранения и передачи наследственной информации.

основы ферментативного катализа

Катализаторы — это вещества, которые ускоряют реакции, но сами при этом не расходуются. В живых клетках основным и катализаторами являются ферменты. Очень немногие реакции катализируются молекулами РНК, такие РНК называются рибозимы.
Принцип работы катализатора связан со снижением энергии активации — энергии, которой должны обладать молекулы, чтобы вступить в реакцию. Без катализатора очень малая часть молекул при физиологических условиях имеет достаточно энергии, чтобы вступить в реакцию. Катализатор понижает активационный барьер, и благодаря этому больше молекул могут его преодолеть.

Какими свойствами обладает ферменты биология

Рис. 8

Принцип действия ферментов основан на очень специфичном узнавании ферментом своего субстрата (исходного вещества в реакции) или нескольких субстратов и эффективном связывании. Молекулы фермента, как правило, очень велики по сравнению с молекулами низкомолекулярных субстратов (или отдельных участков высокомолекулярных субстратов, с которыми они работают). В связывании участвует только небольшой участок фермента — активный центр, который обычно имеет вид «кармана», куда «прячется» субстрат.Какими свойствами обладает ферменты биология

Рис. 9

Связывание фермент-субстрат описывали моделью «ключ-замок», однако согласно современным данным, конформация (пространственная структура) и субстрата, и фермента меняется в результате этого связывания, поэтому предложена новая модель — модель индуцированного соответствия, или модель «рука-перчатка». Именно благодаря изменению структуры субстрата при связывании с ферментом снижается энергия активации — измененный субстрат в активном центре фермента находится в напряженном, высокоэнергетическом переходном состоянии и легче переходит в продукт. Таким образом, роль фермента состоит в стабилизации переходного состояния субстрата.

Ферментативный катализ можно описать уравнением:

$E + A -> [EA] -> [EP] -> E + P,$

где E — фермент (enzyme); A — субстрат; P — продукт; [EA] — временный комплекс фермента с субстратом, [EP] — временный комплекс фермента с продуктом.

Таким образом, видно, что фермент и вступает в реакцию, и образуется в результате, т. е. в итоге не расходуется.

Специфическое связывание субстрата возможно благодаря расположению определенных аминокислотных радикалов на внутренней поверхности активного центра фермента. Остатки, несущие положительный или отрицательный заряд, взаимодействуют с разноименно заряженными группами субстрата, гидрофобные остатки — с его гидрофобными частями. За счет точного пространственного соответствия создается высокоспецифичная поверхность взаимодействия. Благодаря этому ферменты способны «отличать» свой субстрат от очень близких по строению веществ, а также «различать» оптические изомеры, взаимодействуя только с одним из них (этим объясняется поддержание хиральной чистоты, см. тему «Хиральность и оптическая изомерия биомолекул»).

регуляция активности ферментов

В зависимости от конкретных условий внешней и внутренней среды активности ферментов должны меняться в рамках поддержания гомеостаза — постоянства физико-химических параметров внутренней среды клетки и организма. Так, при поступлении глюкозы в кровь должны активироваться ферменты синтеза гликогена, в виде которого глюкоза запасается, а также ферменты гликолиза — начального этапа окисления глюкозы при клеточном дыхании. 
Регуляция бывает двух типов:

  • положительная регуляция — активация (повышение активности фермента);

  • отрицательная регуляция — ингибирование (понижение активности фермента).

Различают два типа регуляции активности ферментов: конкурентное ингибирование и аллостерическая регуляция.

конкурентные ингибиторы

Конкурентные ингибиторы «имитируют» субстрат, но не вступают в химическую реакцию. «Мимикрируя» под субстрат, они занимают активный центр фермента и вытесняют субстрат из него, вследствие чего ингибируют реакцию. Иногда они связываются с ферментом очень прочно — тогда наступает необратимое ингибирование. Такие ингибиторы часто являются опасными ядами. Например, фосфорорганические соединения зарин, зоман, V-газы — боевые отравляющие вещества — ингибируют фермент ацетилхолинэстеразу (АХЭ), расщепляющую медиатор ацетилхолин в синаптической щели, что приводит к блокировке передачи нервного импульса. Другие фосфорорганические соединения, слабо токсичные для позвоночных, используются в качестве инсектицидов.

аллостерическая регуляция

Слово «аллостерический» означает «в другом месте» (греч. «аллос» — другой, «стерос» — место). Аллостерические регуляторы могут быть как активаторами, так и ингибиторами, и действуют, связываясь с ферментом не в активном центре, а в другом участке его структуры, который в этом случае называют аллостерическим центром. 

Очень распространенными аллостерическими регуляторами ферментов метаболизма являются АТФ и АДФ. Соотношение концентраций АТФ и АДФ характеризует энергетический статус клетки. Так, АТФ ингибирует некоторые ферменты гликолиза (окисления глюкозы), т. к. энергии в клетке уже много. АДФ, напротив, активирует ферменты гликолиза (энергии мало, ее нужно быстрее получать окислением глюкозы). Определенные ферменты практически всех метаболических путей ингибируются конечным продуктом, получающимся в результате протекания реакций этого пути (можно сказать, чтобы этого продукта не синтезировалось слишком много).

В данном случае работает универсальный принцип отрицательной обратной связи, за счет которого поддерживается гомеостаз в биологических системах. Смысл его в том, что при любом отклонении параметров система саморегулируется так, чтобы свести отклонение к минимуму. Если есть избыток какого-то вещества — ингибируется (замедляется) его синтез и активируется расход. При недостатке определенного вещества активируется его синтез и ингибируется расход.

Источник

Ферменты – органические катализаторы белковой природы, обладающие специфической способностью к активированию других веществ. Они участвуют практически во всех реакциях, протекающих в живом организме, в процессах обмена между организмом и внешней средой.

Ферменты – каталитически активные белки. Как и все белки, они состоят из аминокислот, которые связаны между собой пептидной связью. Из-за большого количества аминокислот молекулярная масса ферментов составляет от 10000 до 100000.

Свойства белка определяются в большей мере последовательностью соединения аминокислот. От нее зависит также пространственная организация пептидных связей, которая называется конформацией. От конформации зависит, обладает ли белок каталитической активностью, т.е. является ли он ферментом.

Ферменты могут находиться в свободном или частично связанном состоянии. Ферменты, которые находятся в свободном состоянии (растворенные в клеточном соке) – экзоферменты. Они выделяются клеткой в окружающую среду, где проявляют свое ферментативное действие. Связанные ферменты адсорбированы клеточными структурами, входят в состав цитоплазмы и называются эндоферменты. Они проявляют свое действие лишь внутри живых клеток и в окружающую среду не выделяются.

Вещества, которые подвергаются под действием ферментов различным химическим превращениям, называются субстратами.

Круг реакций, катализируемых ферментами, очень широк (реакции гидролиза, поликонденсации, окисления-восстановления, дегидрирования и др.). Это обусловлено их свойствами.

Ферменты обладают следующими основными свойствами.

Высокая каталитическая активность.1 молекула фермента за 1 мин может прогидролизовать огромное число молекул субстрата. Активность ферментов намного превышает активность неорганических катализаторов. Например, разложение перекиси водорода на воду и кислород может происходить благодаря каталитическому действию ионов железа или же ферментом каталазой, который также содержит железо. Каталитическая активность каталазы намного превосходит каталитическую активность ионов железа. В результате 1 моль ионов железа при температуре 0 0С в течение 1 с разлагает 10 -5 молей перекиси водорода, а такое же количество фермента каталазы при тех же условиях – 10 5 молей перекиси водорода.

За единицу активности принимается такое количество фермента, которое превращает 1 моль субстрата в течение 1 сек (реже в течение 1 мин или 1 час) при заданной температуре (чаще всего 30 °С).

Строгая специфичность.Каждый фермент действует на один или несколько схожих по строению субстратов, т.е. каждый фермент действует на определенное вещество или на определенный тип химической связи в молекуле. Например, β-фруктофуранозидаза действует только на сахарозу и не действует на другие родственные дисахариды, например мальтозу.

Специфичность действия обусловлена структурными особенностями молекул субстрата и фермента, в частности его активным центром. Если бы ферменты не обладали высокой специфичностью, то не происходило бы упорядоченного обмена веществ в организме.

Большая лабильность, т.е.чувствительность к внешним воздействиям среды: температуре, рН, концентрации продуктов обмена веществ, активаторов, ингибиторов и т.д. Для каждого фермента имеется свой температурный оптимум, действие их ограничивается либо присутствием, либо отсутствием кислорода и т.д. Этим также отличаются ферменты от неорганических катализаторов.

Классификация ферментов

Все ферменты по строению подразделяются на два больших класса:

простые (однокомпонентные) – ферменты, состоящие исключительно из белка, обладающего каталитическими свойствами;

сложные (многокомпонентные) – ферменты, состоящие из белковой и небелковой части. Небелковая часть необходима для того, чтобы фермент обладал активностью.

Белковая часть молекулы называется ферон, а небелковая – простетической группой или коферментом (это активный центр фермента). Ферон оказывает решающее действие на специфичность фермента, а соединение белка с простетической группой приводит к огромному возрастанию его каталитической активности.

В качестве простетической группы могут быть: ионы металлов, витамины и их производные, комплексные органические соединения или металлоорганические соединения. Примером многокомпонентных ферментов являются каталаза и пероксидаза, в которых кроме белка содержится еще и простетическая группа, в состав которой входит железо.

Простетическая группа может быть очень прочно связана с белком и эта связь не разрушается даже при жестких воздействиях. В других случаях простетическая группа может быть легко отделена от своего белка. Белковый компонент сложного фермента, лишенный своей простетической группы, называется апоферментом. Это потенциальный фермент, который приобретает свою активность только после добавления к нему соответствующего кофермента. Роль коферментов очень велика. Они осуществляют перенос отдельных атомов и групп в ходе ферментативного превращения, служат «связными» между отдельными родственными ферментами и обеспечивают их согласованную деятельность.

По типу катализируемой реакции (избирательности) все ферменты делятся на 6 основных классов: оксидоредуктазы, трансферазы, гидролазы, лиазы, изомеразы, лигазы. Классы в свою очередь делятся на подклассы. Каждому ферменту присваивается свой номер, состоящий из четырех цифр.

Первая указывает на основной класс, вторая и третья обозначают подклассы, которые точнее определяют тип катализируемой реакции, четвертая является порядковым номером фермента в подклассе. Например, 3.2.1.1. 3 – класс гидролазы; 3.2 – указывает на то, что данные ферменты действуют на гликозидные соединения; 3.2.1 – указывает на то, что эти ферменты действуют на D-гликозидные соединения; 3.2.1.1 – конкретный фермент 1,4-α-D- глюкан глюканогидролаза (α-амилаза).

Оксидоредуктазы – (окислительно-восстановительные ферменты). Катализируют реакции окисления и восстановления (перенос атомов и электронов водорода), которые происходят при дыхании и брожении. К этим ферментам относятся дегидрогеназы (катализирующие процесс дегидрирования – отщепление молекулы водорода); оксидазы (осуществляющие реакции окисления, например, полифенолоксидаза – окисление полифенолов); пероксидаза (окисление происходит с участием перекиси водорода); каталаза (катализирует распад перекиси водорода).

Трансферазы – катализируют перенос различных групп от одного субстрата на другой. Представителями этого класса являются: метилтрансферазы (переносчики метильных групп); ацилтрансферазы (переносчики ацильных групп – альдегидных или кетонных); киназы (переносчики фосфорных групп).

Гидролазы – катализируют расщепление различных сложных органических соединений на более простые с присоединением воды. К ним относятся протеолитические ферменты, гидролизующие белки; гликозидазы, гидролизующие углеводы (амилазы, цитазы, пектиназы).

Лиазы – разрывают связи С-С, С-О, C-N с образованием двойных связей или осуществляют присоединение по двойным связям. Лиазы принимают участие в процессах брожения, дыхания, фотосинтезе и расщеплении жиров. Под действием этих ферментов происходит отщепление воды, углекислого газа (углерод-кислород лиазы), аммиака (аммиак-лиазы) с образованием двойной связи.

Изомеразы – катализируют реакции изомеризации. Этот класс сравнительно небольшой. В отличие от трансфераз, изомеразы катализируют перенос групп только внутри молекулы. К ним относятся: внутримолекулярные оксидоредуктазы (катализируют взаимные превращения альдоз и кетоз, перемещают –С=С- связи); внутримолекулярные трансферазы (переносят фосфорно-эфирные группы).

Лигазы (синтетазы) – катализируют присоединение друг к другу двух различных молекул с участием АТФ-источника энергии. Эти ферменты катализируют синтез полисахаридов, жиров, белков, нуклеиновых кислот, а также ряд промежуточных продуктов обмена веществ. Этот класс очень важен для промышленного производства, так как позволяет синтезировать органические вещества заданного строения. К этим ферментам относятся лигазы, образующие С-О связи (ферменты, катализирующие присоединение остатков аминокислот к транспортной РНК); С-S связи (ферменты, катализирующие присоединение остатков органических кислот к коферменту А); С-N связи (глютаминсинтетаза – катализирующая реакцию синтеза глютамина из глютаминовой кислоты и аммиака); С-С связи (карбоксилазы – катализируют присоединение углекислого газа к различным органическим кислотам, таким образом, удлиняя органическую цепочку).

Механизм действия ферментов

Специфичность и каталитическая активность ферментов обусловлены его активным центром – это та часть молекулы фермента, к которой присоединяется субстрат.

Молекула фермента представляет собой белковое тело сложной пространствен-ной конфигурации (рисунок 1). Деятельность каждого струк-турного элемента молекулы строго специализирована. Отдельные функциональные группы белка участвуют в связывании субстрата и в осуществлении его превраще-ний. Совокупность таких групп и участков называют активным центром. Причем, молекула белка свернута таким образом, что эти группы оказываются сближенными и создают благоприятную комбинацию реакционно-способных центров и групп для взаимодействия с субстратом. Периферийные участки полипептидной цепи фермента ответственны за поддержание его специфической пространственной конфигурации и за формирование активного центра.

В самом активном центре функции отдельных групп строго специализированы. Активный центр состоит из каталитического центра и пространственного центра связывания. Первый отвечает за химическую природу катализируемой реакции (специфичность действия), второй – за сродство к субстрату (субстратную специфичность).

Активный центр находится в полости ферментного белка, которая связывает субстрат. Эта область называется контактной, или якорной, площадкой фермента. Эта область непосредственно взаимодействует с субстратом и играет роль «посадочной» площадки. Специфичность взаимодействия фермента с субстратом определяется в значительной мере тем, что по своим очертаниям площадка напоминает молекулу субстрата. Так как размер активного центра значительно меньше остальной части молекулы фермента, то в контакте с субстратом находятся определенные функциональные группы – каталитически активный центр фермента. Остальная часть играет роль в формировании фермента в процессе синтеза.

Катализируемая ферментом реакция начинается с узнавания субстрата, которое происходит в процессе связывания.

Первый этап ферментативной реакции __ связывание субстрата, его расположение на молекуле фермента. Перед контактированием с ферментом в молекуле субстрата происходят изменения формы, которая точно «подгоняется» к форме активного центра (как «ключ к замку». Это обеспечивает высокую скорость и полноту реакции.

Далее следует сама ферментативная реакция. Реакционно-способные группы активного центра атакуют связанный субстрат и осуществляют с ним то или иное химическое превращение. При этом происходит перестройка конформации пептидной цепи ферментного белка таким образом, что образуются дополнительные связи между субстратом и реакционно-способными функциональными группами белка, которые катализируют расщепление субстрата. Это обеспечивает высокую скорость и полноту реакции.

Прокрутить вверх

Не нашли то, что искали? Воспользуйтесь поиском гугл на сайте:

Источник