Какими свойствами обладает аустенит

Какими свойствами обладает аустенит thumbnail

Аустенитная сталь – одна из модификаций железа с высокой степенью легирования. Обладает гранецентрированной кристаллической решеткой. Она легко сохраняет свою структуру даже при очень низких температурах. Аустениты располагают высокими показателями прочности. Он устойчивы как высоким температурам и большим нагрузкам.

Свойства аустенитных сталей

Сталь аустенитного класса образует 1-фазную структуру во время процесса кристаллизации. Ее кристаллическая решетка не изменяется даже при резком охлаждении до отрицательных температур (–200 °C). Основными компонентами аустенитных железных сплавов являются хром и никель. От доли их содержания зависят технологичность, пластичность, прочность и жаростойкость материала. Для легирования применяют следующие материалы:

  1. Ферритизаторы: титан, кремний, молибден, ниобий. Они стабилизируют структуру аустенитов и формируют объемноцентрированную кубическую решетку.
  2. Аустенизаторы: азот, марганец и углерод. Они присутствуют в избыточных фазах, формирующихся во время термообработки железных сплавов.

По свойствам материалов аустенитные модификации железа делятся на следующие типы:

  1. Коррозионностойкие (нержавеющие). В их состав входит хром (18%), никель (30%) и углерод (0,25%). Эти высоколегированные стали применяются в промышленном производстве с 1910 г. Их главным преимуществом является устойчивость к коррозии. Материал сохраняет это свойство даже при сильном нагревании, что обусловлено низким содержанием углерода. Коррозионностойкие железные сплавы производятся, согласно ГОСТ 5632-2014. В них могут присутствовать добавки из кремния, марганца, и молибдена.
  2. Жаростойкие. Они обладают ГЦК-решеткой и устойчивы к воздействию высоких температур. Этот материал можно нагревать до 1100 °C. Жаропрочные аустенитные стали применяются при изготовлении печных устройств, турбин роторов электростанций и иных приборов, работающих при помощи дизельного топлива. При производстве данной модификации железа используются дополнительные добавки из бора, ниобия, ванадия, молибдена и вольфрам. Эти химические элементы повышают жаропрочность материала.
  3. Хладостойкие. В составе этих высоколегированных сталей присутствуют хром (19%) и никель (25%). Главным достоинством материала является высокая вязкость и пластичность. Также эта модификация железа располагает высокой стойкостью к коррозии. Хладостойкие металлы сохраняют данные свойства даже при резком понижении температуры. Их главным недостатком является низкая прочность во время работы при комнатной температуре.

Аустенитная высоколегированная сталь является одной из самых дорогих модификаций железа, потому что в них содержится большое количество дорогостоящих материалов: хрома и никеля. Также на ее стоимость влияет количество дополнительных легирующих компонентов, позволяющих создавать железные сплавы с особыми свойствами. Дополнительные элементы легирования подбираются в зависимости от сложности работ, где применяются аустенит.

В аустенитных сталях могут осуществляться следующие разновидности превращений:

  1. Образование феррита при нагреве железного сплава до высоких температур.
  2. При нагреве до температуры 900 °C из аустенита начинают выделяться избыточные карбидные фазы. Во время этого процесса на аустенитной поверхности образуется межкристаллическая коррозия, постепенно разрушающая материал.
  3. Во время охлаждения аустенита до температуры 730 °C происходит эвтектоидный распад. В результате образуется перлит – модификация железных сплавов. Его микроструктура представлена в виде небольших пластин или округлых зерен.
  4. При резком понижении температуры металлического изделия формируется мартенсит – микроструктура, состоящая из пластин игольчатого или реечного вида.

Время, требуемое для превращения аустенитной стали в иные модификации железа, определяется содержанием углерода в твердом растворе и количеством дополнительных легирующих компонентов. Чем ниже эти показатели, тем быстрее охлаждается металлическое изделие.

Методы получения аустенита

Стали аустенитного класса образуются в процессе появления и роста зерен исходной микроструктуры металлического изделия. Формирование аустенита осуществляется на поверхности раздела фаз феррита и карбида. Карбидные частицы постепенно растворяются в твердом растворе аустенита.

Получить аустенит также можно из эвтектоидной модификации железа, состоящей из феррита и цементита. Для этого исходную металлическую заготовку необходимо нагреть до температуры 900 °C. Важно, чтобы в сплаве присутствовала минимальная концентрация углерода, равняющаяся 0,66%. Во время этого процесса феррит превращается в аустенит, а цементит полностью растворяется. В итоге сформируется нержавеющая аустенитная сталь.

При производстве металлических заготовок из аустенитных сталей, стабилизированных титаном, необходимо в вакуумно-индукционной печи переплавить металл. Полученный расплав выдерживают в течение длительного периода для его деазотирования. Количество времени, требуемого для этого процесса, зависит от массы исходного изделия. После выдержки в расплавленный аустенит вводится смесь из титана и нитридообразующих химических элементов.

Для получения устойчивой аустенитной структуры в состав исходной модификации железа добавляются хром и никель. При этом важно соблюдать пропорции. Процентное содержание никеля должно составлять не менее 20%, хрома – не более 19%. Эти химические вещества повышают устойчивость аустенита к высоким температурам и большим нагрузкам. Также они увеличивают выделение карбидов. Материал становится коррозионностойким.

При добавлении хрома и никеля в состав железной модификации нужно выдерживать материал в течение более длительного времени. Очень часто в полученный раствор добавляется смесь из молибдена или фосфора. Эти химические вещества увеличивает вязкость и усталостную прочность железного сплава. Для снижения износа полученного аустенита используют дополнительные легирующие материалы и энергоемкие карбиды.

Применение сплавов

Стали аустенитного класса используются при изготовлении устройств, работающих при высоких температурах, начиная от 200 °C: парогенераторов, роторов, турбин и сварочных механизмов. Недостатком использования аустенита в этих механизмах является низкая прочность металла. При длительном контакте железных сплавов различными гидроокисями могут образоваться дополнительные трещины, что приведет к поломке рабочих поверхностей устройств. Устранить этот недостаток можно при добавлении в раствор железа дополнительных химических элементов: ванадия и ниобия. Они формируют карбидную фазу, увеличивающих показатели прочности стали.

Нержавеющие аустенитные стали используются в механизмах, функционирующих в сложных условиях и при сильных перепадах температурных показателей. Чаще всего они используются при сварке коррозионностойких труб. Во время этого процесса между крепежными элементами образуется шовное пространство. При нагревании нержавеющих труб из аустенита до температуры плавления они приобретают монолитную структуру, защищающей металл от процессов окисления и высоких перепадов температур.

Также аустенитные стали обладают высокой устойчивостью к электромагнитным излучениям. Поэтому ее применяют при производстве отдельных деталей для радиоэлектронного оборудования. Аустенит улучшает прочность механизмов радио и не теряет свои свойства при изменениях структуры магнитного поля. По этой причине радиотехническая аппаратура будет легко принимать необходимые сигналы.

Аустенитные сплавы железа нашли широкое применение в производстве механизмов, работающих в водной среде. Нержавеющая сталь устойчива к образованию коррозии. Она используется в качестве защитного материала. При правильном соотношении хрома и никеля аустенит может сформировать тонкий слой, снижающим влияния водной среды на рабочую поверхность металлического приспособления. В результате снижается износ устройства. Но при значительном вымывании никеля материал полностью теряет устойчивость к коррозии.

В современных корпусах турбин также используются аустенитные стали с большим пределом текучести. Они позволяют избежать коробления данного устройства и улучшить показатели его прочности. Благодаря наличию крупнозернистой структуры, при помощи аустенита с высоким пределом текучести также можно укрепить конструкцию ротора турбины. Недостатком этой технологии является значительное повышение стоимости механизмов из-за использования большого количества дорогой аустенитной стали.

Марки аустенитной стали

Регламент изготовления аустенита определен в ГОСТ 5632-2014. В нем указываются следующие марки сталей аустенитного класса:

  • 12Х18Н9Т;
  • 08Х18Н10Т;
  • 12Х18Н10Т;
  • 12Х18Н9;
  • 17Х18Н9;
  • 08Х18Н10;
  • 03Х18Н11.

Эти наименования показывают процентное содержание хрома, углерода и никеля в аустените. Например, 12Х18Н9 означает, что в железной модификации номинальное содержание хрома составляет 18%, никеля – 10%, углерода – 0,12%. Также на маркировке может присутствовать буква “T”. Она означает, что в сплаве содержится небольшое количество титана.

Марки аустенитной стали позволяют определить основные свойства материала. Процентное содержание никеля и хрома описывает жаропрочность и устойчивость аустенита к появлению ржавчины. С помощью концентрации углерода можно рассчитать время и температурный интервал, при котором на железном сплаве появляется межкристаллическая коррозия.

Особенности термообработки

Аустенитные нержавеющие стали относятся к категории труднообрабатываемых материалов. Для улучшения основных свойств аустенита и модификации его структуры используются следующие методы:

  1. Отжиг. Металлическое изделие нагревается до 1200 °C в течение 2–3 часов. После этого металл охлаждается либо в масляной жидкости или воде, либо на открытом воздухе. Отжиг позволяет снизить твердость железного сплава и увеличить его гибкость.
  2. Двойная закалка. Твердый раствор аустенитной стали нормализуют при температуре 1200 °C. Затем железный сплав повторно закаляется до температуры 1000 °C. Во время процесса термообработки увеличиваются пластичность аустенита и его устойчивость к высоким температурам. Увеличить эффект можно при помощи старения стали перед ее эксплуатацией.

В производственных масштабах для термообработки аустенитных сталей используются специальные механические станки. Обработку железных сплавов следует проводить на мощном оборудовании. В противном случае материал может деформироваться или образовать длинную стружку, что обусловлено высокими показателями вязкости.

Источник

Аустенит — это твердый однофазный раствор углерода до 2 % в y-Fe. Главная его особенность заключается в последовательности, в которой располагаются атомы, т. е. в строении кристаллической решетки. Она бывает 2 типов:

  1. ОЦК a-железо (объемно – центрированная – по одному атому располагается в 8-ми вершинах куба и 1 в центре).
  2. ГЦК y-железо (гране-центрированная по одному атому находится в 8-ми вершинах куба и по одному находятся на каждой из 8-ми граней, всего 16 атомов).

Простыми словами: аустенит — это структура или состояние металла, определяющая его технические характеристики, которые получить в другом состоянии невозможно, т.к. меняя строение, металл изменяет и свойства. Без аустенита невозможна такая технология как закалка, которая является самой распространенной, дешевой, технически доступной, а в некоторых случаях и единственной технологией упрочнения металла.

 аустенит

Свойства аустенитных сталей и где их используют  

Само состояние железа в Y-фазе (аустенит) уникально, благодаря ему металл является жаропрочным (+850 ºC), холодостойким (-100 ºC и ниже t), способен обеспечивать коррозионную и электрохимическая стойкость и другие важнейшие свойства, без которых были бы немыслимы многие технологические процессы в:

  • нефтеперерабатывающей и химической отраслях;
  • медицине;
  • космическом и авиастроении;
  • электротехнике.     

Жаропрочность — свойство стали не менять своих технических свойств при критических температурах с течением времени. Разрушение происходит при неспособности металла противостоять дислокационной ползучести, т. е. смещению атомов на молекулярном уровне. Постепенно происходит разупрочнение, и процесс старения металла начинает происходить все быстрее. Это происходит с течением времени при низких или высоких температурах. Так вот, насколько этот процесс растянется во времени — это и есть способность металла к жаропрочности.

Коррозионная стойкость — способность металла противостоять разрушению (дислокационной ползучести) не только с течением времени и при криогенных и высоких температурах, но еще и в агрессивных средах, т. е. при взаимодействии с веществами активно вступающих в реакцию с одним или несколькими компонентных элементов. Разделяют 2 типа коррозии:

  1. химическая — окисление металла в таких средах, как газовая, водная, воздушная;
  2. электрохимическая — растворение металла в кислотных средах, имеющих положительно или отрицательно заряженные ионы. При разности потенциалов между металлом и электролитом, происходит неизбежная поляризация, приводящая к частичному взаимодействию двух веществ.  

Холодостойкость — способность сохранять структуру при криогенных температурах с течением длительного времени. Из-за искажения кристаллической решетки структура стали холодостойкой способна принимать строение присущее обычным малолегированным сталям, но уже при очень низких температурах. Но этим сталям присущ один недостаток — иметь полноценные свойства они могут только при минусовых температурных значениях, t – ≥ 0 для них недопустимы.

Методы получения аустенита

Аустенит — это структура металла, которая в малолегированных марках возникает в диапазоне температур 550-743 ºC. Как можно сохранить эту структуру и, соответственно, свойства за границами этих t? — Ответ: методом легирования. При наполнении решетки аустенита атомами других элементов, образуются структурные искажения, а процесс восстановления ОЦК–решетки (естественное строение при нормальных температурах) сдвигается на сотни градусов. 

Как эти свойства проявляются и в каком состоянии, зависит от добавочных т. е. легирующих элементов и термической обработки детали, которую она может дополнительно получать. Причем влияют не только элементы, но их соотношение, так аустенитная сталь подразделяется на:

  • хромомарганцевую и хромникельмарганцевую (07Х21Г7AН5, 10X14AГ15, 10X14Г14H4T);
  • хромоникелевую (08Х18Н12Б, 03Х18Н11, 08X18H10T, 06X18Н11, 12X18H10T, 08X18H10;
  • высококремнистую (02Х8Н22С6, 15Х18Н12C4Т10);
  • хромоникельмолибденовую (03Х21Н21М4ГБ, 08Х17Н15М3Т, 08X17Н13M2T, 03X16H15M3, 10Х17Н13М3Т).

 аустенитные марки стали

Химические элементы и их влияние на аустенит  

Пособников у аустенита немного, использоваться они могут как совместно, так и частично, в зависимости от того какие свойства нужно получить:  

  • Хром — при его содержании более 13 % на поверхности образует оксидную пленку, толщиной 2-3 атома, которая исключает коррозию. В аустените хром находится свободном состоянии, при условии минимального содержания углерода, так как тот сразу образует карбид Cr23C6, что приводит к сегрегации хрома и обедняет большие участки матрицы, делая ее доступной для окисления, сам карбид Cr23C6  способствует межкристаллитной коррозии аустенита.
  • Углерод (максимальное его значение не более 10 %). Углерод в аустените находится в соединенном состоянии, основная его задача — образование карбидов, которые обладают предельной прочностью.
  • Никель — основной элемент, который стабилизирует желаемую структуру. Достаточно содержание 9-12 %, чтобы перевести сталь в аустенитный класс. Измельчает и сдерживает рост зерна, что обеспечивает высокую пластичность;
  • Азот заменяет атомы углерода, присутствие которых в сталях электрохимически стойких снижено до 0,02 %;
  • Бор — уже в тысячных процентах увеличивает пластичность, в аустените, измельчая его зерно;
  • Кремний и марганец не указываются как основные легирующие элементы в маркировке, но они являются основными или обязательными легирующими элементами аустенита, которые придают прочность и стабилизируют структуру.
  • Титан и ниобий — при температуре выше 700 °С карбид хрома распадается и образуется стойкий TiC и NiC, который не вызывает межкристаллитную коррозию, но их использование не всегда оправданно холодостойких сталях, т.к. оно повышает границу распада аустенита.

Термическая обработка

Аустенит подвергают обработке только по необходимости. Основные операции это высокотемпературный отжиг (1100-1200 °С в течение 0,5-2,5 часа) при котором устраняется хрупкость. Далее закалка с охлаждением в масле или на воздухе.

Аустенитную сталь, легированную алюминием, подвергают двойной закалке и двойной нормализации:

  1. при t 1200 °С;
  2. при t 1100 °C.

Механическая окончательная обработка проводится до закалки, но после отжига.

Изделия из аустнитных сталей

Полуфабрикаты, в которых поставляется сталь, представляет собой:

  • Листы, толщиной 4-50 мм с гарантированным химическим составом и механическими свойствами.
  • Поковки.  Ввиду сложной обработки этих сталей методом сварки, изготовление некоторых деталей представляет собой получение практически готовых изделий уже на этапе литья. Это роторы, диски, турбины, трубы двигателей. 

Методы соединения аустенита:

  • Припой – очень сильно ограничивает использование металла при t более 250 °С;
  • Сваривание – возможно в защитной атмосфере (газовой, флюсовой), при последующей термической обработке.
  • Механическое соединение – болты и другие крепежные элементы,  изготовленные из аналогичного материала.

Аустенитные стали одни из самых дорогих технических сталей, использование которых ограничивается  узкой специализацией оборудования. 

Оцените статью:

Рейтинг: 0/5 – 0
голосов

Источник

У стали есть один минус — она обладает магнитными свойствами, которые далеко не всегда являются полезными. Этого недостатка лишена аустенитная сталь. Подобные сплавы практически не обладают магнитными свойствами, они не ржавеют, хорошо выдерживают механическую деформацию. Аустениты используются для производства радиооборудования, турбин, морозостойких конструкций. Какие бывают аустенитные стали? Как выполняется сварка различных деталей на их основе?

аустенитные стали

Общие сведения

Аустенитная сталь — особая разновидность нержавеющей стали. Стали аустенитного класса содержат железо, а также различные легирующие компоненты — никель, марганец, азот, алюминий, хром, молибден.

Железо и легирующие элементы в стали образуют кубическую кристаллическую решетку. Подобную структуру называют аустенитом. Кристаллическая решетка обусловливает ряд характерных физических свойств аустенита — сохранение твердости при тепловой обработке, почти полное отсутствие магнитных свойств материала, высокая химическая инертность.

Для удобства аустенитные стали делят на два условных класса. В первую категорию попадают материалы с большим содержанием никеля. Во вторую категорию включаются материалы с большим содержанием марганца и азота, а также с незначительным содержанием никеля.

Вторые материалы обладают более высокой прочностью, однако стоят они на порядок дороже. К тому же аустенит на основе никеля лучше переносит воздействие агрессивных химических сред (кислоты, щелочи, сильные соли, радиоактивные вещества).

Из стали-аустенита делают различную технику, вещи, оборудование. Это могут быть приборы учета, столовые приборы, металлические балки, турбины, конструкционные элементы, автомобильные детали, специальную технику для нужд химической промышленности и так далее.

Еще одна крупная сфера применения аустенита — изготовление радиооборудования. Отсутствие магнитных свойств в данном случае идет на пользу — обычные стальные сплавы могут вносить в радиосигнал определенные искажения, тогда как аустенит будет передавать сигнал без задержек, потерь, искажений.

стали аустенитного класса

Физические свойства

  • Высокая прочность. Материал при обычных условиях эксплуатации сохраняет свою прочность, упругость, устойчивость. Поэтому сталь сможет выдержать высокие нагрузки. Прочность также сохраняется в случае изменения температуры — резкое похолодание, сильные морозы, воздействие прямых солнечных лучей летом, локальный небольшой нагрев и другие ситуации.
  • Магнитная инертность. Кристаллическая структура практически полностью нейтрализует магнитный потенциал железа и легирующих элементов. Поэтому при контакте магнитного элемента с аустенитом образуется очень слабое магнитное поле, которое никак не влияет на свойства материала.
  • Коррозийная устойчивость. При нормальных температурных условиях сталь-аустенит не вступает в контакт с атмосферным кислородом, азотом, углекислым газом, а также с водой. Поэтому риск образования разрушительных коррозийных оксидов минимален. Из аустенитной стали можно делать детали, которые будут использоваться на морских объектах (корабли, мосты, турбины, приборы учета).
  • Химическая инертность. Сталь при нормальных температурных условиях также не вступает в реакцию с различными веществами, обладающими высокой химической активностью. Поэтому этот материал можно применять для хранения, работы с кислотами, щелочами, солями, радиоактивными веществами. Химического инертность сохраняется даже в случае длительного контакта. Поэтому аустенит при длительном контакте с реактивами не лопается, не ржавеет, сохраняет свои физические свойства.

Виды сталей аустенитного класса

По составу и физическим свойствам различают 3 вида стали-аустенита:

Антикоррозийный аустенитный класс стали

В эту категорию включаются сплавы с большим удельным содержанием хрома, никеля. В незначительных количествах в сплав также могут входить кремний, марганец, молибден. Особенность сплавов этой группы — минимальный риск коррозии при любых температурах.

Высокая устойчивость обеспечивается за счет двух факторов. Первый фактор — это большое содержания хрома, который создает защитную пленку на поверхности стали. Второй фактор — низкое содержание углерода (менее 0,3%). Комбинация этих факторов приводит к тому, что материал не вступает в контакт с кислородом, азотом, водой, различными химическими веществами.

Устойчивость сохраняется даже при нагреве либо охлаждении, поскольку хром при изменении температур сохраняет свои физические свойства.

превращения аустенита

Жаростойкий класс

В эту категорию включаются сплавы с большим содержанием никеля, бора, ниобия, ванадия, молибдена, вольфрама. Легирующие компоненты делают материал более прочным, минимизируют риск образования пор между отдельными атомами железа. Поэтому жаростойкий аустенит сохраняет свою форму при нагреве до 1100 градусов.

Жаростойкий материал-аустенит подходит для изготовления различных печей, станков, фабричного оборудования. В состав некоторых сплавов также включается большое количество хрома. В результате образуется жаростойкий антикоррозионный сплав, который не только выдерживает нагрев, но и не покрывается коррозией.

Хладостойкий класс

В эту категорию входят сплавы, с большим удельным содержанием хрома и со средним содержанием никеля. В качестве дополнительных легирующих добавок могут использоваться алюминий, марганец, ванадий, вольфрам.

Хладостойкие сплавы выдерживают очень низкие температуры, отлично переносят резкие перепады температур. Однако при нормальной комнатной температуре хладостойкая сталь-аустенит обладает посредственными физическими свойствами — невысокая прочность, слабая химическая инертность.

Поэтому из хладостойких сплавов делают специальную технику, оборудование для регионов с очень холодными климатом. Еще одна сфера применения — изготовление деталей, изделий, оборудования для нужд космической промышленности.

Сварка аустенитной стали

Для соединения изделий из аустенита может применяться сварочная технология. Соединение металлов может осуществляется всеми основными методами сварки (электрошлаковая, дуговая, в среде защитных газов).

Сварка аустенитных сталей имеет множество особенностей и нюансов, о которых сварщику нужно знать заранее. Особенность — серьезное изменение физических свойств металла-аустенита при нагреве. Это налагает ряд требований относительно проведения сварки. Ведь при неправильном нагреве металла серьезно страдает качество сварного шва, что плохо скажется на прочности соединения.

как превращается аустенитная сталь

Особенности нагрева аустенита

  • При температуре +350 градусов в сплаве происходят активные диффузионные процессы, что приводит не к увеличению, а к уменьшению пластичности металла.
  • От +350 до +500 градусов происходит термическая перестройка металла. Подобный физический процесс имеет ряд характерных особенностей — повышение хрупкости материала, растрескивание карбидных компонентов, изменение теплопроводности.
  • От +500 до +650 градусов происходит выпадение карбидных компонентов, что должен учитывать сварщик во время работы.
  • При нагреве материала выше +750 градусов серьезно повышается хрупкость металла. При таком нагреве на металле могут образовываться небольшие трещины, что снижает прочность сварного шва.

Однако сварщик должен избегать появления трещин, неровностей, отверстий в области сварного шва. Чтобы решить эту проблему, на детали в области шва наплавляется небольшой металлический слой, который обладает другим химическим составом.

Для слоя-заплатки нужен металл, обладающий повышенной жаропрочностью, высокой коррозийной стойкостью. Заплатка будет выступать в качестве защитного слоя, который будет препятствовать растрескиванию шва. Защитный слой рекомендуется обжечь при температуре +800 градусов, чтобы избежать появления трещин при повышенном уровне нагрузки.

Электрошлаковая сварка

Электрошлаковая технология сварки подходит для соединения как больших, так и мелких изделий на основе аустенита. Главные плюсы этой технологии — минимальный риск образования трещин, отсутствие деформации на стыках, удобство проведения сварочных работ.

Сварку рекомендуется проводить быстро и при небольших температурах. Ведь при длительном нагреве металла выше температуры 1200 градусов могут образовываться локальные трещины, что может привести к разрушению металла.

Несколько дополнительных замечаний по поводу применения электрошлаковой технологии:

  • Сварку рекомендуется выполнять с помощью проволоки, толщина которой составляет 2-4 миллиметра. Главный минус подобного подхода — качественная проволока расходуется быстро, а стоит она достаточно дорого.
  • Для соединения толстых деталей следует применять пластинчатые электроды (оптимальная толщина — 5-15 миллиметров). Электроды обладают более высокой ценой, однако разрушаются они гораздо медленнее.
  • При работе со сплавами, обладающими повышенной коррозийной стойкостью, рекомендуется делать закалку либо отжиг — это поможет избежать появления ножевой коррозии.

структура аустенитной стали

Дуговая сварка

Дуговая сварка для соединения аустенитной стали имеет множество недостатков.

Главный минус:

  1. Во время сварочных работ происходит нагрев локальной области металла-аустенита. Нагрев приводит к двум опасным вещам, которые негативно влияют на прочность.
  2. Первый момент — это появление оксидов железа в области шва. Физика этого процесса следующая: при серьезном нагреве железо начинает вступать в контакт с атмосферным воздухом, что и приводит к образованию оксидов.
  3. Второй момент — это появление трещин рядом со швом. При высоком нагреве резко возрастает хрупкость материала при уменьшении общей пластичности, что способствует образованию небольших трещин.

Фтористокальциевые электроды

Существует ряд приемов, которые позволяют обойти ограничения дуговой сварки. Самый популярный метод — это применение фтористокальциевых электродов малого диаметра (оптимальный диаметр сечения — 3-5 миллиметров).

Подобные стержни обладают низкой пластичностью, поэтому во время сварочных работ электроды не совершают лишних колебаний. Благодаря этому снижается контакт расплавленного металла с воздухом, а также снижается риск образования трещин вследствие повышения хрупкости.

За 1,5-2 часа до проведения сварочных работ рекомендуется выполнить прокалку фтористокальциевых электродов при небольшой температуре (200-300 градусов). Это помогает минимизировать риск возникновения пор в электроде.

Электродуговая сварка должна выполняться строго на обратнополярном постоянном токе. В противном случае стабильность электрода не гарантируется.

структура аустенита

Сварка в среде защитных газов

Сварка аустенитных сталей с применением защитных газов — лучший способ соединения аустенитов. Эта методика позволяет соединить детали различных форм, а сварка может проводиться в любых пространственных положениях.

Применение защитных газов минимизирует вероятность образования трещин, налета, ржавчины, окалины, что делает сварное соединение очень прочным. В качестве защитной среды может применяться любой газ — аргон, гелий, азот, углекислый газ и другие. Для сварки обычно применяются плавящиеся либо вольфрамовые стержни, которые подходят для создания небольших прочных швов (оптимальная толщина — 5-10 миллиметров).

Особенности сварки аустенита в среде защитных газов

  • Для проведения сварочных работ можно применять как импульсную, так и горящую дугу. Однако опытные сварщики рекомендуют использовать именно импульсную дугу. Это уменьшает толщину шва, минимизирует вероятность дробления кромок. Благодаря этому удается получить ровный прочный шов, который не растрескается при длительной эксплуатации изделия.
  • Сварку аустенита рекомендуется проводить с помощью постоянного тока, который имеет прямую полярность. При необходимости полярность тока можно поменять — это никак не скажется на качестве сварного шва. При выборе горелки нужно обратить внимание на тип переключения полярности. Ведь большинство горелок работают с устройствами, которые переключают полярность автоматически. Если Вы хотите менять полярность вручную, необходимо обязательно прочитать инструкцию к горелке, чтобы убедиться, что она поддерживает такой режим работы. Также обратите внимание, что в случае сварки аустенита с большим содержанием алюминиевых присадок рекомендуется использовать горелку с переменным током.
  • Для проведения импульсно-дуговой сварки рекомендуется использовать плавящиеся электроды. Такой способ соединения подойдет для соединения конструкций, обладающих небольшой толщиной. Это могут быть металлические листы, тонкие балки и так далее. Применение плавящегося электрода минимизирует риск образования трещин в шве, что благоприятно скажется на сроке годности подобного сварного соединения.
  • Плазменная сварка аустенитных сталей допускается в ситуациях, когда толщина отдельных сварных элементов составляет менее 15 миллиметров. В случае плазменной сварки крупных объектов резко возрастает риск образования подрезов-щелей, что негативно сказывается на прочности сварного соединения.

аустенитная сталь ГОСТ

ГОСТы

Изготовление аустенита регулируется с помощью законодательным норм, правил, законов. Основные нормы перечислены в следующих нормативных документах — ГОСТ 5632-2014, ГОСТ 11878-66, ГОСТ Р ИСО 4136-2009.

Эти документы определяют все основные моменты, которые касаются аустенитных сталей — изготовление, маркировка, категории, марки, особенности транспортировки и так далее.

В соответствии с нормами ГОСТ для определения содержания ферритных (железных) компонентов в каких-либо изделиях на основе аустенита может применяться металлография либо магнитная технология. Для проведения проверки из аустенита вырезаются небольшие прутки (не менее 2 штук).

Алгоритм проверок

  • Определение содержания железа методом металлографии. На прутках делаются небольшие шлифы, которые подвергаются электролизу или химическому травлению. После этого шлифы помещаются под мощный микроскоп, где визуально определяются содержание железистых соединений. По результатам исследований выставляется оценка, которая определяет концентрацию железа в основном сплаве. Чтобы увеличить точность исследований, рекомендуется взять несколько независимых проб с нескольких прутков.
  • Определение содержания железа магнитным методом. На прутках делаются микрошлифы, которые проходят шлифовку, зачистку с помощью абразивных материалов. После этого проводится серия замеров с помощью ферритометров, обладающих высоким порогом чувствительности. Минимальное количество замеров — 40 штук. В конце полученные сведения обрабатываются с помощью методов математической статистики и моделирования. Для увеличения точности исследования рекомендуется взять несколько независимых проб.

сварка аустенитных сталей

Заключение

Подведем итоги. Аустенитная сталь — специальная разновидность стального сплава. Основное отличие подобной стали от других материалов — это наличие особой кристаллической структуры, которую называют аустенитом. С физической точки зрения аустенитные стали обладают следующими свойствами — отсутствие магнитных свойств, высокая прочность, отличная коррозийная устойчивость, химическая инертность.

Из аустенита обычно делают различное оборудование специального назначения — турбины, детали для радиоэлектроники, космическое оборудование, арктические печи и так далее.

Основным компонентом аустенитных сталей является железо и различные легирующие добавки (нике