Какими свойствами обладает атом ванадия
Ванадий | ||||
---|---|---|---|---|
← Титан | Хром → | ||||
| ||||
Пластичный металл серебристо-белого цвета | ||||
Название, символ, номер | Вана́дий / Vanadium (V), 23 | |||
Атомная масса (молярная масса) | 50,9415(1)[1] а. е. м. (г/моль) | |||
Электронная конфигурация | [Ar] 3d3 4s2 | |||
Радиус атома | 134 пм | |||
Ковалентный радиус | 122 пм | |||
Радиус иона | (+5e)59 (+3e)74 пм | |||
Электроотрицательность | 1,63 (шкала Полинга) | |||
Электродный потенциал | ||||
Степени окисления | 5, 4, 3, 2, 0 | |||
Энергия ионизации (первый электрон) | 650,1 (6,74) кДж/моль (эВ) | |||
Плотность (при н. у.) | 6,11[2] г/см³ | |||
Температура плавления | 2160 К (1887 °C) | |||
Температура кипения | 3650 К (3377 °C) | |||
Уд. теплота плавления | 17,5 кДж/моль | |||
Уд. теплота испарения | 460 кДж/моль | |||
Молярная теплоёмкость | 24,95[2] Дж/(K·моль) | |||
Молярный объём | 8,35 см³/моль | |||
Структура решётки | кубическая объёмноцентрированная | |||
Параметры решётки | 3,024 Å[2] | |||
Температура Дебая | 390 K | |||
Теплопроводность | (300 K) 30,7 Вт/(м·К) | |||
Номер CAS | 7440-62-2 |
Вана́дий — химический элемент с атомным номером 23[3]. Принадлежит к 5-й группе периодической таблицы химических элементов (по устаревшей короткой форме периодической системы принадлежит к побочной подгруппе V группы, или к группе VB), находится в четвёртом периоде таблицы. Атомная масса элемента 50,9415(1) а. е. м.[1]. Обозначается символом V (от лат. Vanadium). Простое вещество ванадий — пластичный металл серебристо-серого цвета.
История[править | править код]
Ванадий был открыт в 1801 году профессором минералогии из Мехико Андресом Мануэлем Дель Рио в свинцовых рудах. Он обнаружил новый металл и предложил для него название «панхромий» из-за широкого диапазона цвета его соединений, сменив затем название на «эритроний». Дель Рио не имел авторитета в научном мире Европы, и европейские химики усомнились в его результатах. Затем и сам Дель Рио потерял уверенность в своём открытии и заявил, что открыл всего лишь хромат свинца.
В 1830 году ванадий был открыт заново шведским химиком Нильсом Сефстрёмом в железной руде. Новому элементу название дали Берцелиус и Сефстрём.
Шанс открыть ванадий был у Фридриха Вёлера, исследовавшего мексиканскую руду, но он серьёзно отравился фтороводородом незадолго до открытия Сефстрёма и не смог продолжить исследования. Однако Вёлер довёл до конца исследование руды и окончательно доказал, что в ней содержится именно ванадий, а не хром.
Названия[править | править код]
Этот элемент образует соединения с красивой окраской, отсюда и название элемента, связанное с именем скандинавской богини любви и красоты Фрейи (др.-сканд. Vanadís — дочь Ванов; Ванадис)[4]. В 1831 году геолог Джордж Уильям Фезерстонхау[en] предложил переименовать ванадий в «рионий» (в честь Дель Рио), но это предложение не было поддержано[5].
Нахождение в природе[править | править код]
Ванадий является 20-м по распространёности элементом в земной коре[6]. Он относится к рассеянным элементам и в природе в свободном виде не встречается. Содержание ванадия в земной коре 1,6⋅10−2% по массе, в воде океанов 3⋅10−7%. Наиболее высокие средние содержания ванадия в магматических породах отмечаются в габбро и базальтах (230—290 г/т). В осадочных породах значительное накопление ванадия происходит в биолитах (асфальтитах, углях, битуминозных фосфатах), битуминозных сланцах, бокситах, а также в оолитовых и кремнистых железных рудах. Близость ионных радиусов ванадия и широко распространённых в магматических породах железа и титана приводит к тому, что ванадий в гипогенных процессах целиком находится в рассеянном состоянии и не образует собственных минералов. Его носителями являются многочисленные минералы титана (титаномагнетит, сфен, рутил, ильменит), слюды, пироксены и гранаты, обладающие повышенной изоморфной ёмкостью по отношению к ванадию. Важнейшие минералы: патронит V(S2)2, ванадинит Pb5(VO4)3Cl и некоторые другие. Основной источник получения ванадия — железные руды, содержащие ванадий как примесь.
Ванадил-ион[en] (VO2+) в изобилии находится в морской воде, имея среднюю концентрацию 30 нМа[7]. Некоторые источники минеральной воды также содержат ион в высоких концентрациях. Например, источники около горы Фудзи содержат до 54 мкг на литр[7].
Месторождения[править | править код]
В течение первого десятилетия XX века большая часть ванадиевой руды добывалась американской компанией Vanadium из Минас-Рагра в Перу. Позднее увеличение спроса на уран привело к увеличению добычи руды этого металла. Одной из основных урановых руд был карнотит, который также содержит ванадий. Таким образом, ванадий стал доступным как побочный продукт производства урана. Со временем добыча урана стала обеспечивать большую долю спроса на ванадий[8][9].
Известны месторождения в Перу, США, ЮАР, Финляндии, Австралии, Армении, России[10], Турции, Англии.
Получение[править | править код]
РЭМ изображение кристаллов ванадия, полученных методом электролиза
В промышленности при получении ванадия из железных руд с его примесью сначала готовят концентрат, в котором содержание ванадия достигает 8—16 %. Далее окислительной обработкой ванадий переводят в высшую степень окисления +5 и отделяют легко растворимый в воде ванадат натрия (Na) NaVO3. При подкислении раствора серной кислотой выпадает осадок, который после высушивания содержит более 90 % ванадия.
Первичный концентрат восстанавливают в доменных печах и получают концентрат ванадия, который далее используют при выплавке сплава ванадия и железа — так называемого феррованадия (содержит от 35 до 80 % ванадия). Металлический ванадий можно приготовить восстановлением хлорида ванадия водородом, термическим восстановлением оксидов ванадия (V2O5 или V2O3) кальцием, термической диссоциацией VI2 и другими методами.
Некоторые из разновидностей асцидий обладают уникальной особенностью: в их крови содержится ванадий. Асцидии поглощают его из воды.
В Японии разводят асцидий на подводных плантациях, собирают урожай, сжигают и получают золу, в которой ванадий содержится в более высокой концентрации, чем в руде многих его месторождений.
Физические свойства[править | править код]
Бруски ванадия 99,95 % чистоты, полученные переплавкой в электронном пучке. Поверхность брусков протравлена для проявления структуры
Ванадий — пластичный металл серебристо-серого цвета, по внешнему виду похож на сталь. Образует кристаллы кубической сингонии (объёмно-центрированная решётка), пространственная группа Im3m, параметры ячейки a = 0,3024 нм, Z = 2. Температура плавления 1920 °C, температура кипения 3400 °C, плотность 6,11 г/см³. При нагревании на воздухе выше 300 °C ванадий становится хрупким. Примеси кислорода, водорода и азота резко снижают пластичность ванадия и повышают его твёрдость и хрупкость[2].
Электронная конфигурация атома ванадия
Изотопы[править | править код]
Природный ванадий состоит из двух изотопов: слаборадиоактивного 50V (изотопная распространённость 0,250 %) и стабильного 51V (99,750 %). Период полураспада ванадия-50 равен 1,5⋅1017 лет, то есть для всех практических целей его можно считать стабильным; этот изотоп в 83 % случаев посредством электронного захвата превращается в 50Ti, а в 17 % случаев испытывает бета-минус-распад, превращаясь в 50Cr.
Известны 24 искусственных радиоактивных изотопа ванадия с массовым числом от 40 до 65 (а также 5 метастабильных состояний). Из них наиболее стабильны 49V (T1/2=337 дней) и 48V (T1/2=15,974 дня).
Химические свойства[править | править код]
Химически ванадий довольно инертен. Он имеет хорошую стойкость к коррозии, стоек к действию морской воды, разбавленных растворов соляной, азотной и серной кислот, щелочей[11].
С кислородом ванадий образует несколько оксидов: VO, V2O3, VO2,V2O5. Оранжевый V2O5 — кислотный оксид, тёмно-синий VO2 — амфотерный, остальные оксиды ванадия — осно́вные.
Известны следующие оксиды ванадия:
Систематическое наименование | Хим. формула | Плотность, г/см³ | Температура плавления, °C | Температура кипения, °C | Молярная масса, г/моль | Цвет |
---|---|---|---|---|---|---|
Оксид ванадия(II) | VO | 5,76 | ~1830 | 3100 | 66,94 | Чёрный |
Оксид ванадия(III) | V2O3 | 4,87 | 1967 | 3000 | 149,88 | Чёрный |
Оксид ванадия(IV) | VO2 | 4,571 г/см³ | 1542 | 2700 | 82,94 | Тёмно-голубой |
Оксид ванадия(V) | V2O5 | 3,357 | 670 | 2030 | 181,88 | Красно-жёлтый |
Галогениды ванадия гидролизуются. С галогенами ванадий образует довольно летучие галогениды составов VX2 (X = F, Cl, Br, I), VX3, VX4 (X = F, Cl, Br), VF5 и несколько оксогалогенидов (VOCl, VOCl2, VOF3 и др.).
Соединения ванадия в степенях окисления +2 и +3 — сильные восстановители, в степени окисления +5 проявляют свойства окислителей. Известны тугоплавкий карбид ванадия VC (tпл=2800 °C), нитрид ванадия VN, сульфид ванадия V2S5, силицид ванадия V3Si и другие соединения ванадия.
При взаимодействии V2O5 с осно́вными оксидами образуются ванадаты[de]* — соли ванадиевой кислоты вероятного состава HVO3.
Взаимодействует с кислотами.
- С концентрированной азотной кислотой:
Применение[править | править код]
Водородная энергетика
Хлорид ванадия применяется при термохимическом разложении воды в атомно-водородной энергетике (ванадий-хлоридный цикл «Дженерал Моторс», США).
Химические источники тока
Пентаоксид ванадия широко применяется в качестве положительного электрода (анода) в мощных литиевых батареях и аккумуляторах[12].
В производстве серной кислоты
Оксид ванадия(V) используется как катализатор[13] на стадии превращения сернистого ангидрида в серный[14].
Металлургия
Свыше 90 %[15] всего производимого ванадия находит применение в качестве легирующей добавки в сталях, главным образом, высокопрочных низколегированных, в меньшей степени, нержавеющих и инструментальных, а также в производстве высокопрочных титановых сплавов[16], основанных на системе Ti-6Al-4V (англ.)русск. (в российской классификации — ВТ6, содержит около 4 % ванадия). В сталях ванадий образует мелкодисперсные карбиды VC, что повышает механические свойства и стабильность структуры. Его применение особенно эффективно совместно с вольфрамом, молибденом и никелем. В конструкционных сталях содержание ванадия не превышает, как правило, 0,25 %, в инструментальных и быстрорежущих доходит до 4 %. В российской номенклатуре сталей ванадий обозначается буквой Ф.
Автомобильная промышленность
Ванадий используется в деталях, требующих очень высокой прочности, таких как поршни автомобильных двигателей. Американский промышленник Генри Форд отмечал важную роль ванадия в автомобильной промышленности. «Если бы не было ванадия — не было бы автомобиля». — Говорил Форд[17]. Ванадиевая сталь позволила уменьшить вес при увеличении прочности при растяжении[18]
Нефтедобыча
Ванадиевая сталь используется при создании погружных буровых платформ для бурения нефтяных скважин[19].
Сувенирная продукция
Частные компании США выпускают медали и коллекционные жетоны из чистого ванадия. Одна из ванадиевых медалей вышла в 2011 году[20].
Электроника
Полупроводниковый материал на основе диоксида ванадия применяют для термисторов, переключателей элементов памяти и дисплеев[21].
Производство[править | править код]
- Россия: Евраз Ванадий Тула, Чусовской металлургический завод[22]
- Чехия: Мнишек-под-Брди
- США: Хот-Спрингс
- ЮАР: Бритс
Биологическая роль и воздействие[править | править код]
Ванадий и многие его соединения токсичны (для человека) в высоких концентрациях. Наиболее токсичны соединения пятивалентного ванадия. Ядовит его оксид(V) V2O5 (ядовит при попадании внутрь организма и при вдыхании поражает дыхательную систему). Смертельная доза ЛД50 оксида ванадия(V) для крыс орально составляет 10 мг/кг.
Ванадий и его соединения очень токсичны для водных организмов (окружающей среды).
Установлено, что ванадий может тормозить синтез жирных кислот, подавлять образование холестерина. Ванадий ингибирует ряд ферментных систем[источник не указан 1813 дней], тормозит фосфорилирование и синтез АТФ, снижает уровень коферментов А и Q, стимулирует активность моноаминоксидазы и окислительное фосфорилирование. Известно также, что при шизофрении содержание ванадия в крови значительно повышается[источник не указан 2006 дней].
Избыточное поступление ванадия в организм обычно связано с экологическими и производственными факторами. При остром воздействии токсических доз ванадия у рабочих отмечаются местные воспалительные реакции кожи и слизистых оболочек глаз, верхних дыхательных путей, скопление слизи в бронхах и альвеолах. Возникают и системные аллергические реакции типа астмы и экземы; а также лейкопения и анемия, которые сопровождаются нарушениями основных биохимических параметров организма.
При введении ванадия животным (в дозах 25—50 мкг/кг) отмечается замедление роста, диарея и увеличение смертности.
Всего в организме среднего человека (масса тела 70 кг) 0,11 мг ванадия. Токсическая доза для человека 0,25 мг, летальная доза — 2—4 мг.
Повышенное содержание белков и хрома в рационе снижает токсическое действие ванадия. Нормы потребления для этого минерального вещества не установлены.
Кроме того, высокое содержание ванадия выявлено у некоторых морских беспозвоночных (голотурий и асцидий), у которых он входит в состав белковых комплексов плазмы и форменных элементов крови и целомической жидкости. В клетках крови асцидий массовая доля ванадия может доходить до 8,75 %[23]. Функция элемента в организме до конца не ясна, разные учёные считают его отвечающим либо за перенос кислорода в организме этих животных, либо за перенос питательных веществ. С точки зрения практического использования — возможна добыча ванадия из этих организмов, экономическая окупаемость таких «морских плантаций» на данный момент не ясна, но в Японии имеются пробные варианты.
См. также[править | править код]
Примечания[править | править код]
- ↑ 1 2 Meija J. et al. Atomic weights of the elements 2013 (IUPAC Technical Report) (англ.) // Pure and Applied Chemistry. — 2016. — Vol. 88, no. 3. — P. 265–291. — doi:10.1515/pac-2015-0305.
- ↑ 1 2 3 4 Коршунов Б. Г. Ванадий // Химическая энциклопедия : в 5 т. / Гл. ред. И. Л. Кнунянц. — М.: Советская энциклопедия, 1988. — Т. 1: А—Дарзана. — С. 349. — 623 с. — 100 000 экз. — ISBN 5-85270-008-8.
- ↑ Таблица Менделеева на сайте ИЮПАК.
- ↑ Sefström, N. G. Ueber das Vanadin, ein neues Metall, gefunden im Stangeneisen von Eckersholm, einer Eisenhütte, die ihr Erz von Taberg in Småland bezieht (нем.) // Annalen der Physik und Chemie : magazin. — 1831. — Bd. 97, Nr. 1. — S. 43—49. — doi:10.1002/andp.18310970103. — Bibcode: 1831AnP….97…43S.
- ↑ Featherstonhaugh, George William. New Metal, provisionally called Vanadium (неопр.) // The Monthly American Journal of Geology and Natural Science. — 1831. — С. 69.
- ↑ Proceedings (англ.). — National Cotton Council of America, 1991.
- ↑ 1 2 Rehder, Dieter. Bioinorganic Vanadium Chemistry (неопр.). — 1st. — Hamburg, Germany: John Wiley & Sons, Ltd, 2008. — С. 5 & 9—10. — (Inorganic Chemistry). — ISBN 9780470065099. — doi:10.1002/9780470994429.
- ↑ Phillip Maxwell Busch. Vanadium: A Materials Survey (неопр.). — U.S. Department of the Interior, Bureau of Mines, 1961.
- ↑ Wise, James M. Remarkable folded dacitic dikes at Mina Ragra, Peru (май 2018).
- ↑ Электронная библиотека НЕФТЬ-ГАЗ (недоступная ссылка). Дата обращения 19 сентября 2010. Архивировано 5 апреля 2015 года.
- ↑ Holleman, Arnold F.; Wiberg, Egon; Wiberg, Nils. Vanadium // Lehrbuch der Anorganischen Chemie (нем.). — 91–100. — Walter de Gruyter, 1985. — S. 1071—1075. — ISBN 978-3-11-007511-3.
- ↑ All Metals. Ванадий. Применение..
- ↑ Langeslay, Ryan R.; Kaphan, David M.; Marshall, Christopher L.; Stair, Peter C.; Sattelberger, Alfred P.; Delferro, Massimiliano. Catalytic Applications of Vanadium: A Mechanistic Perspective (англ.) // Chemical Reviews (англ.)русск. : journal. — 2018. — 8 October. — doi:10.1021/acs.chemrev.8b00245. — PMID 30296048.
- ↑ Eriksen, K. M.; Karydis, D. A.; Boghosian, S.; Fehrmann, R. Deactivation and Compound Formation in Sulfuric-Acid Catalysts and Model Systems (англ.) // Journal of Catalysis (англ.)русск. : journal. — 1995. — Vol. 155, no. 1. — P. 32—42. — doi:10.1006/jcat.1995.1185.
- ↑ Vanadium. Outlook to 2028, 17th Edition. Roskill. Roskill Information Services (5 марта 2019).
- ↑ Титановые сплавы. Металлография титановых сплавов / под ред. Н.Ф. Аношкина. — М.: Металлургия, 1980. — С. 11. — 464 с.
- ↑ Метаторг. Ванадий.
- ↑ Betz, Frederick. Managing Technological Innovation: Competitive Advantage from Change (англ.). — Wiley-IEEE, 2003. — P. 158—159. — ISBN 978-0-471-22563-8.
- ↑ Coinandbullionpages. Vanadium.
- ↑ Omnicoin.
- ↑ Слотвинский-Сидак Н. П. Ванадия оксиды // Химическая энциклопедия : в 5 т. / Гл. ред. И. Л. Кнунянц. — М.: Советская энциклопедия, 1988. — Т. 1: А—Дарзана. — С. 351—352. — 623 с. — 100 000 экз. — ISBN 5-85270-008-8.
- ↑ Предприятия ЕВРАЗ Ванадий. Дата обращения 13 апреля 2019.
- ↑ Michibata H., Hirose H., Sugiyama K., Ookubo Y., Kanamori K. Extraction of a vanadium-binding substance (vanadobin) from the blood cells of several ascidian species // Biological Bulletin. — 1990. — Vol. 179. — P. 140—147.
Ссылки[править | править код]
- Ванадий на Webelements
- Ванадий в Популярной библиотеке химических элементов
Некоторые внешние ссылки в этой статье ведут на сайты, занесённые в спам-лист. Эти сайты могут нарушать авторские права, быть признаны неавторитетными источниками или по другим причинам быть запрещены в Википедии. Редакторам следует заменить такие ссылки ссылками на соответствующие правилам сайты или библиографическими ссылками на печатные источники либо удалить их (возможно, вместе с подтверждаемым ими содержимым). Список проблемных ссылок
|
Источник
Ванадий, свойства атома, химические и физические свойства.
V 23 Ванадий
50,9415(1) 1s2 2s2 2p6 3s2 3p6 3d3 4s2
Ванадий — элемент периодической системы химических элементов Д. И. Менделеева с атомным номером 23. Расположен в 5-й группе (по старой классификации — побочной подгруппе пятой группы), четвертом периоде периодической системы.
Атом и молекула ванадия. Формула ванадия. Строение атома ванадия
Изотопы и модификации ванадия
Свойства ванадия (таблица): температура, плотность, давление и пр.
Физические свойства ванадия
Химические свойства ванадия. Взаимодействие ванадия. Химические реакции с ванадием
Получение ванадия
Применение ванадия
Таблица химических элементов Д.И. Менделеева
Атом и молекула ванадия. Формула ванадия. Строение атома ванадия:
Ванадий (лат. Vanadium, от др.-сканд. Vanadís – «дочь Ванов») – химический элемент периодической системы химических элементов Д. И. Менделеева с обозначением V и атомным номером 23. Расположен в 5-й группе (по старой классификации – побочной подгруппе пятой группы), четвертом периоде периодической системы.
Ванадий – металл. Относится к группе переходных металлов. Относится к черным металлам.
Как простое вещество ванадий при нормальных условиях представляет собой пластичный металл серебристо-серого цвета по внешнему виду похожий на сталь.
Молекула ванадия одноатомна.
Химическая формула ванадия V.
Электронная конфигурация атома ванадия 1s2 2s2 2p6 3s2 3p6 3d3 4s2. Потенциал ионизации атома ванадия равен 6,74 эВ (650,1 кДж/моль).
Строение атома ванадия. Атом ванадия состоит из положительно заряженного ядра (+23), вокруг которого по четырем атомным оболочкам движутся 23 электрона. При этом 21 электрон находится на внутреннем уровне, а 2 электрона – на внешнем. Поскольку ванадий расположен в четвертом периоде, оболочек всего четыре. Первая – внутренняя оболочка представлена s-орбиталью. Вторая – внутренняя оболочка представлена s- и р-орбиталями. Третья – внутренняя оболочка представлена s-, р- и d-орбиталями. Четвертая – внешняя оболочка представлена s-орбиталью. На внутреннем энергетическом уровне атома хрома на 3d-орбитали находится три неспаренных электрона. На внешнем энергетическом уровне атома ванадия – на s-орбитали находятся два спаренных электрона. В свою очередь ядро атома ванадия состоит из 23 протонов и 28 нейтронов.
Радиус атома ванадия составляет 134 пм.
Атомная масса атома ванадия составляет 50,9415(1) а. е. м.
Химически ванадий довольно инертен.
Изотопы и модификации ванадия:
Свойства ванадия (таблица): температура, плотность, давление и пр.:
Общие сведения | |
Название | Ванадий/ Vanadium |
Символ | V |
Номер в таблице | 23 |
Тип | Металл |
Открыт | Андрес Мануэль Дель Рио, Германия, 1801 г. |
Внешний вид и пр. | Пластичный металл серебристо-белого цвета |
Содержание в земной коре | 0,019 % |
Содержание в океане | 1,5×10-7 % |
Свойства атома | |
Атомная масса (молярная масса) | 50,9415(1) а. е. м. (г/моль) |
Электронная конфигурация | 1s2 2s2 2p6 3s2 3p6 3d3 4s2 |
Радиус атома | 134 пм |
Химические свойства | |
Степени окисления | 0, +2, +3, +4, +5 |
Валентность | +2, +3, +4, +5 |
Ковалентный радиус | 122 пм |
Радиус иона | (+5e)59 (+3e)74 пм |
Электроотрицательность | 1,63 (шкала Полинга) |
Энергия ионизации (первый электрон) | 650,1 кДж/моль (6,74 эВ) |
Электродный потенциал | |
Физические свойства | |
Плотность (при нормальных условиях) | 6,11 г/см3 |
Температура плавления | 1910 °C (2183 K) |
Температура кипения | 3407 °C (3680 K) |
Уд. теплота плавления | 17,5 кДж/моль |
Уд. теплота испарения | 460 кДж/моль |
Молярная теплоёмкость | 24,95 Дж/(K·моль) |
Молярный объём | 8,35 см³/моль |
Давление паров | 0,01 мм.рт.ст. (при 1850 °C), 0,1 мм.рт.ст. (при 2044 °C), 1 мм.рт.ст. (при 2282 °C), 10 мм.рт.ст. (при 2590 °C), 100 (при 2955 °C) |
Удельная теплоемкость при постоянном давлении | 0,502 Дж/г·K (при 20 – 100 °C) |
Стандартная энтальпия образования ΔH (при 298 К, для состояния вещества – твердое тело) | 0 кДж/моль |
Стандартная энергия Гиббса образования ΔG (при 298 К, для состояния вещества – твердое тело) | 0 кДж/моль |
Стандартная энтропия вещества S (при 298 К, для состояния вещества – твердое тело) | 28,9 Дж/(моль·K) |
Теплопроводность (при 300 K) | 30,7 Вт/(м·К) |
Электропроводность в твердой фазе | 5х106 См/м |
Сверхпроводимость при температуре | |
Твёрдость | 7 по шкале Мооса, 628 МПа по Виккерсу |
Структура решётки | кубическая объёмноцентрированная |
Параметры решётки | 3,024 Å |
Температура Дебая | 390 К |
Физические свойства ванадия:
Химические свойства ванадия. Взаимодействие ванадия. Химические реакции с ванадием:
Получение ванадия:
Применение ванадия:
Таблица химических элементов Д.И. Менделеева
- 1. Водород
- 2. Гелий
- 3. Литий
- 4. Бериллий
- 5. Бор
- 6. Углерод
- 7. Азот
- 8. Кислород
- 9. Фтор
- 10. Неон
- 11. Натрий
- 12. Магний
- 13. Алюминий
- 14. Кремний
- 15. Фосфор
- 16. Сера
- 17. Хлор
- 18. Аргон
- 19. Калий
- 20. Кальций
- 21. Скандий
- 22. Титан
- 23. Ванадий
- 24. Хром
- 25. Марганец
- 26. Железо
- 27. Кобальт
- 28. Никель
- 29. Медь
- 30. Цинк
- 31. Галлий
- 32. Германий
- 33. Мышьяк
- 34. Селен
- 35. Бром
- 36. Криптон
- 37. Рубидий
- 38. Стронций
- 39. Иттрий
- 40. Цирконий
- 41. Ниобий
- 42. Молибден
- 43. Технеций
- 44. Рутений
- 45. Родий
- 46. Палладий
- 47. Серебро
- 48. Кадмий
- 49. Индий
- 50. Олово
- 51. Сурьма
- 52. Теллур
- 53. Йод
- 54. Ксенон
- 55. Цезий
- 56. Барий
- 57. Лантан
- 58. Церий
- 59. Празеодим
- 60. Неодим
- 61. Прометий
- 62. Самарий
- 63. Европий
- 64. Гадолиний
- 65. Тербий
- 66. Диспрозий
- 67. Гольмий
- 68. Эрбий
- 69. Тулий
- 70. Иттербий
- 71. Лютеций
- 72. Гафний
- 73. Тантал
- 74. Вольфрам
- 75. Рений
- 76. Осмий
- 77. Иридий
- 78. Платина
- 79. Золото
- 80. Ртуть
- 81. Таллий
- 82. Свинец
- 83. Висмут
- 84. Полоний
- 85. Астат
- 86. Радон
- 87. Франций
- 88. Радий
- 89. Актиний
- 90. Торий
- 91. Протактиний
- 92. Уран
- 93. Нептуний
- 94. Плутоний
- 95. Америций
- 96. Кюрий
- 97. Берклий
- 98. Калифорний
- 99. Эйнштейний
- 100. Фермий
- 101. Менделеевий
- 102. Нобелий
- 103. Лоуренсий
- 104. Резерфордий
- 105. Дубний
- 106. Сиборгий
- 107. Борий
- 108. Хассий
- 109. Мейтнерий
- 110. Дармштадтий
- 111. Рентгений
- 112. Коперниций
- 113. Нихоний
- 114. Флеровий
- 115. Московий
- 116. Ливерморий
- 117. Теннессин
- 118. Оганесон
Таблица химических элементов Д.И. Менделеева
Примечание: © Фото https://www.pexels.com, https://pixabay.com
карта сайта
ванадий атомная масса степень окисления валентность плотность температура кипения плавления физические химические свойства структура теплопроводность электропроводность кристаллическая решетка
атом нарисовать строение число протонов в ядре строение электронных оболочек электронная формула конфигурация схема строения электронной оболочки заряд ядра состав масса орбита уровни модель радиус энергия электрона переход скорость спектр длина волны молекулярная масса объем атома
электронные формулы сколько атомов в молекуле ванадия
сколько электронов в атоме свойства металлические неметаллические термодинамические
Коэффициент востребованности
1 275
Источник