Какими свойствами должен обладать элемент у которого

Какими свойствами должен обладать элемент у которого thumbnail

Глава 8. Периодический закон и периодическая система Д.И. Менделеева

Законы природы обладают прогностическими функциями (т. е. позволяют прогнозировать развитие и результаты происходящих событий, процессов и т. п.). Периодический закон и отражающая его периодическая система таят огромные возможности для предсказания и описания свойств известных элементов, для открытия неизвестных элементов.

В описании элементов и предсказании их свойств особую роль приобретает порядковый номер Z, с которым связано положение (место) элемента в периодической системе. Для разносторонней характеристики элемента надо знать не только его порядковый номер, но и его положение в периоде, группе, подгруппе.

При самостоятельном составлении характеристики того или иного элемента следует активно применять такие методы и приёмы познания, как описание и анализ свойств элементов на основе их сравнения и аналогии, давать классификацию элементам, предсказывать их свойства. Широко использовал подобные методы при открытии периодического закона и Д.И. Менделеев.

Рассмотрим их применение на примере характеристики элемента с порядковым номером 15. Это фосфор. Следовательно, заряд ядра его атомов +15, число электронов также равно 15. Фосфор расположен в 3-м периоде и V группе главной подгруппы элементов. У его атомов пять валентных электронов в наружном слое. Его высший оксид имеет форму Р2O5 и кислотный характер, газообразное водородное соединение его — РН3. Фосфор — неметаллический элемент. Для того чтобы дать более полную и обстоятельную характеристику элемента, следует сравнить свойства фосфора и свойства его соединений со свойствами элементов — соседей по периоду (с Si и S) и с элементами — аналогами по подгруппе (с N и As). При обобщённой характеристике элементов надо учитывать не только его индивидуальность, но и периодическую изменяемость свойств окружающих его элементов в периодах и подгруппах.

Приводим алгоритм описания свойств элемента на основе его места в периодической системе.

Алгоритм составления плана-характеристики элемента

Опираясь на этот план, важно научиться:

    а) давать сравнительную характеристику любого элемента, зная его место в периодической системе;

    б) прогнозировать и объяснять на этой основе строение атомов и химические свойства разных элементов.

Основные понятия

Электроотрицательность • Характеристика химического элемента по положению в периодической системе

Вопросы и задания

Какими свойствами должен обладать элемент у которого 1. Что такое энергия ионизации, что она выражает и как изменяется?

Какими свойствами должен обладать элемент у которого 2. Что такое сродство к электрону? Как оно изменяется у атомов элементов в подгруппах и периодах?

Какими свойствами должен обладать элемент у которого 3. Что такое электроотрицательность элементов? Как она выражается и какое имеет значение для изучения химии?

Какими свойствами должен обладать элемент у которого 4. В ряду элементов О → S → Se с увеличением порядкового номера химического элемента электроотрицательность

1) увеличивается

2) уменьшается

3) не изменяется

4) изменяется периодически

Какими свойствами должен обладать элемент у которого 5. В ряду элементов С → N → 0 → F c увеличением порядкового номера химического элемента электроотрицательность

1) увеличивается

2) уменьшается

3) не изменяется

4) изменяется периодически

Какими свойствами должен обладать элемент у которого 6. Какими свойствами должен обладать элемент, у которого Z = 34? Дайте его описание.

Какими свойствами должен обладать элемент у которого 7. Элемент шестого периода образует с кислородом оксид ЭО, который гидратируется водой с образованием щёлочи. Газообразных водородных соединений не имеет. Что это за элемент и в какой группе и подгруппе периодической системы он находится?

Какими свойствами должен обладать элемент у которого 8. Вычислите массу 20 %-й соляной кислоты, которая потребуется для очистки железной пластины от ржавчины массой 21,4 г. (Следует учесть, что ржавчина состоит только из гидроксида железа (III).)

Какими свойствами должен обладать элемент у которого 9. Для полной нейтрализации 150 г раствора с массовой долей хлороводорода 7,3 % потребовалось 200 г раствора гидроксида натрия. Вычислите массовую долю (%) щёлочи в этом растворе.

Источник

Задача 777. 
Чем объяснить сходство химических свойств лантаноидов?
Решение:
Семейство лантаноидов (или лантанидов) состоит из четырнадцати f – элементов с порядковыми номерами от 58 до 71, сходны по своим химическим и физическим свойствам друг к другу.

Задача 777. 
Чем объяснить сходство химических свойств лантаноидов?
Решение:
Семейство лантаноидов (или лантанидов) состоит из четырнадцати f – элементов с порядковыми номерами от 58 до 71, сходны по своим химическим и физическим свойствам друг к другу. Сходство их химических свойств можно объяснить отсутствием у атомов существенных различий в структуре внешнего и предвнешнего электронных слоёв. Характерной особенностью построения электронных оболочек атомов лантаноидов является то, что при переходе к последующему f – элементу (от Ce до Lu) новый электрон занимает место не во внешнем (n = 5), а в ещё более глубоко расположенном третьем снаружи электронном  слое (n = 4). Заполнение 5d – подуровня, начатое у лантана, возобновляется у гафния (Z = 72)  и заканчивается у ртути (Z = 80).
Электронная структура атома церия может быть представлена формулой:

+58Сe1s22p63s23p63d104s24p64d104f25s25p65s2

Далее у каждого последующего лантаноида до иттербия (Z = 70) происходит заполнение f–подуровня очередным электроном, а у атома лютеция (Z = 71) появляется электрон на 5d-подуровне.

Задача 778. 
С каким элементом более сходен молибден по свойствам с селеном или с хромом? Чем это объясняется?
Решение:
Наружный электронный слой атома молибдена содержит один s – электрон, атом хрома тоже содержит один s – электрон на наружном электронном слое, а у атома селена содержится шесть электронов (два s – и четыре р – электрона). Содержание по одному электро-ну на внешнем электронном уровне у атомов молибдена и хрома, естественно, сходство их свойств (металлические свойства) и отличие этих элементов от элементов главной подгруппы VI-й группы, в том числе от селена. Электронная конфигурация атомов молибдена и хрома имеет вид: …nd5ns1, а атома селена: …ns2np4.

Максимальная степень окисления молибдена равна +6, так как, помимо наружных электронов, в образовании связей может участвовать ещё пять неспаренных электронов с 4d – подуровня, точно также проявляет себя и атом хрома. Молибден и хром образует связи, только отдавая электроны, в то время как атом селена образует связи за счёт s- и р – электронов. К тому же атом селена может проявлять степень окисления -2, т.е. проявляет себя как типичный неметалл.

Читайте также:  В реакциях с какими веществами сера проявляет окислительные свойства

Задача 779.
 Исходя из положения элементов в периодической системе, определить: а) у какого из гидроксидов — Sn(OH)2 или РЬ(ОН)2 более выражены основные свойства; б) какая из солей гидролизуется в большей степени: станнат натрия или плюмбат натрия; в) какой из оксидов является более сильным окислителем: SnO2 или РЬО2?
Решение:
а) Исходя из положения элементов в периодической системе, более выражены основные свойства у Pb(OH)2, чем у Sn(OH)2, так как в группах с ростом зарядов ядра атомов кислотные свойства гидроксидов уменьшается, а основные – усиливаются. Pb(OH)2, и Sn(OH)2 – амфотерные гидроксиды, но основные свойства более выражены у Pb(OH)2, чем у Sn(OH)2. 

б) Так как в группах с ростом заряда атомных ядер кислотные свойства гидроксидов уменьшаются, то кислота H2PbO3 будет слабее кислоты H2SnO3, поэтому плюмбат натрия гидролизуется в большей степени, чем станат натрия. Гидролиз Na2PbO3, как соли сильного основания и слабой кислоты протекает по аниону:

PbO32- + H2O ↔ HPbO3- + HO-

или в молекулярной форме:

Na2PbO3 + H2O ↔ NaHPO3 + NaOH

в) В группах с ростом зарядов атомов элементов окислительные свойства оксидов и гидроксидов уменьшаются, поэтому SnO2 более сильный окислитель, чем PbO2. 

Задача 780. Какими химическими свойствами обладает искусственно полученный элемент с порядковым номером 87? С каким из элементов периодической системы он наиболее сходен?
Решение:
Искусственно полученный элемент с порядковым номером 87 (франций) на внешнем электронном слое имеет один электрон (7s1). Имея на внешнем электронном слое только один электрон, находящийся на сравнительно большом удалении от ядра. Атом этого элемента довольно легко отдаёт свой единственный валентный электрон, т.е. характеризуется низкой энергией ионизации (I = 0,280 эВ). Образующийся  при этом однозарядный ион имеет устойчивую электронную структуру благородного газа (атома радона). Лёгкость отдачи внешнего электрона характеризует этот элемент как наиболее типичный представитель металлов. Подобное строение имеют щелочные металлы, из которых наиболее сходен с францием цезий.

Источник

Элементы главных и побочных подгрупп

Свойства элементов главной и побочной подгрупп существенно различаются. В то же время благодаря периодической системе мы находим много общего в свойствах всех элементов, образующих данную группу. 

Так, в VII группе имеются два элемента — хлор (VIIA группа) и марганец (VIIB группа). Хлор образует простое вещество — неметалл, газообразный при обычных условиях, очень ядовитый. Марганец — типичный металл со всеми свойствами металлов (твердый, пластичный, электропроводный). Что же объединяет эти несхожие элементы? Почему они находятся в одной группе периодической системы? Все дело в том, что и атомы хлора, и атомы марганца содержат по 7 валентных электронов:

Cl $1s^22s^22p^6 underline{3s^23p^5}$;

Mn 1s$^2$2s$^2$2p$^6$3s$^2$3p$^6$ $underline{4s^2 3d^5}$.

Поэтому высшая степень окисления для этих элементов одна и та же, а именно +7. 

Хлор и марганец образуют высшие оксиды одного состава: $Cl_2O_7$ и $Mn_2O_7$. Оба эти оксида кислотные, энергично взаимодействуют с водой с образованием кислот одного и того же состава:

Cl$_2$O$_7$ + Н$_2$О → 2HClO$_4$    хлорная кислота,

Mn$_2$O$_7$  + Н$_2$О → 2HMnO$_4$    марганцевая кислота.

Оба оксида (и отвечающие им кислоты) очень неустойчивы и являются сильнейшими окислителями. 

И хлорная, и марганцевая кислота относятся к наиболее сильным кислотам. При нейтрализации кислот получаются однотипные соли — перхлораты и перманганаты, например KClO$_4$ и KMnO$_4$. При небольшом нагревании обе соли легко разлагаются с выделением кислорода. Все это и позволяет рассматривать элементы хлор и марганец в одной группе периодической системы элементов Д. И. Менделеева.

Следует подчеркнуть, что закономерности изменения свойств по группам, описанные ниже, относятся только к элементам главных подгрупп.

Атомный радиус

Атомный радиус увеличивается с увеличением количества энергетических уровней, то есть сверху вниз по группе. У элементов, стоящих в одном периоде и обладающих равным количеством энергетических уровней, атомный радиус, на первый взгляд, меняться не должен. Однако вследствие взаимодействие ядра и электронов усиливается при движении по периоду слева направо, что приводит к незначительному сжатию атома — уменьшению его радиуса.

Какими свойствами должен обладать элемент у которого

Электроотрицательность

Определение

Способность атома элемента притягивать к себе электроны химической связи называют электроотрицательностью (ЭО).

Элементы-металлы легче отдают электроны, чем притягивают их, иными словами, они имеют низкую электроотрицательность — меньше 1,8. Элементы-неметаллы, наоборот, легче притягивают электроны и имеют высокие значения ЭО.

Какими свойствами должен обладать элемент у которого

Окислительно-восстановительные свойства соединений элементов. Металличность и неметалличность

Слова «металл» и «неметалл» применимы не только к химическим элементам, но и к простым веществам. Например, говоря, что простое вещество является металлом, мы подразумеваем не только что оно состоит из атомов элемента-металла, но и определенную общность физических (металлический блеск, пластичность) и химических (восстановитель) свойств. 

Читайте также:  Какие свойства надежности оценивает коэффициент готовности

Напомним, что из известных на данный момент 116 химических элементов 98 являются металлами. Металлы расположены в главных подгруппах в левом нижем углу (относительно диагонали бор-астат) таблицы Менделеева и в побочных подгруппах. 

Атомы металлов на внешнем уровне содержат не более четырех электронов, как правило, от одного до трех. Отдавая эти электроны, они приобретают устойчивую оболочку ближайшего инертного газа.

Какими свойствами должен обладать элемент у которого

Таки образом, металлы в химических реакциях являются восстановителями — они легко отдают электроны и приобретают положительную степень окисления. В этом заключается их принципиальное отличие от элементов-неметаллов.

Поэтому очень часто говорят о металлических свойствах как синониме восстановительных свойств.

В наибольшей степени металлические свойства выражены у элементов главной подгруппы I группы периодической системы — щелочных металлов. Их атомы настолько легко отдают валентный электрон, что в природе эти элементы встречаются исключительно в виде соединений.

Поскольку сверху вниз возрастают атомные радиусы элементов, сила притяжения валентных электронов к ядру ослабевает и увеличивается легкость отдачи внешних электронов, то есть восстановительные (или металлические) свойства. 

Металлические (восстановительные) свойства элементов при движении по периоду убывают слева направо; а по группе убывают снизу вверх.

Элементы-металлы образуют генетический ряд химических соединений, в которых проявляются их металлические химические свойства: металлоксид металла ($Me_xO_y$) — гидроксид (основание $Me^{+n}(OH)_n$. В сложных веществах проявление металлических свойств характеризуется понятием основность,  и говорят, что оксиды и гидроксиды проявляют основные свойства. Соответственно, основные свойства оксидов и гидроксидов металлов сверху вниз по подгруппе увеличиваются, а кислотные — уменьшаются. 

Элементы-неметаллы имеют на внешнем энергетическом уровне от четырех до семи электронов, при этом элементы восьмой группы образуют семейство инертных газов. Такие элементы имеют восемь электронов на внешнем энергетическом уровне, то есть такой уровень является завершенным, а сами элементы не вступают в химические реакции с другими элементами, то есть являются химически инертными.

Неметаллы в химических реакциях являются окислителями — они легко присоединяют электроны, отнимая их от атомов других элементов,  и приобретают отрицательный заряд.

Легче всего  принимают электроны те элементы, у которых число электронов на внешнем уровне больше четырех — до завершения внешнего уровня им более энергетически выгодно принять несколько электронов, чем отдать свои. В наибольшей степени свойства неметаллов проявляют галогены — элементы главной подгруппы VII группы.

Проследим закономерность изменения окислительных свойств по периоду на примере элементов второго периода:

3Li − 4Be − 5B − 6C − 7N − 😯 − 9F − 10Ne.

Литий и бериллий (типичные металлы) — окислительными свойствами не обладают. Неметаллы бор и углерода — очень слабые окислители. Например, они реагируют с углеродом только в электрической печи, где температура превышает 1500$^o$С.  С неметаллом азотом алюминий вступает в реакцию уже при 1000$^o$С, а с кислородом порошок алюминия реагирует при внесении в пламя горелки. Фтор окисляет порошкообразный алюминий уже при комнатной температуре. А вот завершающий второй период инертный газ неон вообще не вступает в химические реакции.

Таким образом, неметаллические (окислительные) свойства простых веществ при движении по периоду слева направо возрастают.

Элементы-неметаллы образуют генетический ряд химических соединений, в которых проявляются их неметаллические химические свойства: неметаллоксид неметалла ($HMe_xO_y$) — гидроксид неметалла (кислородсодержащая кислота $H_n(HMeO)^{n-}$). В сложных веществах проявление неметаллических свойств характеризуется понятием кислотность,  и говорят, что оксиды и гидроксиды проявляют кислотные свойства. Соответственно, кислотные свойства оксидов и гидроксидов неметаллов в высших степенях окисления сверху вниз по подгруппе уменьшаются, а основные — увеличиваются. 

Кислотные свойства оксидов и гидроксидов по периоду слева направо также возрастают. 

Но изменение окислительно-восстановительных свойств происходит постепенно. Так, металл бериллий, в отличие от типичного металла лития, взаимодействует не только с кислотами, но и со щелочами (что характерно для ряда неметаллов), а простое вещество графит, образованное элементом-неметаллом углеродом, подобно металлам, обладает металлическим блеском и проводит электрический ток. 

Энергия ионизации

Определение

Энергия ионизации — это наименьшая энергия, которая должна быть  затрачена на отрыв электрона от нейтрального атома. 

Какими свойствами должен обладать элемент у которого

Ионный радиус

Какими свойствами должен обладать элемент у которого

Диагональная периодичность

В заключение укажем, что химические элементы, расположенные в диагональном направлении периодической системы, также иногда могут проявлять близость многих физических и химических свойств. Это явление носит название диагонального сходства. Так, химические свойства лития и его соединений иногда оказываются гораздо ближе к свойствам магния, чем к свойствам остальных щелочных металлов. Аналогично свойства бериллия гораздо ближе к свойствам алюминия, чем к свойствам щелочноземельных металлов, а свойства бора ближе к свойствам кремния.

Какими свойствами должен обладать элемент у которого

Диагональное сходство можно объяснить, если принять во внимание характер изменения атомных радиусов по группам и периодам: уменьшение радиусов в периодах (слева направо) приблизительно компенсируется увеличением радиусов в группах (сверху вниз). Тем самым оказываются весьма близки атомные радиусы лития и магния, бериллия и алюминия и др.

Все вышеупомянутые закономерности изменения свойств условно отражены в схеме ниже:

Какими свойствами должен обладать элемент у которого

Какими свойствами должен обладать элемент у которого

Сравнение строения и свойств элементов VIIА и VIIB групп

Чтобы увидеть, как изменяются свойства элементов по периоду рассмотрим строение и свойства типичных металлов  и неметаллов –  представителей IA и VIIA -группы. Кроме того, рассмотрим также свойства элементов побочных IB и  VIIB -групп и сравним их между собой.

Какими свойствами должен обладать элемент у которого

К седьмой группе главной подгруппы Периодической системы относятся элементы семейства галогенов. В длиннопериодном варианте ПС эта группа 17. Элементы этой группы обладают строением и свойствами типичных неметаллов, то есть имеют небольшой радиус и 7 электронов на внешнем уровне, поэтому относятся к p-элементам.

Читайте также:  В каких свойствах языка проявляется его сущность

Типичным представителем галогенов является хлор. Электронная конфигурация этого элемента отвечает электронной формуле $1s^22s^22p^63s^23p^5$ или $[Ne]3s^23p^5$.  Это означает, что валентными являются 7 внешних электронов – 2 s-электрона и 5р-электронов, которые образуют 3 пары и имеют один неспаренный электрон. Поэтому, образуя связь с менее электроотрицательными элементами (водородом или металлами), хлор отнимает у них 1 электрон и достраивает тем самым свой незавершенный уровень. При этом хлор проявляет свойства окислителя и имеет в соединениях степень окисление -1.

Нужно помнить, что хлор расположен в третьем периоде, поэтому имеет три энергетических уровня, а, значит на третьем, внешнем уровне у него имеются вакантные (незанятые) d-орбитали. При переходе в возбужденное состояние электроны с s- и р-подуровней могут перескакивать на более высокий d-энергетический подуровень:

Какими свойствами должен обладать элемент у которого Какими свойствами должен обладать элемент у которого

В этом случае “распаренными” получаются 3, 5 или 7 электронов. Поэтому в соединениях с более электроотрицательными элементами, а именно с кислородом, хлор может проявлять степени окисления  +1; +3; +5 или +7. В этих степенях окисления он образует оксиды и соответствующие им кислородсодержащие кислоты:

HCL- хлороводородная, соли – хлориды

HCLO – хлорноватистая (кислотный оксид $Cl_2O$, соли — гипохлориты), очень слабая кислота, неустойчивая, окислитель:

$2HClO +  H_2S longrightarrow S + Cl_2 + H_2O$

$HCLO_2$ – хлористая (кислотный оксид $Cl_2O_3$, соли — хлориты), неустойчивая; 

$HClO_3$ – хлорноватая (кислотный оксид — $Cl_2O_5$, соли – хлораты, $KClO_3$ – бертоллетова соль), в свободном виде не получена, «живет» только в растворах, сильный окислитель:

$HClO_3 + S + H_2O  longrightarrow H_2SO_4 +  HCl$

$HClO_4$– хлорная (кислотный оксид — $Cl_2O_7$, соли  –  перхлораты

Все кислородсодержащие кислоты хлора являются сильными окислителями. Их свойства изменяются следующим образом:

с увеличением степени окисления хлора увеличивается сила кислородсодержащих кислот и их окислительные свойства

 В то же время, в минимальной степени окисления (-1) хлор образует сильную кислоту HCl, но не является в ней окислителем.

Рассмотрим теперь особенности строения и свойств элементов  IA группы (в длиннопериодном варианте ПС это тоже группа I) на примере натрия. Элементы этой группы являются типичными металлами, то есть обладают большим радиусом, имеют всего 1 валентный электрон, то есть относятся к s-элементам, и в химических реакциях являются типичными восстановителями. Элементы этой группы называются щелочными металлами.

Какими свойствами должен обладать элемент у которого

Натрий находится с хлором в одном периоде, имеет электронную конфигурацию $1s^22s^22p^63s^1$ или $[Ne]3s^1$. то есть различия с атомом натрия заключается только в числе внешних валентных электронов. Имея один неспаренный электрон на внешнем уровне, натрий обладает свойствами восстановителя, то есть легко отдает валентный электрон на образование связи, а хлор, обладая свойствами окислителя, легко присоединяет этот электрон. Поэтому при образовании молекулы хлорида натрия валентный электрон натрия полностью переходит к хлору и образуется соединение с ионным типом связи:

Какими свойствами должен обладать элемент у которого

Теперь рассмотрим и сравним свойства элементов побочных подгрупп  IB и  VIIB -групп. К IB-группе, или в длиннопериодном варианте XI группы, относятся металлы подгруппы меди: Cu, Ag, Au. Особенностью строения этих элементов является наличие заполненного предвнешнего  (n-1)d-подуровня, которое происходит за счёт перескока электрона с ns-подуровня. Причина возможности такого “перескока” электрона объясняется высокой энергетической устойчивостью полностью заполненного d-подуровня  и более высокой, по сравнению с 4s, энергией 3d-подуровня (вспомните порядок заполнения подуровней).  

Какими свойствами должен обладать элемент у которого

Строением энергетических уровней объясняется химическая инертность простых веществ, образованных этими элементами, которые называют “благородными металлами”. Если медь и серебро при обычных условиях медленно окисляются на воздухе, а также могут вступать во взаимодействие с соединениями серы, например сероводородом, то золото при нормальных условиях не реагирует с химическими веществами. Исключение составляет “царская водка” – смесь концентрированной соляной и азотной кислот.

Для сравнения осталось рассмотреть строение и свойства элементов VIIB-подгруппы, или VII группы в длиннопериодном варианте ПС. Эта подгруппа называется подгруппой марганца и включает три элемента: Mn-магранец, Tc – технеций, Re – рений Рассмотри особенности строения этих элементов на примере марганца. Электронная конфигурация марганца отображается электронной формулой $1s^22s^22p^63s^23p^63d^54s^2$ или $[Ar]3d^54s^2$. Как видно из формулы, у марганца не заполнен предвнешний уровень, на котором находится 5 электронов из 10-ти возможных. Для марганца характерны степени окисления +2, +4 и +7, что связано с более устойчивой конфигурацией $d^5$ и $d^3$. 

Простое вещество- марганец, металл серебристо-белого цвета, широко использующийся в металлургии. Марганец образует следующие оксиды: MnO, $Mn_2O_3$, $MnO_2$, $MnO_3$ (не выделен в свободном состоянии) и марганцевый ангидрид $Mn_2O_7$. Оксиды низших валентностей (II, III) носят основной характер, высших – кислотный. Кислотным оксидам соответствуют кислоты и образованные ими соли:

Манганаты — соли нестойких, несуществующих в свободном состоянии кислородных кислот марганца в степенях окисления V, VI и VII:

  • $MnO_4^{3−}$  – гипоманганаты, 

  • $MnO_4^{2−}$ – манганаты,

  • $MnO_4^−$ – перманганаты 

Все соли марганца, особенно перманганаты, являются сильными окислителями. Например, перманганат калия в зависимости от pH раствора окисляет различные вещества, восстанавливаясь до соединений марганца разной степени окисления. Необходимо запомнить:

Степени окисления марганца:

В кислой среде — до соединений марганца (II), в нейтральной — до соединений марганца (IV), в сильно щелочной — до соединений марганца (VI).

Источник