Какими свойства присущи пробионту
протобионтов они представляют собой биологические комплексы, которые, согласно некоторым гипотезам, связанным с происхождением жизни, предшествовали клеткам. Согласно Опарину, это молекулярные агрегаты, окруженные полупроницаемой липидной мембраной или структурой, подобной этой..
Эти биотические молекулярные агрегаты могут представлять простое размножение и метаболизм, которые позволяют поддерживать химический состав внутренней части мембраны, отличный от ее внешней среды..
Некоторые эксперименты, проведенные в лаборатории различными исследователями, показали, что протобионты могут самопроизвольно образовываться, используя органические соединения, созданные из абиотических молекул, в качестве структурных блоков..
Примерами этих экспериментов являются образование липосом, которые представляют собой скопления небольших капелек, окруженных мембранами. Они могут образовываться при добавлении липидов в воду. Это также происходит, когда добавляются другие типы органических молекул.
Может случиться так, что липосомоподобные капли образовались в прудах пребиотических времен, и они случайно включили некоторые аминокислотные полимеры.
В случае, если полимеры сделали определенные органические молекулы проницаемыми для мембраны, можно было бы селективно включать указанные молекулы.
индекс
- 1 Свойства и характеристики
- 1.1 Полупроницаемые мембраны
- 1.2 Возбудимость
- 2 Происхождение
- 2.1 Гипотеза Опарина и Холдейна
- 2.2 Миллер и Юри эксперимент
- 3 Генетический материал протобионтов
- 3.1 Мир РНК
- 3.2 Внешний вид ДНК
- 4 Ссылки
Свойства и характеристики
Предполагаемые протобионты могут быть сформированы из гидрофобных молекул, которые были организованы в виде бислоя (два слоя) на поверхности капли, напоминая липидные мембраны, присутствующие в современных клетках.
Полупроницаемые мембраны
Поскольку структура является избирательно проницаемой, липосома может набухать или спускаться в зависимости от концентрации растворенных веществ в среде..
То есть, если липосома подвергается воздействию гипотонической среды (концентрация внутри клетки выше), вода входит в структуру, набухая в липосоме. Напротив, если среда гипертоническая (концентрация клетки ниже), вода перемещается во внешнюю среду.
Это свойство не уникально для липосом, оно также может применяться к текущим клеткам организма. Например, если эритроциты подвергаются воздействию гипотонической среды, они могут взорваться.
возбудимость
Липосомы могут накапливать энергию в виде мембранного потенциала, который состоит из напряжения на поверхности. Структура может разряжать напряжение способом, напоминающим процесс, который происходит в нейрональных клетках нервной системы..
Липосомы имеют несколько характеристик живых организмов. Однако это не то же самое, что сказать, что липосомы живы..
источник
Существует большое разнообразие гипотез, которые пытаются объяснить происхождение и эволюцию жизни в пребиотической среде. Ниже мы опишем наиболее выдающиеся постулаты, которые обсуждают происхождение протобионтов:
Гипотеза Опарина и Холдейна
Гипотеза о биохимической эволюции была предложена Александром Опариным в 1924 году и Джоном Д. С. Холдейном в 1928 году..
Этот постулат предполагает, что в пребиотической атмосфере не хватало кислорода, но он сильно сокращался из-за большого количества водорода, что приводило к образованию органических соединений благодаря наличию источников энергии..
Согласно этой гипотезе, когда произошло охлаждение Земли, пары вулканических извержений конденсировались, выпадая в осадок в виде сильных и постоянных дождей. Когда вода упала, она вытащила минеральные соли и другие соединения, породив знаменитый первичный суп или питательный бульон.
В этой гипотетической среде могут образовываться крупные молекулярные комплексы, называемые пребиотическими соединениями, которые порождают все более сложные клеточные системы. Опарин назвал эти структуры протобионтами.
По мере того, как протобионты увеличивали свою сложность, они приобретали новые возможности для передачи генетической информации, и Опарин дал название эубионтов этим более продвинутым формам..
Миллер и Юри эксперимент
В 1953 году, после постулатов Опарина, исследователи Стэнли Л. Миллер и Гарольд С. Юри разработали серию экспериментов для проверки образования органических соединений из простых неорганических материалов..
Миллеру и Юри удалось создать экспериментальный дизайн, который моделировал пребиотические среды в условиях, предложенных Опарином, в небольшом масштабе, получая ряд соединений, таких как аминокислоты, жирные кислоты, муравьиная кислота, мочевина и другие..
Генетический материал протобионтов
Мир РНК
Согласно гипотезе нынешних молекулярных биологов, протобионты несли молекулы РНК вместо молекул ДНК, что позволило им копировать и хранить информацию.
Помимо того, что РНК играет фундаментальную роль в синтезе белка, она также может вести себя как фермент и проводить реакции катализа. Из-за этой характеристики РНК является указанным кандидатом на роль первого генетического материала у протобионтов.
Молекулы РНК, способные проводить катализ, называются рибозимами и могут делать копии с комплементарными последовательностями коротких участков РНК и опосредовать процесс сплайсинг, устранение разделов последовательности.
Протобионт, у которого внутри находилась каталитическая молекула РНК, отличался от аналогов, у которых не было этой молекулы..
В случае, если протобионты могут расти, делиться и передавать РНК своим потомкам, дарвиновские процессы естественного отбора могут быть применены к этой системе, и протобионты с молекулами РНК увеличат их частоту в популяции..
Хотя появление этого протобиона может быть очень маловероятным, необходимо помнить, что в водоемах первобытной земли могли существовать миллионы протобионтов..
Внешний вид ДНК
ДНК является гораздо более стабильной двухцепочечной молекулой по сравнению с молекулой РНК, которая является хрупкой и неточно реплицируется. Это свойство точности с точки зрения репликации стало более необходимым, поскольку геномы протобионтов увеличились в размерах.
В Принстонском университете исследователь Фриман Дайсон предлагает, чтобы молекулы ДНК могли быть короткими структурами, помогая в их репликации случайными аминокислотными полимерами с каталитическими свойствами.
Это раннее размножение может происходить внутри протобионтов, которые хранили большое количество органических мономеров..
После появления молекулы ДНК РНК может начать играть свою нынешнюю роль в качестве посредников трансляции, создавая тем самым «мир ДНК»..
ссылки
- Альтштейн А. Д. (2015). Гипотеза о гене: мир нуклеопротеинов и как началась жизнь. Биология Директ, 10, 67.
- Audesirk, T., Audesirk, G. & Byers, B.E. (2003). Биология: Жизнь на Земле. Образование Пирсона.
- Кэмпбелл, А. Н. и Рис, Дж. Б. (2005). биология. Редакция Панамерикана Медикал.
- Гама, М. (2007). Биология 1: конструктивистский подход. Пирсон Образование.
- Schrum, J.P., Zhu, T.F. & Szostak, J.W. (2010). Истоки клеточной жизни. Перспективы Колд Спринг Харбор в биологии, a002212.
- Stano, P. & Mavelli, F. (2015). Модели протоклеток в происхождении жизни и синтетической биологии. жизнь, 5(4), 1700-1702.
Источник
“Биология. Общая биология. Базовый уровень. 10-11 классы”. В.И. Сивоглазов (гдз)
Вопрос 1. Какие космические факторы на ранних этапах развития Земли явились предпосылками для возникновения органических соединений?
На ранних этапах развития Земли органические соединения образовывались из неорганических абиогенным путем. Источником энергии для этих процессов служило ультрафиолетовое излучение Солнца. В атмосфере не существовало ни озона, ни кислорода, поэтому ультрафиолет ничем не задерживался и достигал поверхности планеты. Под его воздействием, а также при участии электрических грозовых разрядов из воды и газов образовывались простейшие органические вещества: формальдегид, глицерин, аминокислоты, мочевина и др.
Вопрос 2. Назовите основные стадии возникновения жизни согласно теории биопоэза.
Согласно теории биопоэза, сформулированной в 1947 г. английским физиком и историком науки Джоном Берналом (1901—1971), можно выделить три стадии возникновения жизни:
1) абиогенный синтез и накопление органических мономеров (формирование «первичного бульона»);
2) образование биологических полимеров и коацерватов (от лат. coacervus — сгусток);
3) формирование мембранных структур ипервичных организмов (пробионтов).
Основное место протекания всех этих процессов — древний океан.
Вопрос 3. Как образовывались, какими свойствами обладали и в каком направлении эволюционировали коацерваты?
Образование коацерватов было бы невозможно без взаимодействия органических веществ друг с другом и с неорганическими со¬единениями. В результате такого взаимодействия из жирных кислот и спиртов образовались липиды, из аминокислот — пептиды, из нуклеотидов — нуклеиновые кислоты. Липиды формировали пленки на поверхности водоемов, а белки — растворенные в воде полимерные комплексы. Такие комплексы, сливаясь друг с другом, образовывали коацерваты — структуры, обособленные от остальной массы воды. В первичном океане коацерваты, или коацерватные капли, обладали способностью поглощать различные вещества. В результате этого внутренний состав коацервата претерпевал изменения, что вело или к его распаду, или к накоплению веществ, т. е. к росту и к изменению химического состава, повышающего устойчивость коацерватной капли. Судьба капли определялась преобладанием одного из указанных процессов. Академик А. И. Опарин отмечал, что в массе коацерватных капель должен был идти отбор наиболее устойчивых в данных конкретных условиях. Достигнув определенных размеров, материнская коацерватная капля могла распадаться на дочерние. Дочерние коацерваты, структура которых мало отличалась от материнской, продолжали свой рост, а резко отличавшиеся капли распадались. Продолжали существовать только те коацерватные капли, которые, вступая в какие-то элементарные формы обмена со средой, сохраняли относительное постоянство своего состава. В дальнейшем они приобрели способность поглощать из окружающей среды не всякие вещества, а лишь такие, которые обеспечивали им устойчивость, а также способность выделять наружу продукты обмена. Постепенно увеличивались различия между химическим составом капли и окружающей средой. В процессе длительного отбора (его называют химической эволюцией) сохранились лишь капли, которые при распаде на дочерние не утрачивали особенностей своей структуры, т. е. приобрели свойство самовоспроизведения. Коацерваты обладали некоторыми признаками живого, но для превращений их в первые живые организмы не хватало биологических мембран. Эволюция коацерватов завершилась образованием мембраны, отделяющей их от окружающей среды и состоящей из фосфолипидов.
Вопрос 4. Расскажите, как возникли пробионты.
Мембраны пробионтов могли образовываться из липидных пленок на поверхности водоемов, к которым присоединялись плавающие в воде коацерваты. Для эволюции жизни были важны те коацерваты, которые содержали не только белок, но и нуклеиновые кислоты. Из их комплексов с липидами можно считать живыми организмами лишь те, которые оказлись способны к самовоспроизведению нуклеиновых кислот. Так возникли пробионты — примитивные гетеротрофы, живущие за счет органических веществ абиогенного происхождения («первичного бульона»). На этом этапе закончилась химическая и началась биологическая эволюция.
Вопрос 5. Опишите, как могло происходить усложнение внутреннего строения первых гетеротрофов.
Постепенно количество органических веществ абиогенного происхождения стало уменьшаться. Это привело к жесткой конкуренции между пробионтами, которая ускорила возникновение автотрофов, использующих для создания органики энергию солнечного света. Первые автотрофы использовали бескислородный путь фотосинтеза. Позднее появились цианобактерии, способные к фотосинтезу с выделением кислорода. Следствием накопления кислорода в атмосфере стало, во-первых, возникновение аэробных организмов, во-вторых, формирование защитного озонового слоя.
Параллельно происходило усложнение внутреннего строения клеток, которое в итоге привело к появлению эукариотов. Некоторые гетеротрофы вступали в симбиоз с аэробными бактериями, захватывая их и используя в качестве «энергетических станций» — будущих митохондрий. Такие симбионты дали начало животным и грибам. Другие гетеротрофы, помимо аэробных бактерий, захватывали и автотрофов-цианобактерий, которые стали хлоропластами. Так появились предшественники растений.
Вопрос 6. Почему невозможно самозарождение жизни в современных условиях?
Самозарождение жизни на Земле в настоящее время невозможно, поскольку в условиях современной богатой кислородом атмосферы органические соединения быстро разрушаются, не накапливаются и не достигают должной степени сложности. Кроме того, появления коацерватов и пробионтов не происходит из-за огромного количества гетеротрофов, очень быстро «поедающих» любое скопление органических веществ.
Источник
Теория биопоэза
На основе гипотезы биохимической эволюции Опарина — Холдейна в 1947 году английский исследователь Джон Бернал сформулировал современную теорию возникновения жизни на Земле, названную теорией биопоэза (греч. bios — жизнь и poiesis — сотворение).
Она включала в себя три стадии:
- абиогенное возникновение органических мономеров;
- образование биологических полимеров;
- формирование мембранных структур и первичных организмов — пробионтов.
Абиогенное возникновение органических мономеров
Наша планета возникла около 4,6 млрд лет назад.
Образование земной коры сопровождалось активной вулканической деятельностью. В первичной атмосфере накапливались газы — продукты реакций, происходящих в недрах Земли: двуокись углерода (СО2), оксид углерода (СО), аммиак (NH3), метан (СН4), сероводород (Н2S) и многие другие. Такие газы и в настоящее время выбрасываются в атмосферу при извержениях вулканов.
Вода, постоянно испаряясь с поверхности Земли, конденсировалась в верхних слоях атмосферы и вновь выпадала в виде дождей на раскалённую земную поверхность. Постепенное снижение температуры привело к тому, что на Землю обрушились ливни, сопровождавшиеся непрерывными грозами. На земной поверхности начали образовываться водоёмы.
В горячей воде растворялись атмосферные газы и те вещества, которые вымывались из земной коры. В атмосфере из её компонентов под действием частых и сильных электрических грозовых разрядов, мощного ультрафиолетового излучения, идущего от Солнца, и активной вулканической деятельности, которая сопровождалась выбросами радиоактивных соединений, образовывались простейшие органические вещества (формальдегид, глицерин, аминокислоты, мочевина, молочная кислота).
Так как в атмосфере свободного кислорода ещё не было, эти соединения, попадая в воды древнего океана, не окислялись и могли накапливаться, усложняясь в строении и образуя концентрированный «первичный бульон» — термин, введённый А. И. Опариным. Органические вещества, накапливаясь миллионы лет в воде древнего океана, образовывали концентрированный раствор, или «первичный бульон».
Первый этап биохимической эволюции был подтверждён многочисленными экспериментами, а вот что происходило на следующем этапе, учёные могут только предполагать, опираясь на знания химии и молекулярной биологии.
По-видимому, образовавшиеся простейшие органические вещества взаимодействовали друг с другом и с неорганическими соединениями, попадающими в водоёмы. Жирные кислоты, вступая в реакцию со спиртами, образовывали липиды, которые формировали жировые плёнки на поверхности водоёмов. Аминокислоты, соединяясь друг с другом, образовывали пептиды. Важным событием этого этапа стало появление нуклеиновых кислот — молекул, способных к редупликации.
Современные биохимики считают, что первыми образовывались короткие цепи РНК, которые могли синтезироваться самостоятельно, без участия специальных ферментов. Образование нуклеиновых кислот и взаимодействие их с белками стало необходимой предпосылкой для возникновения жизни, в основе которой лежат реакции матричного синтеза и обмен веществ.
А. И. Опарин считал, что решающая роль в превращении неживого в живое принадлежала белкам. Благодаря особенностям строения эти молекулы способны образовывать сгустки — коллоидные комплексы, притягивающие к себе молекулы воды. Такие комплексы, сливаясь друг с другом, образовывали коацерваты — структуры, обособленные от остальной массы воды. Коацерваты были способны обмениваться веществами с окружающей средой и избирательно накапливать различные соединения. Поглощение коацерватами ионов металлов приводило к образованию ферментов. Белки в коацерватах защищали нуклеиновые кислоты от разрушающего действия ультрафиолета. Системы такого рода уже обладали некоторыми признаками живого, но для превращения их в первые живые организмы им не хватало биологических мембран.
Коацерват (лат. coacervatio — собирание в кучу, накопление) — сгустки с большей концентрацией коллоида (растворённого вещества), чем в остальной части раствора того же химического состава.
Коацерваты образуются в концентрированных растворах белков и нуклеиновых кислот. Они способны адсорбировать различные вещества. Из раствора внутрь коацерватных капель поступают химические соединения, которые преобразуются в результате реакций, проходящих в коацерватных каплях, и выделяются в окружающую среду.
Понятие «коацерват» имеет важное значение в ряде гипотез о происхождении жизни на Земле.
Формирование мембранных структур и первичных организмов (пробионтов)
Как могли сформироваться мембраны на ранних этапах возникновения жизни?
Поверхности водоёмов были покрыты жировыми плёнками. Длинные неполярные углеводородные «хвосты» липидных молекул торчали наружу, а заряженные «головки» были обращены в воду. Растворённые в водоёмах молекулы полипептидов и нуклеиновых кислот могли адсорбироваться на поверхности липидной плёнки благодаря электрическому притяжению к заряженным «головкам». При порывах ветра поверхностная плёнка изгибалась, от неё могли отрываться пузырьки. Такие пузырьки поднимались ветром в воздух, а когда падали на поверхность водоёма, то покрывались вторым липидным слоем. Это происходило за счёт гидрофобных взаимодействий между обращёнными друг к другу неполярными «хвостами» липидов. Такая двуслойная липидная оболочка удивительным образом напоминает нам современную биологическую мембрану и, возможно, могла быть её прародительницей.
Для дальнейшей эволюции жизни важны были те пузырьки, которые содержали в себе коацерваты с белково-нуклеиновыми комплексами. Биологические мембраны обеспечивали защиту и независимое существование коацерватам, создавая упорядоченность биохимических процессов. В дальнейшем сохранялись и превращались в простейшие живые организмы только те структуры, которые были способны к саморегуляции и самовоспроизводству. Так возникли пробионты (или протобионты: от греч. protos — первый и bios — жизнь) — примитивные гетеротрофные организмы, питавшиеся органическими веществами «первичного бульона». Произошло это 3,5—3,8 млрд лет назад. Закончилась химическая эволюция, наступило время биологической эволюции живой материи.
Пробионты, или протобионты (греч. protos — первый и bios — жизнь), — доклеточные образования, обладающие некоторыми свойствами клеток: способностью к обмену веществ, самовоспроизведением и др.
Пробионты были гетеротрофными организмами, потреблявшими органические вещества из «первичного бульона». Очевидно, они были анаэробными гетеротрофами, поскольку древняя атмосфера, как считают исследователи, не содержала кислорода.
Эти гипотетические первичные организмы, содержавшие макромолекулы белков и нуклеиновых кислот и приобретшие способность к самовоспроизводству, как считают учёные, положили начало всему современному разнообразию жизни на Земле.
< Предыдущая страница “Физико-химическая эволюция в развитии биосферы”
Следующая страница “Учение о клетке” >
Календарь
« Январь 2021 » | ||||||
Пн | Вт | Ср | Чт | Пт | Сб | Вс |
1 | 2 | 3 | ||||
4 | 5 | 6 | 7 | 8 | 9 | 10 |
11 | 12 | 13 | 14 | 15 | 16 | 17 |
18 | 19 | 20 | 21 | 22 | 23 | 24 |
25 | 26 | 27 | 28 | 29 | 30 | 31 |
Статистика
Онлайн всего: 2
Гостей: 2
Пользователей: 0
Источник