Какими специфическими свойствами характеризуются биополимеры

Какими специфическими свойствами характеризуются биополимеры thumbnail

Молекулярный уровень называют также уровнем биополимеров, его изучает наука — молекулярная биология.

Молекулярный уровень можно назвать начальным, наиболее глубинным уровнем организации живого. На этом уровне проявляются процессы обмена веществ и энергии, передача наследственной информации. Только изучив молекулярный уровень, можно разобраться, как протекали процессы зарождения и эволюции жизни на планете Земля; можно понять, каковы молекулярные основы наследственности и процессов обмена веществ в живом организме.
Живые организмы состоят из тех же химических элементов, что и неживые (к самым распространённым в живой природе элементам следует отнести углерод, кислород, водород и азот).

Основой всех органических соединений служит углерод. Он может вступать в связь со многими атомами и их группами, образуя цепочки, различные по химическому составу, строению, длине и форме, образуя сложные химические соединения, различающиеся по строению и функциям. Эти органические соединения, входящие в состав клеток живых организмов, получили название биологические полимеры, или биополимеры — белки, нуклеиновые кислоты, полисахариды.

Молекула биополимера может состоять из многих тысяч соединённых между собой мономеров, которые могут быть одинаковыми или разными (свойства биополимеров зависят от строения их мономеров).

Основным субстратом жизни (от лат. субстратум — «подстилка, подкладка») являются два класса биополимеров — белки и нуклеиновые кислоты.
Все биополимеры построены по одному плану у всех живых организмов:

  • молекулы белков являются основными структурными элементами клеток и регулируют протекающие в них процессы;
  • нуклеиновые кислоты участвуют в передаче генетической (наследственной) информации от клетки к клетке, от организма к организму (генетический код универсален, т. е. одинаков для всех живых организмов);
  • полисахариды представляют собой важнейшие источники энергии, необходимой для жизнедеятельности организмов (именно на молекулярном уровне происходит превращение всех видов энергии и обмен веществ в клетке, и механизмы этих процессов также универсальны для всех живых организмов).

В то же время оказалось, что разнообразные свойства биополимеров, входящих в состав всех организмов, обусловлены различными сочетаниями всего лишь нескольких типов мономеров, образующих множество вариантов длинных полимерных цепей. Этот принцип лежит в основе многообразия жизни на нашей планете.
Специфические свойства биополимеров проявляются только в живой клетке (в изолированном виде молекулы биополимеров являются неживыми).

Более подробно о биополимерах см. Раздел «Химический состав клетки».

Преемственность между молекулярным и следующим за ним клеточным уровнем обеспечивается тем, что биологические молекулы — это тот материал, из которого образуются надмолекулярные (клеточные) структуры.

Источники:

Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. 9 класс // ДРОФА.
Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. Общая биология (базовый уровень) 10–11 класс // ДРОФА.

Лернер Г. И. Биология: Полный справочник для подготовки к ЕГЭ: АСТ, Астрель.

Источник

Биополиме́ры — класс полимеров, встречающихся в природе в естественном виде, входящие в состав живых организмов: белки, нуклеиновые кислоты, полисахариды, лигнин. Биополимеры состоят из одинаковых (или схожих) звеньев — мономеров. Мономеры белков — аминокислоты, нуклеиновых кислот — нуклеотиды, в полисахаридах — моносахариды.

Выделяют два типа биополимеров — регулярные (некоторые полисахариды) и нерегулярные (белки, нуклеиновые кислоты, некоторые полисахариды).

Белки[править | править код]

Основная статья: Белки

Белки имеют несколько уровней организации — первичная, вторичная, третичная, и иногда четвертичная. Первичная структура определяется последовательностью мономеров, вторичная задаётся внутри- и межмолекулярными взаимодействиями между мономерами, обычно при помощи водородных связей. Третичная структура зависит от взаимодействия вторичных структур, четвертичная, как правило, образуется при объединении нескольких молекул с третичной структурой.

Вторичная структура белков образуется при взаимодействии аминокислот с помощью водородных связей и гидрофобных взаимодействий. Основными типами вторичной структуры являются

  • α-спираль, когда водородные связи возникают между аминокислотами в одной цепи,
  • β-листы (складчатые слои), когда водородные связи образуются между разными полипептидными цепями, идущими в разных направлениях (антипараллельно),
  • неупорядоченные участки

Для предсказания вторичной структуры используются компьютерные программы.

Третичная структура или «фолд» образуется при взаимодействии вторичных структур и стабилизируется нековалентными, ионными, водородными связями и гидрофобными взаимодействиями. Белки, выполняющие сходные функции обычно имеют сходную третичную структуру. Примером фолда является β-баррел (бочка), когда β-листы располагаются по окружности. Третичная структура белков определяется с помощью рентгеноструктурного анализа.

Важный класс полимерных белков составляют Фибриллярные белки, самый известный из которых коллаген.

Читайте также:  Какие свойства есть у тюльпана кроме цвета

В животном мире в качестве опорного, структурообразующего полимера обычно выступают белки. Эти полимеры построены из 20 α-аминокислот. Остатки аминокислот связаны в макромолекулы белка пептидными связями, возникающими в результате реакции карбоксильных и аминогрупп.

Значение белков в живой природе трудно переоценить. Это строительный материал живых организмов, биокатализаторы — ферменты, обеспечивающие протекание реакций в клетках, и энзимы, стимулирующие определённые биохимические реакции, то есть обеспечивающие избирательность биокатализа. Наши мышцы, волосы, кожа состоят из волокнистых белков. Белок крови, входящий в состав гемоглобина, способствует усвоению кислорода воздуха, другой белок — инсулин — ответственен за расщепление сахара в организме и, следовательно, за его обеспечение энергией. Молекулярная масса белков колеблется в широких пределах. Так, инсулин — первый из белков, строение которого удалось установить Ф. Сэнгеру в 1953 г., содержит около 60 аминокислотных звеньев, а его молекулярная масса составляет лишь 12 000. К настоящему времени идентифицировано несколько тысяч молекул белков, молекулярная масса некоторых из них достигает 106 и более.

Нуклеиновые кислоты[править | править код]

Основная статья: ДНК

  • Первичная структура ДНК — это линейная последовательность нуклеотидов в цепи. Как правило, последовательность записывают в виде букв (например AGTCATGCCAG), причём запись ведётся с 5′- на 3′-конец цепи.
  • Вторичная структура — это структура, образованная за счёт нековалентных взаимодействий нуклеотидов (в большей степени азотистых оснований) между собой, стэкинга и водородных связей. Двойная спираль ДНК является классическим примером вторичной структуры. Это самая распространённая в природе форма ДНК, которая состоит из двух антипараллельных комплементарных полинуклеотидных цепей. Антипараллельность реализуется за счёт полярности каждой из цепей. Под комплементарностью понимают соответствие каждому азотистому основанию одной цепи ДНК строго определённого основания другой цепи (напротив A стоит T, а напротив G располагается C). ДНК удерживается в двойной спирали за счёт комплементарного спаривания оснований — образования водородных связей, двух в паре А-Т и трёх в паре G-C.

В 1868 г. швейцарский учёный Фридрих Мишер выделил из ядер клеток фосфорсодержащее вещество, которое он назвал нуклеином. Позднее это и подобные ему вещества получили название нуклеиновых кислот. Их молекулярная масса может достигать 109, но чаще колеблется в пределах 105−106. Исходными веществами, из которых построены нуклеотиды — звенья макромолекул нуклеиновых кислот, являются: углевод, фосфорная кислота, пуриновые и пиримидиновые основания. В одной группе кислот в качестве углевода выступает рибоза, в другой — дезоксирибоза

В соответствии с природой углевода, входящего в их состав, нуклеиновые кислоты называются рибонуклеиновой и дезоксирибонуклеиновой кислотами. Общеупотребительными сокращениями являются РНК и ДНК.
Нуклеиновые кислоты играют наиболее ответственную роль в процессах жизнедеятельности. С их помощью решаются две важнейшие задачи: хранения и передачи наследственной информации и матричный синтез макромолекул ДНК, РНК и белка.

Полисахариды[править | править код]

Полисахариды, синтезируемые живыми организмами, состоят из большого количества моносахаридов, соединённых гликозидными связями. Зачастую полисахариды нерастворимы в воде. Обычно это очень большие, разветвлённые молекулы. Примерами полисахаридов, которые синтезируют живые организмы, являются запасные вещества крахмал и гликоген, а также структурные полисахариды — целлюлоза и хитин. Так как биологические полисахариды состоят из молекул разной длины, понятия вторичной и третичной структуры к полисахаридам не применяются.

Полисахариды образуются из низкомолекулярных соединений, называемых сахарами или углеводами. Циклические молекулы моносахаридов могут связываться между собой с образованием так называемых гликозидных связей путём конденсации гидроксильных групп.

Наиболее распространены полисахариды, повторяющиеся звенья которых являются остатками α-D-глюкопиранозы или её производных. Наиболее известна и широко применяема целлюлоза. В этом полисахариде кислородный мостик связывает 1-й и 4-й атомы углерода в соседних звеньях, такая связь называется α-1,4-гликозидной.

Химический состав, аналогичный целлюлозе, имеют крахмал, состоящий из амилозы и амилопектина, гликоген и декстран. Отличие первых от целлюлозы состоит в разветвлённости макромолекул, причём амилопектин и гликоген могут быть отнесены к сверхразветвлённым природным полимерам, то есть дендримерам нерегулярного строения. Точкой ветвления обычно является шестой атом углерода α-D-глюкопиранозного кольца, который связан гликозидной связью с боковой цепью. Отличие декстрана от целлюлозы состоит в природе гликозидных связей — наряду с α-1,4-, декстран содержит также α-1,3- и α-1,6-гликозидные связи, причем последние являются доминирующими.

Читайте также:  Каким свойством должны обладать деньги

Химический состав, отличный от целлюлозы, имеют хитин и хитозан, но они близки к ней по структуре. Отличие заключается в том, что при втором атоме углерода α-D-глюкопиранозных звеньев, связанных α-1,4-гликозидными связями, OH-группа заменена группами -NHCH3COO в хитине и группой -NH2 в хитозане.

Целлюлоза содержится в коре и древесине деревьев, стеблях растений: хлопок содержит более 90 % целлюлозы, деревья хвойных пород — свыше 60 %, лиственных — около 40 %. Прочность волокон целлюлозы обусловлена тем, что они образованы монокристаллами, в которых макромолекулы упакованы параллельно одна другой. Целлюлоза составляет структурную основу представителей не только растительного мира, но и некоторых бактерий.

В животном мире в качестве опорных, структурообразующих полимеров полисахариды «используются» лишь насекомыми и членистоногими. Наиболее часто для этих целей применяется хитин, который служит для построения так называемого внешнего скелета у крабов, раков, креветок. Из хитина деацетилированием получается хитозан, который, в отличие от нерастворимого хитина, растворим в водных растворах муравьиной, уксусной и соляной кислот. В связи с этим, а также благодаря комплексу ценных свойств, сочетающихся с биосовместимостью, хитозан имеет большие перспективы широкого практического применения в ближайшем будущем.

Крахмал относится к числу полисахаридов, выполняющих роль резервного пищевого вещества в растениях. Клубни, плоды, семена содержат до 70 % крахмала. Запасаемым полисахаридом животных является гликоген, который содержится преимущественно в печени и мышцах.

Прочность стволов и стеблей растений, помимо скелета из целлюлозных волокон, определяется соединительной растительной тканью. Значительную её часть в деревьях составляет лигнин — до 30 %. Его строение точно не установлено. Известно, что это относительно низкомолекулярный (M ≈ 104) сверхразветвлённый полимер, образованный в основном из остатков фенолов, замещённых в орто-положении группами -OCH3, в пара-положении группами -CH=CH-CH2OH. В настоящее время накоплено громадное количество лигнинов как отходов целлюлозно-гидролизной промышленности, но проблема их утилизации не решена. К опорным элементам растительной ткани относятся пектиновые вещества и, в частности пектин, находящийся в основном в стенках клеток. Его содержание в кожуре яблок и белой части кожуры цитрусовых доходит до 30 %. Пектин относится к гетерополисахаридам, то есть сополимерам. Его макромолекулы в основном построены из остатков D-галактуроновой кислоты и её метилового эфира, связанных α-1,4-гликозидными связями.

Из пентоз значение имеют полимеры арабинозы и ксилозы, которые образуют полисахариды, называемые арабинами и ксиланами. Они, наряду с целлюлозой, определяют типичные свойства древесины.

См. также[править | править код]

  • Биомолекулы

Источник

Молекулярный уровень: общая характеристика

Цели урока:

  • Образовательная:

-углубить знания о химическом составе клеток: неорганических веществах, их роли в клетке

– дать понятие об органических веществах, найти взаимосвязь между полимерами и мономерами.

-формировать умение доказывать материальное единство мира на основе знаний о химическом составе клеток

  • Развивающая:

-Развить владение навыками анализа информации

-уметь определять содержание своей учебной деятельности

-комбинировать уже полученные знания и умения на традиционных уроках при решении задач в новой форме

  • Воспитывающая:

– развивать самостоятельность,

– планировать и контролировать освоение предмета

– развивать умение произвести самооценку.

Оборудование: Таблица «Уровни организации жизни», «Строение биополимеров»,

Ход работы:

  1. Организационный момент

  2. Актуализация знаний(15 минут), (самостоятельная работа по Введению).

  1. Изучение нового материала (20 минут), (рассказ с элементами беседы).

На предыдущем уроки мы с вами рассмотрели основные свойства живых организмов. Помимо того, что организмы обладают определенными свойствами, их можно ещё распределить по определенным уровням организации живой материи.

Запишем тему сегодняшнего урока: «Уровни организации живой природы. Молекулярный уровень: общая характеристика».

Запишем уровни организации живой природы:

hello_html_m4bf0a7a4.png

Любая живая система, как бы сложно она ни была организована, проявляется на уровне функционирования биологических макромолекул.

Молекулярный уровень можно назвать начальным, наиболее глубинным уровнем организации живого. Каждый живой организм состоит из молекул органических веществ — белков, нуклеиновых кислот, углеводов, жиров (липидов), находящихся в клетках и получивших название биологических молекул.

Биологи исследуют роль этих важнейших биологических соединений в росте и развитии организмов, хранении и передаче наследственной информации, обмене веществ и превращении энергии в живых клетках и в других процессах.

Изучая живые организмы, вы узнали, что они состоят из тех же химических элементов, что и неживые. В настоящее время известно более 100 элементов, большинство из них встречается в живых организмах. К самым распространенным в живой природе элементам следует отнести углерод, кислород, водород и азот.

Читайте также:  Какими свойствами обладают кабачки

Основой всех органических соединений служит углерод. Он может вступать в связь со многими атомами и их группами, образуя цепочки, различные по химическому составу, строению, длине и форме. Из групп атомов образуются молекулы, а из последних — сложные химические соединения, различающиеся по строению и функциям. Эти органические соединения, входящие в состав клеток живых организмов, получили название биологические полимеры, или биополимеры.

Запишем определение:

Органические вещества – это соединения, содержащие углерод (кроме карбонатов). Между атомами углерода возникают одинарные или двойные связи, на основе которых формируются углеродные цепочки.

Большинство органических веществ – это полимеры, состоящие из повторяющихся частиц – мономеров.

Полимер (от греч. polys — многочисленный) — цепь, состоящая из многочисленных звеньев — мономеров, каждый из которых устроен относительно просто. Молекула полимера может состоять из многих тысяч соединенных между собой мономеров, которые могут быть одинаковыми или разными (рис. 1).

Запишем, что же такое биополимеры – природные высокомолекулярные соединения (белки, нуклеиновые кислоты, жиры, сахариды и их производные), служащие структурными частями живых организмов и играющую важную роль в процессах жизнедеятельности.

Свойства биополимеров зависят от строения их молекул: от числа и разнообразия мономерных звеньев, образующих полимер. Все они универсальны, так как построены по одному плану у всех живых организмов, независимо от видовой принадлежности.

Для каждого вида биополимеров характерны определенное строение и функции. Так, молекулы белков являются основными структурными элементами клеток и регулируют протекающие в них процессы.

Нуклеиновые кислоты участвуют в передаче генетической (наследственной) информации от клетки к клетке, от организма к организму. Изучая основы генетики, вы узнаете, что генетический код универсален, т. е. одинаков для всех живых организмов.

Углеводы и жиры представляют собой важнейшие источники энергии, необходимой для жизнедеятельности организмов.

Регулярными биополемерами называются вещества состоящие из одинаковых мономеров, нерегулярными – состоящие из разных мономеров.

Именно на молекулярном уровне происходит превращение всех видов энергии и обмен веществ в клетке. Механизмы этих процессов также универсальны для всех живых организмов.

В то же время оказалось, что разнообразные свойства биополимеров, входящих в состав всех организмов, обусловлены различными сочетаниями всего лишь нескольких типов мономеров, образующих множество вариантов длинных полимерных цепей. Этот принцип лежит в основе многообразия жизни на нашей планете.

Специфические свойства биополимеров проявляются только в живой клетке. Выделенные из клеток, молекулы биополимеров теряют биологическую сущность и характеризуются лишь физико-химическими свойствами того класса соединений, к которому они относятся. Другими словами, в изолированном виде молекулы биополимеров являются неживыми.

Только изучив молекулярный уровень, можно понять, как протекали процессы зарождения и эволюции жизни на нашей планете, каковы молекулярные основы наследственности и процессов обмена веществ в живом организме.

Преемственность между молекулярным и следующим за ним клеточным уровнем обеспечивается тем, что биологические молекулы — это тот материал, из которого образуются надмолекулярные клеточные структуры.

Запомните:

  1. Биополимеры состоят из многочисленных звеньев – мономеров, которые имеют достаточно простое строение;

  2. Для каждого вида биополимеров характерно определенное строение и функции;

  3. Биополимеры могут состоять из одинаковых или из разных мономеров;

  4. Свойства полимеров проявляются только в живой клетке;

  5. Все биополимеры – это лишь сочетание нескольких типов мономеров, которые дают все многообразие жизни на Земле.

  1. Закрепление материала.

  1. Какие элементы преобладают в составе живых организмов?

  2. Какие уровни организации живой природы вы знаете?

  3. Что такое органические вещества

  4. Какие виды полимеров вы знаете?

  5. Из чего состоят биополимеры?

  1. Домашнее задание.

§ 1.1

Инструкционная карта 1

__________________________________________________________________________________________________________________________________________________________

Уровни организации живой природы:

hello_html_m4bf0a7a4.png

Органические вещества -____________________________________________

____________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Полимеры – ______________________________________________________

_________________________________________________________________________________________________________________________________

Биополимеры – _________________________________________________

_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________

Домашнее задание: параграф 1.1. Ответить на вопросы:

1. Какие процессы исследуют ученые на молекулярном уровне?

2. Какие элементы преобладают в составе живых организмов?

3. Почему молекулы белков, нуклеиновых кислот, углеводов и липидов рассматриваются как биополимеры только в клетке?

Источник