Какими отличительными свойствами обладает индукционное электрическое поле
Закон электромагнитной индукции. Вихревое электрическое поле. Вихревые токи
Подробности
Просмотров: 336
Электрический ток в цепи возможен, если на свободные заряды проводника действуют сторонние силы. Работа этих сил по перемещению единичного положительного заряда вдоль замкнутого контура называется ЭДС. При изменении магнитного потока через поверхность, ограниченную контуром, в контуре появляются сторонние силы, действие которых характеризуется ЭДС индукции.
Учитывая направление индукционного тока, согласно правилу Ленца:
ЭДС индукции в замкнутом контуре равна скорости изменения магнитного потока через поверхность, ограниченную контуром, взятой с противоположным знаком.
Почему? – т.к. индукционный ток противодействует изменению магнитного потока, ЭДС индукции и скорость изменения магнитного потока имеют разные знаки.
Если рассматривать не единичный контур, а катушку, где N- число витков в катушке:
Величину индукционного тока можно рассчитать по закону Ома для замкнутой цепи
где R – сопротивление проводника.
ВИХРЕВОЕ ЭЛЕКТРИЧЕСКОЕ ПОЛЕ
Причина возникновения электрического тока в неподвижном проводнике – электрическое поле.
Всякое изменение магнитного поля порождает индукционное электрическое поле независимо от наличия или отсутствия замкнутого контура, при этом если проводник разомкнут, то на его концах возникает разность потенциалов; если проводник замкнут, то в нем наблюдается индукционный ток.
Индукционное электрическое поле является вихревым.
Направление силовых линий вихревого электрического поля совпадает с направлением индукционного тока
Индукционное электрическое поле имеет совершенно другие свойства в отличии от электростатического поля.
Электростатическое поле – создается неподвижными электрическими зарядами, силовые линии поля разомкнуты – -потенциальное поле, источниками поля являются электрические заряды, работа сил поля по перемещению пробного заряда по замкнутому пути равна 0.
Индукционное электрическое поле ( вихревое электр. поле ) – вызывается изменениями магнитного поля, силовые линии замкнуты (вихревое поле), источники поля указать нельзя, работа сил поля по перемещению пробного заряда по замкнутому пути равна ЭДС индукции.
Вихревые токи
Индукционные токи в массивных проводниках называют токами Фуко. Токи Фуко могут достигать очень больших значений, т.к. сопротивление массивных проводников мало. Поэтому сердечники трансформаторов делают из изолированных пластин.
В ферритах – магнитных изоляторах вихревые токи практически не возникают.
Использование вихревых токов
– нагрев и плавка металлов в вакууме, демпферы в электроизмерительных приборах.
Вредное действие вихревых токов
– это потери энергии в сердечниках трансформаторов и генераторов из-за выделения большого количества тепла.
Электромагнитное поле – Класс!ная физика
Взаимодействие токов. Магнитное поле. Вектор магнитной индукции. Сила Ампера —
Действие магнитного поля на движущийся заряд.Магнитные свойства вещества —
Явление электромагнитной индукции. Магнитный поток. Направление индукционного тока. Правило Ленца —
ЭДС электромагнитной индукции. Вихревое электрическое поле —
ЭДС индукции в движущихся проводниках
—
Самоиндукция. Индуктивность. Энергия магнитного поля. Вопросы к пр/работе
Любознательным
Сальто-мортале жука-щелкуна
Если пощекотать лежащего на спинке жука-щелкуна, он подпрыгивает вверх сантиметров на 25,
при этом раздается громкий щелчок. Ерунда, возможно, скажете вы.
Но, действительно, жучок без помощи ног делает толчок с начальным ускорением 400 g, а затем переворачивается
в воздухе и приземляется уже на ноги. 400 g — удивительно!
Еще более удивительно то, что мощность, развиваемая при толчке, раз в сто больше мощности,
которую может обеспечить какая-либо из мышц жучка. Как удается жучку развить такую огромную мощность?
Часто ли он способен совершать свои изумительные прыжки? Чем ограничена частота их повторения?
Оказывается…
Когда жучок лежит вверх ногами, особый выступ на передней части его тела мешает ему распрямиться,
чтобы совершить прыжок. Какое-то время он накапливает мышечное напряжение, затем, резко изогнувшись, подбрасывает себя вверх.
Прежде чем жучок снова сможет подпрыгнуть, он должен снова медленно «напрячь» мышцы.
Источник: «Физический фейерверк» Дж. Уокер
Источник
Вихревое электрическое поле – это электрическое поле, которое порождается переменным магнитным полем и линии напряженности которго замкнуты.
Переменное магнитное поле порождает индуцированное электрическое поле. Если магнитное поле постоянно, то индуцированного электрического поля не возникнет. Следовательно, индуцированное электрическое поле не связано с зарядами, как это имеет место в случае электростатического поля; его силовые линии не начинаются и не заканчиваются на зарядах, а замкнуты сами на себя, подобно силовым линиям магнитного поля. Это означает, что индуцированное электрическое поле, подобно магнитному, является вихревым.
Если неподвижный проводник поместить в переменное магнитное поле, то в нем индуцируется э. д. с. Электроны приводятся в направленное движение электрическим полем, индуцированным переменным магнитном полем; возникает индуцированный электрический ток. В этом случае проводник является лишь индикатором индуцированного электрического поля. Поле приводит в движение свободные электроны в проводнике и тем самым обнаруживает себя. Теперь можно утверждать, что и без проводника это поле существует, обладая запасом энергии.
Сущность явления электромагнитной индукции заключается не столько в появлении индуцированного тока, сколько в возникновении вихревого электрического поля.
Это фундаментальное положение электродинамики установлено Максвеллом как обобщение закона электромагнитной индукции Фарадея.
В отличие от электростатического поля индуцированное электрическое поле является непотенциальным, так как работа, совершаемая в индуцированном электрическом поле, при перемещении единичного положительного заряда по замкнутому контуру равна э. д. с. индукции, а не нулю.
Направление вектора напряженности вихревого электрического поля устанавливается в соответствии с законом электромагнитной индукции Фарадея и правилом Ленца. Направление силовых линий вихревого эл. поля совпадает с направлением индукционного тока.
Так как вихревое электрическое поле существует и в отсутствие проводника, то его можно применять для ускорения заряженных частиц до скоростей, соизмеримых со скоростью света. Именно на использовании этого принципа основано действие ускорителей электронов — бетатронов.
Индукционное электрическое поле имеет совершенно другие свойства в отличии от электростатического поля.
Отличие вихревого электрического поля от электростатического
1) Оно не связано с электрическими зарядами;
2) Силовые линии этого поля всегда замкнуты;
3) Работа сил вихревого поля по перемещению зарядов на замкнутой траектории не равна нулю.
электростатическое поле | индукционное электрическое поле |
1. создается неподвижными электр. зарядами | 1. вызывается изменениями магнитного поля |
2. силовые линии поля разомкнуты – потенциальное поле | 2. силовые линии замкнуты – вихревое поле |
3. источниками поля являются электр. заряды | 3. источники поля указать нельзя |
4. работа сил поля по перемещению пробного заряда по замкнутому пути = 0. | 4. работа сил поля по перемещению пробного заряда по замкнутому пути = ЭДС индукции |
Источник
Весь мир в твоих руках — все будет так, как ты захочешь
Адрес: г. Новороссийск | Телефон: Номер телефона | Почта: kalinelena@yandex.ru |
---|
Весь мир в твоих руках — все будет так, как ты захочешь
Как сказал.
Стремись не к тому, чтобы добиться успеха, а к тому, чтобы твоя жизнь имела смысл.
Альберт Эйнштейн
Тестирование
Вихревое электрическое поле
Вихревое электрическое поле — это электрическое поле, которое порождается переменным магнитным полем и линии напряженности которго замкнуты.
Переменное магнитное поле порождает индуцированное электрическое поле. Если магнитное поле постоянно, то индуцированного электрического поля не возникнет. Следовательно, индуцированное электрическое поле не связано с зарядами, как это имеет место в случае электростатического поля; его силовые линии не начинаются и не заканчиваются на зарядах, а замкнуты сами на себя, подобно силовым линиям магнитного поля. Это означает, что индуцированное электрическое поле, подобно магнитному, является вихревым.
Если неподвижный проводник поместить в переменное магнитное поле, то в нем индуцируется э. д. с. Электроны приводятся в направленное движение электрическим полем, индуцированным переменным магнитном полем; возникает индуцированный электрический ток. В этом случае проводник является лишь индикатором индуцированного электрического поля. Поле приводит в движение свободные электроны в проводнике и тем самым обнаруживает себя. Теперь можно утверждать, что и без проводника это поле существует, обладая запасом энергии.
Сущность явления электромагнитной индукции заключается не столько в появлении индуцированного тока, сколько в возникновении вихревого электрического поля.
Это фундаментальное положение электродинамики установлено Максвеллом как обобщение закона электромагнитной индукции Фарадея.
В отличие от электростатического поля индуцированное электрическое поле является непотенциальным, так как работа, совершаемая в индуцированном электрическом поле, при перемещении единичного положительного заряда по замкнутому контуру равна э. д. с. индукции, а не нулю.
Направление вектора напряженности вихревого электрического поля устанавливается в соответствии с законом электромагнитной индукции Фарадея и правилом Ленца. Направление силовых линий вихревого эл. поля совпадает с направлением индукционного тока.
Так как вихревое электрическое поле существует и в отсутствие проводника, то его можно применять для ускорения заряженных частиц до скоростей, соизмеримых со скоростью света. Именно на использовании этого принципа основано действие ускорителей электронов — бетатронов.
Индукционное электрическое поле имеет совершенно другие свойства в отличии от электростатического поля.
Отличие вихревого электрического поля от электростатического
1) Оно не связано с электрическими зарядами;
2) Силовые линии этого поля всегда замкнуты;
3) Работа сил вихревого поля по перемещению зарядов на замкнутой траектории не равна нулю.
Причина возникновения электрического тока в неподвижном проводнике — электрическое поле. Всякое изменение магнитного поля порождает индукционное электрическое поле независимо от наличия или отсутствия замкнутого контура, при этом если проводник разомкнут, то на его концах возникает разность потенциалов; если проводник замкнут, то в нем наблюдается индукционный ток.
Индукционное электрическое поле является вихревым. Направление силовых линий вихревого эл. поля совпадает с направлением индукционного тока Индукционное электрическое поле имеет совершенно другие свойства в отличии от электростатического поля.
индукционное электрическое поле ( вихревое электр. поле )
1. создается неподвижными электр. зарядами
1. вызывается изменениями магнитного поля
2. силовые линии поля разомкнуты — -потенциальное поле
2. силовые линии замкнуты — — вихревое поле
3. источниками поля являются электр. заряды
3. источники поля указать нельзя
4. работа сил поля по перемещению пробного заряда по замкнутому пути = 0.
4. работа сил поля по перемещению пробного заряда по замкнутому пути = ЭДС индукции
Вихревые токи
Индукционные токи в массивных проводниках называют токами Фуко. Токи Фуко могут достигать очень больших значений, т.к. сопротивление массивных проводников мало.Поэтому сердечники трансформаторов делают из изолированных пластин. В ферритах -магнитных изоляторах вихревые токи практически не возникают.
Использование вихревых токов: нагрев и плавка металлов в вакууме; демпферы в электроизмерительных приборах.
Вредное действие вихревых токов: потери энергии в сердечниках трансформаторов и генераторов из-за выделения большого количества тепла.
Эдс индукции в движущихся проводниках
Прямолинейный проводник АВ движется в магнитном поле с индукцией В по проводящим шинам, которые замкнуты на гальванометр.
На электрические заряды, перемещающиеся вместе с проводником в магнитном поле, действует сила Лоренца: Fл = /q/vB sin a Её направление можно определить по правилу левой руки. Под действием Fл внутри проводника происходит распределение положительных и отрицательных зарядов вдоль всей длины проводника l. Сила Лоренца является в данном случае сторонней силой, и в проводнике возникает ЭДС индукции, а на концах проводника АВ возникает разность потенциалов.
Причина возникновения ЭДС индукции в движущемся проводнике объясняется действием силы Лоренца на свободные заряды.
Готовимся к проверочной работе!
1. При каком направлении движения контура в магнитном поле в контуре будет возникать индукционный ток?
2. Укажите направление индукционного тока в контуре при введении его в однородное магнитное поле.
3. Как изменится магнитный поток в рамке, если рамку повернуть на 90 градусов из положения 1 в положение 2 ?
4. Будет ли возникать индукционный ток в проводниках, если они движутся так, как показано на рисунке?
5. Определить направление индукционного тока в проводнике АБ, движущемся в однородном магнитном поле.
6. Указать правильное направление индукционного тока в контурах.
В это же время американский физик Джозеф Генри также успешно проводил опыты по индукции токов, но пока он собирался опубликовать результаты своих опытов, в печати появилось сообщение М. Фарадея об открытии им электромагнитной индукции.
Источник
Вихревое электрическое поле – это электрическое поле, которое порождается переменным магнитным полем и линии напряженности которго замкнуты.
Переменное магнитное поле порождает индуцированное электрическое поле. Если магнитное поле постоянно, то индуцированного электрического поля не возникнет. Следовательно, индуцированное электрическое поле не связано с зарядами, как это имеет место в случае электростатического поля; его силовые линии не начинаются и не заканчиваются на зарядах, а замкнуты сами на себя, подобно силовым линиям магнитного поля. Это означает, что индуцированное электрическое поле, подобно магнитному, является вихревым.
Если неподвижный проводник поместить в переменное магнитное поле, то в нем индуцируется э. д. с. Электроны приводятся в направленное движение электрическим полем, индуцированным переменным магнитном полем; возникает индуцированный электрический ток. В этом случае проводник является лишь индикатором индуцированного электрического поля. Поле приводит в движение свободные электроны в проводнике и тем самым обнаруживает себя. Теперь можно утверждать, что и без проводника это поле существует, обладая запасом энергии.
Сущность явления электромагнитной индукции заключается не столько в появлении индуцированного тока, сколько в возникновении вихревого электрического поля.
Это фундаментальное положение электродинамики установлено Максвеллом как обобщение закона электромагнитной индукции Фарадея.
В отличие от электростатического поля индуцированное электрическое поле является непотенциальным, так как работа, совершаемая в индуцированном электрическом поле, при перемещении единичного положительного заряда по замкнутому контуру равна э. д. с. индукции, а не нулю.
Направление вектора напряженности вихревого электрического поля устанавливается в соответствии с законом электромагнитной индукции Фарадея и правилом Ленца. Направление силовых линий вихревого эл. поля совпадает с направлением индукционного тока.
Так как вихревое электрическое поле существует и в отсутствие проводника, то его можно применять для ускорения заряженных частиц до скоростей, соизмеримых со скоростью света. Именно на использовании этого принципа основано действие ускорителей электронов — бетатронов.
Индукционное электрическое поле имеет совершенно другие свойства в отличии от электростатического поля.
Отличие вихревого электрического поля от электростатического
1) Оно не связано с электрическими зарядами;
2) Силовые линии этого поля всегда замкнуты;
3) Работа сил вихревого поля по перемещению зарядов на замкнутой траектории не равна нулю.
электростатическое поле | индукционное электрическое поле |
1. создается неподвижными электр. зарядами | 1. вызывается изменениями магнитного поля |
2. силовые линии поля разомкнуты – потенциальное поле | 2. силовые линии замкнуты – вихревое поле |
3. источниками поля являются электр. заряды | 3. источники поля указать нельзя |
4. работа сил поля по перемещению пробного заряда по замкнутому пути = 0. | 4. работа сил поля по перемещению пробного заряда по замкнутому пути = ЭДС индукции |
Источник
Начало тут:
“Электромагнитная индукция ч.1. Электрический ток и электромагнитная волна”.
Я считаю процессы индукции и самоиндукции самыми интересными, т.к. оказалось, что подавляющее большинство специалистов с профильным образованием их не понимают до конца. Нас всех в школе и институтах обучили упрощённому пониманию происходящих процессов, но на самом деле всё происходит несколько не так и я попробую доступно это объяснить.
Итак, это схема простейшего электрогенератора:
При вращении рамки в постоянном магнитном поле в ней возникает электрический ток, называемый индукционным, а сам процесс называется электромагнитной индукцией:
«Электромагнитная индукция — явление возникновения электрического тока в замкнутом контуре при изменении магнитного потока, проходящего через него. Электромагнитная индукция была открыта Майклом Фарадеем 29 августа 1831 года. Он обнаружил, что электродвижущая сила, возникающая в замкнутом проводящем контуре, пропорциональна скорости изменения магнитного потока через поверхность, ограниченную этим контуром. Величина электродвижущей силы (ЭДС) не зависит от того, что является причиной изменения потока — изменение самого магнитного поля или движение контура (или его части) в магнитном поле. Электрический ток, вызванный этой ЭДС, называется индукционным током».
У этого тока есть одно важное свойство, которое для одних стало возможностью скрыть правду, а для других – простым объяснением, почему для получения большего количества энергии от генератора нужно приложить большую силу для его вращения. В Вики это звучит так:
«Индукционный ток, возникающий в замкнутом проводящем контуре, имеет такое направление, что создаваемое им магнитное поле противодействует тому изменению магнитного потока, которым был вызван данный ток».
В реальном генераторе это происходит так: при приближении части рамки к северному полюсу магнита в этой части рамки возникает ЭДС и северный магнитный полюс. Два одноимённых магнитных полюса начинают отталкиваться и возникает сопротивление вращению рамки. Во второй части рамки происходит тоже самое, только с южным полюсом. Чем быстрее вращается генератор, тем быстрее меняется магнитное поле в рамке, а значит возникает бОльший ток, соответственно бОльшее магнитное поле и бОльшее сопротивление вращению. Этого оказалось достаточно, чтобы заявить о соблюдении закона сохранения энергии: хотите больше энергии – приложите большее усилие. Очень многим этого хватило и теперь эти убеждения сложно переломить. Однако давайте рассмотрим процесс индукции чуть внимательнее.
Итак, при приближении рамки к магнитному полюсу, в ней возникает ток и такой же магнитный полюс, который начинает оказывать сопротивление движению. А что происходит с магнитным полем магнита? Оно ослабевает, переходя в электрическую энергию? Нет. Иначе при увеличении скорости вращения генератора и увеличении тока всё больше магнитного поля переходило бы в электричество и сопротивление вращению наоборот уменьшалось бы.
Оно переходит на проводник, разделяется, но в сумме остаётся таким же? Нет. Тогда бы усилие для вращения генератора не менялось от скорости и нагрузки.
На самом деле оно остаётся без изменений, а суммарное магнитное поле ещё и увеличивается на поле, возникшее вокруг проводника. Магнит при этом не теряет своей энергии и это доказывается десятилетиями работы генераторов на постоянных магнитах. Тогда откуда появляется энергия в проводнике? Кинетическая энергия вращения превращается в электрическую? Правда? А если ничего не вращать? Вы знаете как работает электрический трансформатор? Например такой:
«Работа трансформатора основана на двух базовых принципах:
Изменяющийся во времени электрический ток создаёт изменяющееся во времени магнитное поле (электромагнетизм).
Изменение магнитного потока, проходящего через обмотку, создаёт ЭДС в этой обмотке (электромагнитная индукция).
На одну из обмоток, называемую первичной обмоткой, подаётся напряжение от внешнего источника. Протекающий по первичной обмотке переменный ток намагничивания создаёт переменный магнитный поток в магнитопроводе. В результате электромагнитной индукции, переменный магнитный поток в магнитопроводе создаёт во всех обмотках, в том числе и в первичной, ЭДС индукции, пропорциональную первой производной магнитного потока, при синусоидальном токе сдвинутой на 90° в обратную сторону по отношению к магнитному потоку».
Хочу обратить ваше внимание на выделенный текст: ток индукции появляется во всех обмотках трансформатора, ЭДС во всех обмотках равны и зависят только от скорости изменения магнитного потока. Получается, что если намотать две или три вторичных обмотки, то можно получить в два-три раза больше энергии, чем было затрачено (за минусом разных потерь)? В принципе, даже ещё больше. Ведь на самом деле, закон сохранения энергии работает только с телами, обладающими массой покоя. Но тут вовремя появилась и проблема, называемая самоиндукцией, которая помогла скрыть дармовую энергию.
«Самоиндукция — это явление возникновения ЭДС индукции в проводящем контуре при изменении протекающего через контур тока.
При изменении тока в контуре пропорционально меняется и магнитный поток через поверхность, ограниченную этим контуром. Изменение этого магнитного потока, в силу закона электромагнитной индукции, приводит к возбуждению в этом контуре индуктивной ЭДС. Это явление и называется самоиндукцией. (Понятие родственно понятию взаимоиндукции, являясь как бы его частным случаем).
Направление ЭДС самоиндукции всегда оказывается таким, что при возрастании тока в цепи ЭДС самоиндукции препятствует этому возрастанию (направлена против тока), а при убывании тока — убыванию (сонаправлена с током). Этим свойством ЭДС самоиндукции сходна с силой инерции».
Оказалось, что ток, проходя по проводнику, создаёт вокруг него магнитное поле, изменение которого создаёт ток в этом же проводнике и он не всегда совпадает с направлением первичного тока (потому что если бы он всегда совпадал, то получился бы вечный источник энергии, а если бы всегда не совпадал, то никакого тока вообще не было бы). Другими словами, ЭДС самоиндукции оказывает сопротивление току в катушке почти так же, как обычный генератор сопротивляется вращению. Чем больше ток и его частота в катушке, тем больше это сопротивление, а значит и потери. При подключении катушки к источнику переменного напряжения получается вот такая картина:
А при добавлении дополнительных катушек в общее магнитное поле их взаимное влияние увеличивается, индуктивность и поля складываются и накладываются друг а друга, а сопротивление (а значит и потери) всей системы только возрастают. В результате получилась красивая зависимость, которая, якобы, подтверждает закон сохранения энергии и не даёт получить больше энергии, чем затрачено. Это сопротивление назвали реактивным, без ваттным, из-за него не выделяется тепло в катушке и списали на него все потери энергии.
Однако Никола Тесла в своё время нашёл выход из этого положения и главным вопросом его жизни стал вопрос беспроводной передачи энергии, а не её получение. Это сейчас катушки Тесла называют трансформаторами, а сам он называл их генераторами или умножителями энергии и так оно и было. Получать энергию он мог в неограниченных количествах и не считал это чем-то сложным и тем более невозможным, т.к. он понял саму суть происходящего процесса. Я попробую объяснить его как можно доступнее, но опять придётся начинать из далека.
Исходя из теории Всемирного Эфира, которая существовала до Теории Относительности, Тесла полагал, что электромагнитная волна это волна эфира, окружающего нас везде. Эфир не имеет массы и инерции, а значит на то, чтобы его сдвинуть не тратится энергия. Получается, что для создания электромагнитной волны нужно раскачать эфир переменным магнитным полем, но так, чтобы почти не тратить на это энергию. И такой способ был найден. Был придуман последовательный колебательный контур:
«Колебательный контур – это замкнутая электрическая цепь, содержащая катушку индуктивности и конденсатор, в которой могут возбуждаться электрические колебания. Колебания тока и напряжения в колебательном контуре связаны с переходом энергии электрического поля конденсатора в энергию магнитного поля катушки индуктивности и обратно».
Получается, что если зарядить конденсатор от источника тока, а потом соединить его с катушкой, то в цепи возникнут автоколебания. Ток из конденсатора будет переходить в магнитное поле катушки и обратно многократно, пока не рассеется от различных небольших потерь на нагрев и т.д. При этом на раскачивание самого эфира энергия не тратится. В добротных контурах колебания могут продолжаться несколько минут, при этом совершенно не потребляя энергии из вне. Всё это время вокруг катушки будет переменное магнитное поле, раскачивающее эфир вокруг неё. Казалось бы, осталось только поставить рядом ещё пару катушек и проблема энергии решена, но тут надо вспомнить, что индукционный ток в соседней катушке создаёт своё магнитное поле, направленное против поля, его создавшего и очень быстро его подавит (вспомним и про без ваттное сопротивление). Получается, что первую катушку всегда надо подпитывать током и он будет как бы переходить на вторую катушку. При этом, если вторую катушку не замыкать, то тока в разомкнутом контуре не будет и первая катушка практически не будет потреблять энергии. Так работают современные трансформаторы. Только я бы сказал, что он не переливает энергию с одной катушки на другую, а продавливает с огромным усилием и потерями, нагреваясь и гудя при этом.
Решением проблемы могло бы стать создание катушки, которая бы не оказывала сопротивления магнитному потоку, т.е. не имеющей самоиндукции. Однако тут появляется противоречие: в катушке, обладающей индукцией всегда будет и ток самоиндукции, а в катушке, не имеющей индуктивности, не может появиться индукционный ток и она бесполезна. Любой замкнутый проводник имеет свою индуктивность, хоть самую малую.
Никола Тесла очень хорошо представлял себе магнитные поля и их взаимодействия и поэтому смог найти очень простое и, я бы сказал, элегантное решение проблемы. Он придумал катушку, у которой пропадает реактивное сопротивление на определённой частоте. Эта катушка была названа бифилярной: Тесла запатентовал эту катушку, как что-то совершенно новое, чем она и была, но не описал в патенте своего способа её использования либо это описание было позже изъято. В описании осталось только упоминание, что эта катушка может использоваться для создания больших магнитных полей. С другой стороны, один из видов этой катушки как раз обладает нулевой самоиндукцией. Совпадение?
Сейчас различные виды этой катушки используются в радиотехнике, но оригинального назначения, похоже, так до сих пор никто и не понял. Более подробно об этой катушке я напишу в следующий раз.
Источник