Какими особыми свойствами обладают сверхпроводники

Какими особыми свойствами обладают сверхпроводники thumbnail

В 1911 году нидерландский физик Х. Камерлинг-Оннес получил, что при $T=4,3 K$ у ртути отсутствует сопротивление электрическому току. Причем падение сопротивления идет скачком в интервале несколько сотых градуса. Позднее обнаружилось, что резкое уменьшение сопротивления можно наблюдать и у других чистых веществ и некоторых сплавов. Это явление назвали сверхпроводимостью Температура перехода в состояние сверхпроводимости у разных веществ разные, но всегда очень низкие.

Если возбудить электрический ток в кольце из сверхпроводника при помощи такого явления, как электромагнитная индукция, то сила тока может не изменяться до нескольких лет.

Пример:

  1. Возьмем кольцо из проволоки.
  2. Поместим его в магнитное поле.
  3. Выключим магнитное поле (быстро удалим магнит). В кольце появится ток индукции.

Данный ток будет идти очень короткое время, поскольку ЭДС индукции действует только в момент отключения магнитного поля. После прекращения работы ЭДС перестает идти ток в проводнике.

Проведем ту же последовательность действий со сверхпроводником, сопротивление которого равно нулю. В материале сверхпроводника отсутствуют силы, препятствующие движению электронов. Следовательно, для поддержания тока в проводнике нет необходимости во внешнем электрическом поле, значит, источник ЭДС не нужен. Ток в сверхпроводнике может существовать долгое время и после прекращения действия электродвижущей силы. В подобном эксперименте Камерлинг – Оннес наблюдал наличие тока в сверхпроводнике в течение почти четырех суток, после выключения магнитного поля. В этом опыте кольцо из свинца поддерживалось при очень низкой температуре около 7К.

Готовые работы на аналогичную тему

Получить выполненную работу или консультацию специалиста по вашему учебному проекту
Узнать стоимость

Критическая температура

Верхним пределом удельного сопротивления сверхпроводников считают менее $rho

Определение 1

Явление скачкообразного уменьшения сопротивления веществ при низких температурах назвали сверхпроводимостью.

Температура, при которой сопротивление вещества становится равным нулю стали называть критической температурой ($T_k$).

Сопротивление веществ до их перехода в сверхпроводящее состояние может быть разным. Многие из них при комнатных температурах могут обладать высоким сопротивлением. Как уже отмечалось, переход в сверхпроводящее состояние происходит очень резко. У чистых монокристаллов интервал температур перехода составляет менее тысячной градуса.

Сверхпроводимость среди «чистых» материалов выявлена у:

  • алюминия,
  • кадмия,
  • цинка,
  • индия,
  • галлия.

Свойство сверхпроводимости связано со структурой кристаллической решетки. Так, белое олово проявляет свойства сверхпроводника, а серое не проявляет, ртуть имеет сверхпроводящие свойства только в $alpha$ – фазе.

Критическое поле

В 1914 г. Камерлинг – Оннес выявил, что состояние сверхпроводимости можно разрушить при помощи магнитного поля, если величина магнитной индукции его выше некоторого критического значения. Это значение зависит от материала сверхпроводника и его температуры.

Критическое поле может создать сам сверхпроводящий ток. Следовательно, есть критическая величина силы тока, при которой состояние сверхпроводимости подвергается деструкции.

Эффект Мейсснера

В 1933 году ученые Мейсснер и Оксенфельд выявили, что внутри сверхпроводников полностью отсутствуют магнитные поля. Если сверхпроводник охлаждать во внешнем постоянном магнитном поле, то в момент перехода в состояние сверхпроводника магнитное поле полностью вытесняется из объема материала.

В этом состоит принципиальное отличие сверхпроводника от идеального проводника. У проводника при уменьшении удельного сопротивления индукция магнитного поля в его объеме должна сохраняться без изменений.

Определение 2

Явление вытеснения магнитного поля из объема сверхпроводника называют эффектом Мейсснера.

К важнейшим свойствам сверхпроводников относят:

  1. Отсутствие сопротивления.
  2. Эффект Мейсснера.

Поверхностный ток

Так как в объеме сверхпроводника отсутствует магнитное поле, то в нем имеются только токи, текущие по поверхности. Эти токи физически реальны. Они локализованы в тонком слое около поверхности тела.

Магнитные поля поверхностных токов нивелируют внешнее магнитное поле внутри сверхпроводника. Получается, что сверхпроводник ведет себя формально как диамагнетик. Но таковым не является, поскольку его намагниченность равна нулю внутри него.

Сверхпроводники первого и второго рода

Чистые вещества (так называемы элементарные проводники), обладающие свойством сверхпроводимости очень немногочисленны. Более часто сверхпроводимость наблюдается у сплавов.

У элементарных сверхпроводников наблюдается полный эффект Мейсснера, тогда как у сплавов имеется только частичный эффект, то есть магнитное поле выталкивается из объема вещества не полностью.

Определение 3

Вещества, у которых возникает полный эффект Мейсснера, называют сверхпроводниками первого рода.

Вещества, у которых эффект Мейсснера проявляется частично, носят название сверхпроводников второго рода.

Сверхпроводники второго рода в своем объеме имеют круговые токи, которые порождают магнитное поле, распределенное в веществе в виде отдельных «нитей». Сопротивление же этих сверхпроводников, так же равно нулю, как и у первых.

Природа сверхпроводимости

Сверхпроводимость можно сравнить со сверхтекучестью жидкости, которая создана из электронов. Явление сверхтекучести появляется в результате отсутствия обмена энергиями сверхтекучей составляющей жидкости и других ее частей, при этом исчезает трение. Важным моментом при этом является то, что молекулы этой жидкости как бы конденсируются на самом низком энергетическом уровне, который отделен от других уровней довольно широкой энергетической щелью. Эту щель силы взаимодействия не могут преодолеть. Это является причиной отсутствия взаимодействия.

Для того чтобы многие частицы могли локализоваться на низшем энергоуровне, нужно их подчинение статистике Бозе- Эйнштейна (это значит они должны иметь целочисленный спин).

Электроны подчинены статистике Ферми – Дирака, значит, не могут собираться не низшем энергоуровне и создавать сверхтекучую жидкость. Силы отталкивания, возникающие между электронами, в основном компенсируются силами притяжения к ионам кристаллической решетки. Но из-за тепловых колебаний атомов в узлах решетки между электронами может появляться притяжение, и они способны создавать пары (куперовские пары).

Куперовские пары ведут себя как частицы с целочисленным спином, это значит, что они подчиняются статистике Бозе – Эйнштейна. Куперовские пары способны к концентрации, и они создают течение сверхтекучей жидкости, то есть электрический ток в состоянии сверхпроводимости. Выше самого низкого энергоуровня расположена энергетическая щель, которую пары не могут преодолеть за счет энергии взаимодействия с остальными зарядами, следовательно, она не изменяет свое энергетическое состояние. Как следствие – сопротивление вещества равно нулю.

Читайте также:  Какие свойства земли учитываются при землеустройстве

Процесс возникновения куперовских пар и создания сверхтекучей жидкости объясняет квантовая теория.

Источник

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 13 ноября 2018;
проверки требуют 10 правок.

Сверхпроводник — материал, электрическое сопротивление которого при понижении температуры до некоторой величины Tc становится равным нулю (сверхпроводимость). При этом говорят, что материал приобретает «сверхпроводящие свойства» или переходит в «сверхпроводящее состояние».
В настоящее время проводятся исследования в области сверхпроводимости с целью повышения температуры Tc до комнатной температуры.

История[править | править код]

В 1911 году голландский физик Камерлинг-Оннес обнаружил, что при охлаждении ртути в жидком гелии её сопротивление сначала меняется постепенно, а затем при температуре 4.1 К резко падает до нуля.

Сверхпроводник наименьшего размера был создан в 2010 году на основе органического сверхпроводника (BETS)2GaCl4[1][2], где аббревиатура «BETS» означает бисэтилендитиотетраселенафульвален. Созданный сверхпроводник состоит всего из четырёх пар молекул этого вещества при общей длине образца порядка 3,76 нм.

Свойства сверхпроводников[править | править код]

В зависимости от свойств сверхпроводники делят на три группы:

  • сверхпроводники I (первого) рода;
  • сверхпроводники 1.5 рода;
  • сверхпроводники II (второго) рода.

Фазовый переход в сверхпроводящее состояние[править | править код]

Переход вещества в сверхпроводящее состояние сопровождается изменением его тепловых свойств. Однако, это изменение зависит от рода рассматриваемых сверхпроводников. Так, для сверхпроводников Ι рода в отсутствие магнитного поля теплота перехода (поглощения или выделения) из сверхпроводящего состояния в обычное равна нулю, а следовательно терпит скачок теплоёмкость, что характерно для фазового перехода ΙΙ рода.

Эффект Мейснера[править | править код]

Даже более важным свойством сверхпроводника, чем нулевое электрическое сопротивление, является так называемый эффект Мейснера, заключающийся в выталкивании сверхпроводником магнитного потока . Из этого экспериментального наблюдения делается вывод о существовании незатухающих токах внутри сверхпроводника, которые создают внутреннее магнитное поле, противоположно направленное внешнему, приложенному магнитному полю и компенсирующее его.

Таблица сверхпроводников[править | править код]

В представленной ниже таблице перечислены некоторые сверхпроводники и характерные для них величины критической температуры (Tc) и предельного магнитного поля (Bc).

Название материалаКритическая
температура
, К
Критическое
поле
, Тл
Год опубликования
обнаружения
сверхпроводимости
Сверхпроводники I рода
Pb (свинец)7,26[3]0,08[4]1913[3]
Sn (олово)3,69[3]0,031[4]1913[3]
Ta (тантал)4,38[3]0,083[4]1928[3]
Al (алюминий)1,18[3]0,01[4]1933[3]
Zn (цинк)0,88[4]0,0053[4]
W (вольфрам)0,01[4]0,0001[4]
Сверхпроводники 1.5 рода
Ведутся поиски по теоретической модели[5]
Сверхпроводники II рода
Nb (ниобий)9,20[3]0,4[4]1930[3]
V3Ga14,5[4]>35[4]
Nb3Sn18,0[4]>25[4]
(Nb3Al)4Ge20,0[4]
Nb3Ge23[4]
GeTe0,17[4]0,013[4]
SrTiO30,2—0,4[4]>60[4]
MgB2 (диборид магния)39?2001
H2S (сероводород)203[6]72[6]2015[6]

Применение[править | править код]

  • Квантовый компьютер использует кубиты, основанные на сверхпроводниках.
  • Сверхпроводники также используют для создания мощного магнитного поля, к примеру ITER (International Thermonuclear Experimental Reactor; Международный Экспериментальный Термоядерный Реактор), в котором сверхпроводники, создавая магнитное поле, удерживают высокотемпературную плазму, не давая ей контактировать со стенками реактора.

См. также[править | править код]

  • Высокотемпературная сверхпроводимость

Литература[править | править код]

  • Hirsch J.E., Maple M.B., Marsiglio F. Superconducting materials classes: Introduction and overview // Physica C: Superconductivity and its Applications. — 2015. — Vol. 514. — P. 1-8. — ISSN 09214534. — doi:10.1016/j.physc.2015.03.002.
  • Hamlin J.J. Superconductivity in the metallic elements at high pressures // Physica C: Superconductivity and its Applications. — 2015. — Vol. 514. — P. 59-76. — ISSN 09214534. — doi:10.1016/j.physc.2015.02.032.
  • White B.D., Thompson J.D., Maple M.B. Unconventional superconductivity in heavy-fermion compounds // Physica C: Superconductivity and its Applications. — 2015. — Vol. 514. — P. 246-278. — ISSN 09214534. — doi:10.1016/j.physc.2015.02.044.
  • Kubozono Yoshihiro, Goto Hidenori, Jabuchi Taihei, Yokoya Takayoshi, Kambe Takashi, Sakai Yusuke, Izumi Masanari, Zheng Lu, Hamao Shino, Nguyen Huyen L.T., Sakata Masafumi, Kagayama Tomoko, Shimizu Katsuya. Superconductivity in aromatic hydrocarbons // Physica C: Superconductivity and its Applications. — 2015. — Vol. 514. — P. 199-205. — ISSN 09214534. — doi:10.1016/j.physc.2015.02.015.
  • Griveau Jean-Christophe, Colineau Éric. Superconductivity in transuranium elements and compounds // Comptes Rendus Physique. — 2014. — Vol. 15. — P. 599-615. — ISSN 16310705. — doi:10.1016/j.crhy.2014.07.001.

Примечания[править | править код]

  1. K. Clark, A. Hassanien, S. Khan, K.-F. Braun, H. Tanaka and S.-W. Hla. Superconductivity in just four pairs of (BETS)2GaCl4 molecules (англ.) // Nature Nanotechnology. — 2010. — Vol. 5. — P. 261—265.
  2. Юрий Ерин. Создан сверхпроводник, состоящий всего из 8 молекул вещества. Элементы.ру (19 апреля 2010). Дата обращения 19 апреля 2010. Архивировано 26 августа 2011 года.
  3. 1 2 3 4 5 6 7 8 9 10 В. Л. Гинзбург, Е. А. Андрюшин. Глава 1. Открытие сверхпроводимости // Сверхпроводимость. — 2-е издание, переработанное и дополненное. — Альфа-М, 2006. — 112 с. — 3000 экз. — ISBN 5-98281-088-6.
  4. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Сверхпроводник — статья из Большой советской энциклопедии
  5. ↑ Физики представили теорию полуторной сверхпроводимости
  6. 1 2 3 A. P. Drozdov, M. I. Eremets, I. A. Troyan, V. Ksenofontov, S. I. Shylin. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system // Nature. — Т. 525, вып. 7567. — С. 73–76. — doi:10.1038/nature14964.

Источник

В чем заключается явление сверхпроводимости? Сверхпроводимость представляет собой явление с нулевым электрическим сопротивлением и выбросом полей магнитного потока, возникающих в определенных материалах, называемых сверхпроводниками, при охлаждении ниже характерной критической температуры.

Читайте также:  Какие углы называются вертикальными свойство

Явление было обнаружено голландским физиком Хайке Камерлинг-Оннесом 8 апреля 1911 года в Лейдене. Как и ферромагнетизм и атомные спектральные линии, сверхпроводимость является квантово-механическим явлением. Для него характерен эффект Мейснера – полный выброс линий магнитного поля изнутри сверхпроводника при его переходе в сверхпроводящее состояние.

Такова суть явления сверхпроводимости. Возникновение эффекта Мейснера указывает на то, что сверхпроводимость нельзя понимать просто как идеализацию идеальной проводимости в классической физике.

Магнит и сверхпроводник.

В чем состоит явление сверхпроводимости

Электрическое сопротивление металлического проводника постепенно уменьшается при понижении температуры. В обычных проводниках, таких как медь или серебро, это уменьшение ограничено примесями и другими дефектами. Даже вблизи абсолютного нуля реальный образец нормального проводника показывает некоторое сопротивление. В сверхпроводнике сопротивление резко падает до нуля, когда материал охлаждается ниже его критической температуры. Электрический ток через петлю сверхпроводящего провода может сохраняться бесконечно без источника питания. Это ответ на вопрос, в чем состоит явление сверхпроводимости.

История

В 1911 году, изучая свойства вещества при очень низкой температуре, голландский физик Хайке Камерлинг Оннес и его команда обнаружили, что электрическое сопротивление ртути падает до нуля ниже 4,2 К (-269°C). Это было самое первое наблюдение явления сверхпроводимости. Большинство химических элементов становятся сверхпроводящими при достаточно низкой температуре.

Ниже определенной критической температуры материалы переходят в сверхпроводящее состояние, характеризующееся двумя основными свойствами: во-первых, они не оказывают сопротивления прохождению электрического тока. Когда сопротивление падает до нуля, ток может циркулировать внутри материала без рассеивания энергии.

Во-вторых, при условии, что они достаточно слабые, внешние магнитные поля не проникают в сверхпроводник, а остаются на его поверхности. Это явление изгнания поля стало известно как эффект Мейснера после того, как физик впервые наблюдал его в 1933 году.

Три имени, три буквы и неполная теория

Обычная физика не дает адекватного объяснения сверхпроводящего состояния, равно как и элементарная квантовая теория твердого состояния, которая рассматривает поведение электронов отдельно от поведения ионов в кристаллической решетке.

Только в 1957 году три американских исследователя – Джон Бардин, Леон Купер и Джон Шриффер создали микроскопическую теорию сверхпроводимости. Согласно их теории BCS, электроны группируются в пары посредством взаимодействия с колебаниями решетки (так называемыми «фононами»), образуя таким образом куперовские пары, которые движутся внутри твердого тела без трения. Твердое тело можно рассматривать как решетку положительных ионов, погруженных в облако электронов. Когда электрон проходит через эту решетку, ионы слегка двигаются, притягиваясь отрицательным зарядом электрона. Это движение генерирует электрически положительную область, которая, в свою очередь, привлекает другой электрон.

Энергия электронного взаимодействия довольно слабая, и пары могут быть легко разбиты тепловой энергией – поэтому сверхпроводимость обычно возникает при очень низкой температуре. Тем не менее, теория BCS не дает объяснения существованию высокотемпературных сверхпроводников при температуре около 80 K (-193 ° C) и выше, для которых необходимо задействовать другие механизмы связи электронов. На вышеописанном процессе и основывается применение явления сверхпроводимости.

Температура

В 1986 году было обнаружено, что некоторые купрат-перовскитовые керамические материалы имеют критическую температуру выше 90 K (-183 ° C). Такая высокая температура перехода теоретически невозможна для обычного сверхпроводника, что приводит к тому, что материалы называют высокотемпературными сверхпроводниками. Доступный охлаждающий жидкий азот кипит при 77 К, и, таким образом, сверхпроводимость при более высоких температурах, чем эти, облегчает многие эксперименты и применения, которые менее практичны при более низких температурах. Это ответ на вопрос, при какой температуре возникает явление сверхпроводимости.

Левитация магнита.

Классификация

Сверхпроводники могут быть классифицированы в соответствии с несколькими критериями, которые зависят от нашего интереса к их физическим свойствам, от понимания, которое мы имеем о них, от того, насколько дорогостоящим является их охлаждение или от материала, из которого они сделаны.

По своим магнитным свойствам

Сверхпроводники типа I: те, которые имеют только одно критическое поле, Hc, и резко переходят из одного состояния в другое, когда оно достигнуто.

Сверхпроводники типа II: имеющие два критических поля, Hc1 и Hc2, являющиеся совершенными сверхпроводниками под нижним критическим полем (Hc1) и полностью выходящие из сверхпроводящего состояния над верхним критическим полем (Hc2), находящиеся в смешанном состоянии между критическими полями.

По тому пониманию, которое у нас есть о них

Обычные сверхпроводники: те, которые могут быть полностью объяснены теорией BCS или смежными теориями.

Нетрадиционные сверхпроводники: те, которые не удалось объяснить с помощью таких теорий, например: тяжелые фермионные сверхпроводники.

Этот критерий важен, так как теория BCS объясняет свойства обычных сверхпроводников с 1957 года, но, с другой стороны, не было удовлетворительной теории для объяснения совершенно нетрадиционных сверхпроводников. В большинстве случаев сверхпроводники типа I являются обычными, но есть несколько исключений, таких как ниобий, который является как обычным, так и относящимся к типу II.

Сверхпроводниковая левитация.

По их критической температуре

Низкотемпературные сверхпроводники, или LTS: те, чья критическая температура ниже 30 К.

Высокотемпературные сверхпроводники, или ВТСП: те, чья критическая температура выше 30 К. Некоторые теперь используют 77 К в качестве разделения, чтобы подчеркнуть, можем ли мы охладить образец жидким азотом (температура кипения которого составляет 77 К), что гораздо более осуществимо, чем жидкий гелий (альтернатива для достижения температур, необходимых для получения низких температур сверхпроводники).

Читайте также:  Какими свойствами обладает железо и сера

Другие нюансы

Сверхпроводник может относиться к типу I, что означает, что он имеет единственное критическое поле, выше которого вся сверхпроводимость теряется, и ниже которого магнитное поле полностью исключается из сверхпроводника. Тип II, означающий, что он имеет два критических поля, между которыми он позволяет частичное проникновение магнитного поля через изолированные точки. Эти точки называются вихрями. Кроме того, в многокомпонентных сверхпроводниках возможно сочетание двух вариантов поведения. В этом случае сверхпроводник имеет тип 1,5.

Свойства

Большинство физических свойств сверхпроводников варьируются от материала к материалу, таких как теплоемкость и критическая температура, критическое поле и плотность критического тока, при которых разрушается сверхпроводимость.

С другой стороны, существует класс свойств, которые не зависят от основного материала. Например, все сверхпроводники имеют абсолютно нулевое удельное сопротивление при малых приложенных токах, когда отсутствует магнитное поле или в том случае, если приложенное поле не превышает критического значения.

Наличие этих универсальных свойств подразумевает то, что сверхпроводимость является термодинамической фазой и, следовательно, обладает определенными отличительными свойствами, которые в значительной степени не зависят от микроскопических деталей.

Сверхпроводник в разрезе.

Ситуация отличается в сверхпроводнике. В обычном сверхпроводнике электронная жидкость не может быть разделена на отдельные электроны. Вместо этого он состоит из связанных пар электронов, известных как куперовские пары. Это спаривание вызвано силой притяжения между электронами в результате обмена фононами. Из-за квантовой механики энергетический спектр этой жидкости куперовской пары обладает энергетической щелью, то есть существует минимальное количество энергии ΔE, которое должно быть подано для возбуждения жидкости.

Следовательно, если ΔE больше тепловой энергии решетки, заданной kT, где k – постоянная Больцмана, а T – температура, жидкость не будет рассеиваться решеткой. Таким образом, жидкость пары Купера является сверхтекучей, что означает, что она может течь без рассеивания энергии.

Левитирующий магнит.

Характеристики сверхпроводимости

В сверхпроводящих материалах характеристики сверхпроводимости появляются, когда температура T понижается ниже критической температуры Tc. Значение этой критической температуры варьируется от материала к материалу. Обычные сверхпроводники обычно имеют критические температуры в диапазоне от около 20 К до менее чем 1 К.

Например, у твердой ртути критическая температура составляет 4,2 К. По состоянию на 2015 г. самая высокая критическая температура, найденная для обычного сверхпроводника, составляет 203 К для H2S, хотя требовалось высокое давление около 90 гигапаскалей. Купратные сверхпроводники могут иметь гораздо более высокие критические температуры: YBa2Cu3O7, один из первых обнаруженных купратных сверхпроводников, имеет критическую температуру 92 К, и были найдены купраты на основе ртути с критическими температурами, превышающими 130 К. Объяснение этих высокие критические температуры остаются неизвестными.

Спаривание электронов из-за фононных обменов объясняет сверхпроводимость в обычных сверхпроводниках, но не объясняет сверхпроводимость в более новых сверхпроводниках, которые имеют очень высокую критическую температуру.

Магнитные поля

Точно так же при фиксированной температуре ниже критической температуры сверхпроводящие материалы перестают сверхпроводить, когда прикладывается внешнее магнитное поле, которое больше критического магнитного поля. Это происходит потому, что свободная энергия Гиббса сверхпроводящей фазы увеличивается квадратично с магнитным полем, в то время как свободная энергия нормальной фазы примерно не зависит от магнитного поля.

Если материал сверхпроводящий в отсутствие поля, то свободная энергия сверхпроводящей фазы меньше, чем у нормальной фазы, и поэтому для некоторого конечного значения магнитного поля (пропорционального квадратному корню из разницы свободных энергий в нуле) две свободные энергии будут равны, и произойдет фазовый переход к нормальной фазе. В более общем смысле, более высокая температура и более сильное магнитное поле приводят к уменьшению доли сверхпроводящих электронов и, следовательно, к большей глубине проникновения в Лондон внешних магнитных полей и токов. Глубина проникновения становится бесконечной при фазовом переходе.

Визуализация сверхпроводимости.

Физический аспект

Начало сверхпроводимости сопровождается резкими изменениями различных физических свойств, что является отличительной чертой фазового перехода. Например, электронная теплоемкость пропорциональна температуре в нормальном (не сверхпроводящем) режиме. На сверхпроводящем переходе он испытывает скачкообразный прыжок и после этого перестает быть линейным. При низких температурах она изменяется вместо e−α/T для некоторой постоянной α. Это экспоненциальное поведение является одним из доказательств существования энергетической щели.

Фазовый переход

Объяснение явления сверхпроводимости довольно очевидно. Порядок сверхпроводящего фазового перехода долго обсуждался. Эксперименты показывают, что перехода второго порядка, то есть скрытого тепла, нет. Однако, в присутствии внешнего магнитного поля имеется скрытое тепло, потому что сверхпроводящая фаза имеет более низкую энтропию, ниже критической температуры, чем нормальная фаза.

Экспериментально продемонстрировано следующее: когда магнитное поле увеличивается и выходит за пределы критического поля, результирующий фазовый переход приводит к снижению температуры сверхпроводящего материала. Явление сверхпроводимости кратко было описано выше, теперь время рассказать кое-что о нюансах этого важного эффекта.

Сверхпроводник в лаборатории.

Расчеты, проведенные в 1970-х годах, показали, что на самом деле он может быть слабее первого порядка из-за влияния дальних флуктуаций в электромагнитном поле. В 1980-х годах теоретически было показано с помощью теории поля беспорядка, в которой вихревые линии сверхпроводника играют главную роль, что переход имеет второй порядок в режиме типа II и первый порядок (т. е. скрытое тепло) в режиме типа I, и что две области разделены трикритической точкой.

Результаты были решительно подтверждены компьютерным моделированием в Монте-Карло. Это сыграло большую роль в изучении явления сверхпроводимости. Работа продолжается и в настоящее время. Сущность явления сверхпроводимости не до конца изучена и объяснена с точки зрения современной науки.

Источник