Какими общими свойствами обладают газы

Какими общими свойствами обладают газы thumbnail

ГДЗ по классам

2 класс

  • Математика

3 класс

  • Математика

4 класс

  • Математика

5 класс

  • Математика
  • Русский язык
  • Английский язык

6 класс

  • Математика
  • Русский язык
  • Английский язык

7 класс

  • Русский язык
  • Английский язык
  • Алгебра
  • Геометрия
  • Физика

8 класс

  • Русский язык
  • Английский язык
  • Алгебра
  • Геометрия
  • Физика
  • Химия

9 класс

  • Русский язык
  • Английский язык
  • Алгебра
  • Геометрия
  • Физика
  • Химия

10 класс

  • Геометрия
  • Химия

11 класс

  • Геометрия
Введите условие

Какими общими свойствами обладают газы

ГДЗ и решебники
вип уровня

  • 2 класс
    • Математика
  • 3 класс
    • Математика
  • 4 класс
    • Математика
  • 5 класс
    • Математика
    • Русский язык
    • Английский язык
  • 6 класс
    • Математика
    • Русский язык
    • Английский язык
  • 7 класс
    • Русский язык
    • Английский язык
    • Алгебра
    • Геометрия
    • Физика
  • 8 класс
    • Русский язык
    • Английский язык
    • Алгебра
    • Геометрия
    • Физика
    • Химия
  • 9 класс
    • Русский язык
    • Английский язык
    • Алгебра
    • Геометрия
    • Физика
    • Химия
  • 10 класс
    • Геометрия
    • Химия
  • 11 класс
    • Геометрия
  1. ГДЗ
  2. 7 класс
  3. Физика
  4. Пёрышкин
  5. Вопрос 4, Параграф 12

Какими общими свойствами обладают газы

Назад к содержанию

Условие

Какими свойствами обладают газы?

Решение 1

Фото ответа 4 на Задание 4 из ГДЗ по Физике за 7 класс: А. В. Перышкин - 2013г.

Решение 2

Фото ответа 2 на Задание 4 из ГДЗ по Физике за 7 класс: А. В. Перышкин - 2013г.

Решение 3

Фото ответа 3 на Задание 4 из ГДЗ по Физике за 7 класс: А. В. Перышкин - 2013г.

Другие задачи из этого учебника

  • 1
  • 2
  • 3
  • 4

Поиск в решебнике

Популярные решебники

ГДЗ по Физике за 7 класс: Пёрышкин А.В.ГДЗ по Физике за 7 класс: Пёрышкин А.В.

Издатель: А. В. Перышкин – 2013г.

ГДЗ по Физике за 7-9 класс: Пёрышкин А.В. (сборник задач)ГДЗ по Физике за 7-9 класс: Пёрышкин А.В. (сборник задач)

Издатель: А.В. Пёрышкин, 2013г.

Источник

Есть вопросы?

Пожалуйста, задавайте их в нашей группе Вконтакте, чтобы их смогли прочитать другие покупатели.

Оперативный и подробный ответ гарантируем!

Хиты продаж

В газообразном виде все тела получают особые свойства, а именно: ближе всего они обладают в высшей степени упругостью, т.е. под сильным давлением способны сжиматься до плотности жидкого, а порой даже твёрдого тела; но, уступая давлению, газы вследствие той же упругости сохраняют в соответствующей степени способность отпора, так что, будучи сдавленными или сжатыми, они стремятся расшириться до полного равновесия с атмосферным воздухом. Это стремление, основанное на взаимном отталкивании однородных частиц, до того развито в газах, что если бы на безвоздушную луну метнуть шар, наполненный воздухом, то шар этот, конечно, лопнул бы от силы внутреннего напора, а содержащийся в нем воздух равномерно облек бы всю поверхность луны. Поэтому воздушный шар, дойдя до известной высоты, должен либо остановиться, либо выпустить часть газа, либо лопнуть.

Другая особенность газов заключается в том, что они занимают значительно больше места, чем тот материал, из которого они образовались. Так, например, кубический дюйм пороха превращается в 288 кубических дюймов газа. Если газы образуются медленно и при этом могут постепенно уходить в атмосферу, то сам акт появления их не окажет никакого особого действия: они расплывутся в пространстве. Если же образование этих газов последует очень быстро, но всё-таки на свободе, то получится только вспышка, т.е. мгновенное появление огня, сопровождаемое слабым шумом. Например, если спалить клочок пироксилина на открытой ладони, горсть пороха на камне, кучку бертолетовой соли с магнием или смесь 1 части алюминиевого порошка с 2 частями марганцовокислого калия. В иных случаях даже при таких обстоятельствах получается «хлопок», т.е. порывистый звук, образовавшийся от внезапного и сильного колебания воздушных волн (например, от взрыва щепотки гремучей ртути).

Но если взрывчатый состав помещается в сжатом пространстве и окружен плотной оградой или стеной, то сдавленные газы стремятся расширить свой объём и, напирая изнутри, проявляют давление, пропорциональное их количеству в сравнении с занимаемым ими местом.

Подобное явление больше всего замечается у огнестрельных орудий: в момент своего образования пороховые газы имеют плотность, почти равную плотности заряда, т.е. занимают место, в 288 раз меньшее по природному объёму. Вследствие этого газы напирают на стены, на казенник (заднюю часть орудия) и на дно снаряда (ядра), но, встречая в стенах и казеннике сопротивление, достаточное, чтобы выдержать напор, газы эти со всей силой напирают на ядро или пулю, которые буквально выдуваются или выталкиваются («выбрасываются») в данном направлении.

Огнестрельное орудие времен Гражданской войны в США

Огнестрельное орудие времен Гражданской войны в США

Следовательно, сила «взрыва», т.е. мгновенного превращения твёрдого вещества в газообразное или густого газа в менее плотный, зависит, во-первых, от количества газов в сравнении с занимаемым ими местом, а во-вторых, от одновременности их появления, т.е. в данном случае – от быстроты сгорания состава.

Третье – весьма существенное – условие заключается в том, чтобы как можно больше состава сгорало, т.е. как можно меньше получалось бы остатков и дыма.

Но газы обладают ещё одним свойством, играющим крайне важную роль по отношению к взрыву: сила их напора возвышается с температурой, т.е. одно и то же количество газов, находящееся при одинаковых условиях помещения, получает значительно большую силу напора при повышении коэффициента теплоты.

Так, например, порох, хорошо приготовленный и сгорающий почти мгновенно, даёт по объёму всего 288 кратных газа, но вследствие высокого нагревания (Ueberheizung surchauffe) напор этих газов превышает более 2000 раз атмосферное давление. Сухой пироксилин при тех же условиях развивает втрое большую силу.

Давление это можно ещё значительно усилить, ускорив горение и именно посредством примеси какого-нибудь быстро воспламеняющегося тела к составу, горящему более медленно; если, например, порох взорвать посредством небольшого количества нитроглицерина, воспламененного гремучей ртутью, то давление происходит в 4 раза более сильное (т.е. в 8000 атмосфер, вместо 2000); а если посредством гремучей ртути взорвать сухой пироксилин, то давление в сравнении с порохом будет шестикратное (т.е. 12000 атмосфер).

О механической работе пороха будет упомянуто в свое время.

Сила напора, как уже сказано, всецело зависит от степени сжатия газов, но действие этого напора, т.е. направление его силы, находится в связи с быстротой горения веществ: если вещество сгорает постепенно (как, например, порох), то давление больше всего сосредоточивается на том месте окружающей среды, которое представляет наименьшее сопротивление. Порох выбрасывает пулю или бомбу, но разрывает орудие только в особых случаях. Если же горение происходит сразу, безо всякой последовательности, то газы напирают во все стороны.

В первом случае действие называется «метательным» (Schleuderkraft), а во втором – «дробящим» (Brisanz). Метательные вещества употребляются для стрельбы, а дробящие – для взрывов.

Выше было сказано, что газы, высвободившись из тесноты, сообщают наружному воздуху толчок, производящий колебание воздушных волн. От этого колебания получается звук, называемый «ударом», или «шлагом» (детонацией – Schlag, detonation). Его сила («интенсивность») зависит не столько от количества газов, сколько от степени внутреннего напора, так что сильный удар можно произвести сравнительно малыми средствами. Вещества или тела, простые или составные, способные при известных условиях (вследствие развития тепла от зажигания или от удара) быстро разлагаться, превращаясь в то же время почти наполовину (по весу, конечно) в сильно нагретые газы, производят взрыв, а потому и называются «взрывчатыми» (Explosivstoffe); так, например, порох превращается в размере 40 % (по весу) в газы, а остальные 60 % либо образуют твёрдый остаток, либо улетучиваются в виде дыма. При неблагоприятных условиях имеется ещё и третья потеря: слишком быстрое воспламенение выбрасывает значительную часть несгоревшего заряда.

В противоположность к взрывчатым веществам имеются такие смеси и составы, которые не обладают особой способностью быстро превращаться в газы, но зато горят ярким, либо белым, либо цветным пламенем.

Т.к. подобные огни не обнаруживают сильного напора, а горят тихо, без детонации, то их вообще называют пассивными (faules Feuer), а Детонирующие смеси – активными (Treib-feuer); первые употребляются для световых эффектов, вторые – для силовых.

Помимо этого, состав может быть пламенным, искристым или ударным. Ударный производит только шлаг; пламенный даёт лишь пламя, искристый выкидывает раскаленные частицы, не составляющие элемента горения. Такие частицы либо сгорают в воздухе, либо тухнут (охлаждаются) в нём.

Из этих трёх данных образуются сложные огни, т.е. такие, которые обладают двумя или всеми тремя упомянутыми свойствами: и светят, и искрятся, и дают шлаги. Правильная комбинация этих эффектов за- висит от точного знания свойств ингредиентов и от правильного дозирования смесей. Эта-то часть, называемая «пиротехнической химией», и составляет главнейшую суть всего фейерверочного дела, и чем меньше она основана на эмпирике, т.е. на опыте, слепо идущем наобум, ощупью, без сознательного понимания действия и причин, тем работа выйдет лучше и удачнее.

Но до того, чтобы перейти к «синтезу» составов, т.е. к теории образования горючих смесей, необходимо предварительно ознакомиться с материалом, входящим в состав этих смесей; иначе придётся трактовать о неизвестных величинах, а это на практике почти всегда равносильно толчению воды в ступе.

Источник

Физические законы и параметры газов являются основополагающими для создания вакуумных систем. Даже при крайне низких значениях давлений, используемых в вакуумной технике, физические процессы, протекающие в газах, подчиняются общим газовым законам. Необходимость создания вакуума обычно связана с потребностью уменьшения концентрации молекул газа или частоты их столкновений с поверхностью сосуда. Газовые процессы в вакуумных системах можно, как правило, рассматривать с точки зрения законов идеального газа, а некоторые общие физические процессы вакуумных систем могут быть описаны с помощью статических и динамических свойств газов. Физические процессы, протекающие в газах при низком давлении, а также различные параметры и свойства газового потока рассмотрены ниже.

Читайте также:  Какой из указанных гидроксидов проявляет амфотерные свойства

Параметры состояния газа

Если взять образец газа, то для описания его состояния достаточно знать три из четырех параметров. Этими параметрами являются давление, объем, температура и количество газа.

Давление – это сила, с которой газ воздействует на единицу площади поверхности сосуда. В СИ единицей измерения давления является паскаль, или ньютон на квадратный метр (Н/м2). В вакуумной технике также используется единица измерения миллиметр ртутного столба, или Торр: 1 мм рт. ст. = 133 Па (1 Па = 7,5 мм рт. ст.).

Объем – мера пространства, которое занимает газ; обычно он задается размерами сосуда. Единицей объема в СИ является кубический метр (м3), однако для обозначения быстроты откачки и потока газа, а также других величин широко используются литры.

Температура газа при давлении ниже 1 Торр главным образом определяется температурой поверхностей, с которыми он соприкасается. Как правило, газ находится при комнатной температуре. При выводе уравнений, описывающих состояние газов, для измерения температуры используют Кельвины (К).

Количество газа в данном объеме измеряется в молях.

Моль – число граммов газа (или любого вещества), равное его молекулярной массе. Моль содержит 6,02 х 1023 молекул. Один моль любого газа при 0 °С и давлении 760 Торр занимает объем, равный 22,4 л. Масса 1 моля газа равна его молекулярной массе в граммах.

Молярный объем является универсальной постоянной. Экспериментально установлено, что он составляет 22,414 л при 760 Торр и 0 °С. Поскольку 1 моль любого газа при температуре 0 °С и давлении 760 Торр занимает объем 22,4 л, из этого соотношения можно рассчитать молекулярную концентрацию любого объема газа, если известны его температура и давление. Например, 1 см3 воздуха при 760 Торр и 0 °С содержит 2,7 x 1019 молекул; в то время как при давлении 1 Торр и температуре 0 °С 1 см3 воздуха содержит 3,54 x 1016 молекул.

Читайте также:  Какими свойствами обладает калина

Газовые законы

Газовые законы устанавливают соотношения между физическими параметрами состояния газа (давление, объем, температура и количество газа) при постоянном значении одного из параметров. Эти законы справедливы для идеального газа в котором объем всех молекул является незначительным по сравнению с объемом газа, и энергия притяжения между молекулами является незначительной по сравнению с их средней тепловой энергией. Это означает, что данное вещество (в данном случае газ) находится в газообразном состоянии при температуре, которая достаточно высока для его конденсации. К газам, по своим свойствам близким к идеальным при комнатной температуре, относятся 02, Ne, Аг, СО, Н2 и NO.
Ниже приведены общие формулировки газовых законов.
Закон Бойля – произведение давления на объем рУ, где р – давление газа, V – его объем, является постоянной величиной для данной массы газа при постоянной температуре.
Закон Гей-Люссака – величина V/T, где Т- абсолютная температура газа, является постоянной для данной массы газа при постоянном давлении.
Закон Авогадро – равные объемы различных газов при одинаковых температуре и давлении содержат одно и то же количество молекул. Из этого закона можно получить важное соотношение между числом молей газа и давлением, которое создает газ.
Основное уравнение состояния идеального газа (уравнение Клапейрона) устанавливает зависимость между давлением, объемом и температурой для данной массы газа, т. е. теми параметрами, которые необходимы для описания состояния газа:

$$pV=MRT, (1.1)$$

где R – универсальная газовая постоянная данного газа, R = 8,31 ДжДмоль К) (62,4 Торр-л/(моль x К)); М – это число молей в объеме V
Данный закон будет справедлив и для большинства газов, которые при низких давлениях ведут себя как идеальные газы.

Закон парциальных давлений Дальтона – общее давление, создаваемое смесью газов, равняется сумме парциальных давлений, создаваемых отдельными компонентами смеси.

Парциальное давление, создаваемое одним компонентом смеси газов, – это давление, создаваемое этим компонентом, если бы он занимал весь объем.

Закон Авогадро – равные объемы идеального газа при постоянных температуре и давлении содержат одно и то же количество молекул.

Число Авогадро – число молекул в 1 моле газа или любого вещества, является универсальной постоянной и составляет 6,023 • 1023.

Число Лошмидта – число молекул в кубическом сантиметре газа при атмосферном давлении и температуре 0 °С. Это универсальная постоянная, равная 2,637 x 1019.
Для 1 моля газа при атмосферном давлении и температуре 0 °С (273,2 К), занимающего объем V = 22,414 л, R= 8.31 Дж/(моль x К) или в тепловых единицах R/J= 1,99 кал/К (У – механический эквивалент теплоты, J = 4,182 Дж кал). Следовательно, количество теплоты 1,99 кал будет повышать температуру 1 моля любого идеального газа на 1 К, или после повышения температуры 1 моля любого идеального газа на 1 К увеличение энергии газа составит 8,31 Дж.

Читайте также:  Какими свойствами обладают треугольники

Неидеальные газы

Примерами некоторых распространенных неидеальных газов являются аммиак, этан, бензол, диоксид углерода (углекислый газ), пары ртути, SO и S02. Газовые законы должны описывать физические процессы, протекающие в любом газе при температуре выше критической. При критической температуре, Тс, газ начинает конденсироваться. Ниже этой критической температуры имеет место давление паров над жидким конденсатом, которое называется давлением пара. Если газ конденсируется (его объем уменьшается), давление изменяться не будет, но большее количество газа будет переходить в жидкую фазу. По мере снижения температуры над жидкостью будет присутствовать меньшее количество молекул, при этом давление паров также будет снижаться.

Источник

Основная цель урока: выяснить особенности строения веществ в различных агрегатных состояниях и объяснить их. Сравнить физические свойства веществ в различных агрегатных состояниях.

Конспект урока

Рассмотрим  следующие вещества: вода, камень, воздух, олово, спирт, сахар, природный газ, лед, кислород, растительное масло, алюминий, молоко, азот  (данные вещества даны при комнатной температуре).

Многие из них мы привыкли видеть в каком-либо одном состоянии. Например, железо – в твердом, растительное масло – в жидком, водород – в газообразном. Однако есть и такие, которые в нашей жизни встречаются сразу в трех состояниях, например, вода: твердое состояние воды – лед, жидкое – вода, газообразное – водяной пар.

В природе вещества встречаются в трех состояниях: твердом, жидком и газообразном (лед, вода, водяной пар) Такое состояние вещества называется агрегатным.

Газы. Расстояние между молекулами во много раз больше самих молекул, они почти не притягиваются и свободно движутся во всех направлениях. Поэтому газы заполняют весь предоставленный объём, не имеют формы и легко сжимаются. Они принимают форму сосуда и полностью заполняют предоставленный им объём. Но если газы сильно сжать или охладить они переходят в жидкое состояние.

Жидкости. Молекулы расположены близко друг к другу, расстояние между ними сравнимо с размером молекул. Они скачками меняют свое место – «прыгают». Поэтому жидкости не сохраняют форму, они могут течь, их легко перелить. Молекулы жидкости не расходятся на большие расстояния и жидкость в обычных условиях сохраняет свой объём. Но сжать их трудно, так как при этом молекулы сближаются и между ними возникает отталкивание.

Твердые тела. Молекулы расположены в строгом порядке расстояние между молекулами сравнимо с размером молекул. В твёрдых телах притяжение между молекулами ещё больше чем у жидкостей. Молекулы колеблются около определенной точки, не могут перемещаться далеко от неё. Поэтому твердые тела сохраняют форму и объем.

Тест для самоконтроля 

Вопрос №1. В скольких агрегатных состояниях могут вообще находиться вещества?

А.  В двух: твёрдом и жидком

Б.  В двух: твёрдом и газообразном

С.  В трех: в виде твёрдого тела, жидкости и пара

Д.  В трех: твёрдом, жидком и газообразном

Вопрос № 2.  Может ли какое-либо вещество быть в разных состояниях?

А.  Не может

Б.  Нет: любое вещество или твердое, или жидкое, или газообразное

С.  Может: оно изменит свое состояние, если изменятся условия

Вопрос № 3. Какими общими свойствами обладают твёрдые тела?

А.  Собственным объёмом и изменчивостью формы

Б.  Собственными объёмом и формой

Д.  Собственной формой и легко изменяемым объёмом

Вопрос № 4. Каковы общие свойства жидкостей?

А.  Наличие у них собственного объёма и текучести, следовательно, изменчивости формы

Б.  Обладание собственным объёмом и формой

С.  Отсутствие собственного объёма и формы

Д.  Трудность изменения объёма и формы

Вопрос № 5. Какие общие свойства присущи газам?

А.  Сохранение газом своего объёма и формы

Б.  Неизменность объёма газа при приобретении им любой формы

С.  Заполнение газом всего предоставленного ему пространства

Д.  Трудность сжатия, изменения формы и объёма

Вопрос № 6. Как расположены, взаимодействуют и движутся молекулы в газах?

А.  Молекулы расположены на расстояниях, сравнимых с размерами самих молекул, и перемещаются свободно друг относительно друга

Б.  Молекулы находятся на больших расстояниях (по сравнению с размерами молекул) друг от друга, практически не взаимодействуют и движутся беспорядочно

С.  Они расположены в строгом порядке, сильно взаимодействуют и колеблются около определённых положений

Д.  Молекулы находятся на больших расстояниях друг от друга в определенном порядке, слабо взаимодействуют друг с другом и движутся в разные стороны

Источник