Какими химическими свойствами обладают металлы

Какими химическими свойствами обладают металлы thumbnail

Среди металлов традиционно выделяют несколько групп. Входящие в их состав представители характеризуются отличной от других металлов химической активностью. Такими группами являются:

  • благородные металлы (серебро, золото, платина);
     
  • щелочные металлы (металлы, образованные элементами (I)А группы периодической системы);
     
  • щелочноземельные металлы (кальций, стронций, барий, радий).

Простые вещества, обладающие металлическими свойствами, в химических реакциях всегда являются восстановителями. Положение металла в ряду активности характеризует то, насколько активно данный металл способен вступать в химические реакции (т. е. то, насколько сильно у него проявляются свойства восстановителя).

Ряд активности металлов

(Li, K, Ba, Ca, Na, )(Mg, Al, Mn, Zn, Cr, Fe, Ni, Sn, Pb)H2(Cu, Hg, Ag, Pt, Au)

активные

металлы

металлы средней

активности 

 

неактивные

металлы

1. Чем левее стоит металл в этом ряду, тем более сильным восстановителем он является.

2. Каждый металл способен вытеснять из растворов солей те металлы, которые в ряду активности стоят после него (правее).

3. Металлы, находящиеся в ряду активности левее водорода, способны вытеснять его из растворов кислот.
 

4. Щелочные и щелочноземельные металлы в любых водных растворах взаимодействуют прежде всего с водой.

Общие химические свойства металлов

Взаимодействие с простыми веществами-неметаллами

1. Металлы взаимодействуют с кислородом, образуя оксиды.

Металл + кислород → оксид.

Например, при взаимодействии магния с кислородом образуется оксид магния:

2Mg0+O02→2Mg+2O−2.

Видеофрагмент:

Обрати внимание!

Серебро, золото и платина с кислородом не реагируют.

2. Металлы взаимодействуют с галогенами (фтором, хлором, бромом и иодом), образуя галогениды.

Металл + галоген → галогенид металла.

Например, при взаимодействии натрия с хлором образуется хлорид натрия:

2Na0+Cl02→2Na+1Cl−1.

3. Металлы взаимодействуют с серой, образуя сульфиды.

Металл + сера → сульфид металла.

Например, при взаимодействии цинка с серой образуется сульфид цинка:

Zn0+S0→Zn+2S−2.

Видеофрагмент:

Взаимодействие цинка с серой

4. Активные металлы при нагревании реагируют с азотом, фосфором и некоторыми другими неметаллами.

Например, при взаимодействии лития с азотом образуется нитрид лития:

6Li0+N02→2Li+13N−3.

При взаимодействии кальция с фосфором образуется фосфид кальция:

3Ca0+2P0→Ca+23P−32.

Взаимодействие со сложными веществами

1. Щелочные и щелочноземельные металлы взаимодействуют с водой при обычных условиях, образуя растворимое в воде основание (щёлочь) и водород.

Активный металл + вода → щёлочь + водород.

Например, при взаимодействии натрия с водой образуются гидроксид натрия и водород:

2Na0+2H+12O−2→2Na+1O−2H+1+H02.

Видеофрагмент:

Взаимодействие натрия с водой

Обрати внимание!

Некоторые металлы средней активности реагируют с водой при повышенной температуре, образуя оксид металла и водород.

Например, раскалённое железо реагирует с водяным паром, образуя смешанный оксид — железную окалину Fe_3O_4 и водород:

3Fe0+4H+12O−2→Fe+2O−2⋅Fe+32O−23+4H02.

2. Mеталлы, стоящие в ряду активности металлов левее водорода, взаимодействуют с растворами кислот, образуя соль и водород.

Металл + кислота → соль + водород.

Например, при взаимодействии алюминия с серной кислотой образуются сульфат алюминия и водород:

2Al0+3H+12S+6O−24→Al+32(S+6O−24)3+3H02.

Видеофрагмент:

Реакция алюминия с серной кислотой

3. Металлы реагируют с солями менее активных металлов в растворе, образуя соль более активного металла и менее активный металл в свободном виде.

Более активный металл + соль → соль более активного металла + менее активный металл.

Например, при взаимодействии железа с сульфатом меди((II)) образуются сульфат железа((II)) и медь:

Fe0+Cu+2S+6O−24→Fe+2S+6O−24+Cu0.

Видеофрагмент:

Взаимодействие железа с сульфатом меди

Источник

Какими химическими свойствами обладают металлы

Металлы (от лат. metallum — шахта, рудник) — группа элементов, в виде простых веществ обладающих характерными металлическими свойствами, такими как высокие тепло- и электропроводность, положительный температурный коэффициент сопротивления, высокая пластичность и металлический блеск.

Из 118 химических элементов, открытых на данный момент (из них не все официально признаны), к металлам относят:

  • 6 элементов в группе щелочных металлов,
  • 6 в группе щёлочноземельных металлов,
  • 38 в группе переходных металлов,
  • 11 в группе лёгких металлов,
  • 7 в группе полуметаллов,
  • 14 в группе лантаноиды + лантан,
  • 14 в группе актиноиды (физические свойства изучены не у всех элементов) + актиний,
  • вне определённых групп бериллий и магний.

Таким образом, к металлам, возможно, относится 96 элементов из всех открытых.

В астрофизике термин «металл» может иметь другое значение и обозначать все химические элементы тяжелее гелия

Характерные свойства металлов

  1. Металлический блеск (характерен не только для металлов: его имеют и неметаллы иод и углерод в виде графита)
  2. Хорошая электропроводность
  3. Возможность лёгкой механической обработки 
  4. Высокая плотность (обычно металлы тяжелее неметаллов)
  5. Высокая температура плавления (исключения: ртуть, галлий и щелочные металлы)
  6. Большая теплопроводность
  7. В реакциях чаще всего являются восстановителями.

Физические свойства металлов

Все металлы (кроме ртути и, условно, франция) при нормальных условиях находятся в твёрдом состоянии, однако обладают различной твёрдостью. Ниже приводится твёрдость некоторых металлов по шкале Мооса.

Температуры плавления чистых металлов лежат в диапазоне от −39 °C (ртуть) до 3410 °C (вольфрам). Температура плавления большинства металлов (за исключением щелочных) высока, однако некоторые «нормальные» металлы, например олово и свинец, можно расплавить на обычной электрической или газовой плите.

Читайте также:  Какие свойства памяти развиваются у детей и подростков с возрастом ответ

В зависимости от плотности, металлы делят на лёгкие (плотность 0,53 ÷ 5 г/см³) и тяжёлые (5 ÷ 22,5 г/см³). Самым лёгким металлом является литий (плотность 0.53 г/см³). Самый тяжёлый металл в настоящее время назвать невозможно, так как плотности осмия и иридия — двух самых тяжёлых металлов — почти равны (около 22.6 г/см³ — ровно в два раза выше плотности свинца), а вычислить их точную плотность крайне сложно: для этого нужно полностью очистить металлы, ведь любые примеси снижают их плотность.

Большинство металлов пластичны, то есть металлическую проволоку можно согнуть, и она не сломается. Это происходит из-за смещения слоёв атомов металлов без разрыва связи между ними. Самыми пластичными являются золото, серебро и медь. Из золота можно изготовить фольгу толщиной 0.003 мм, которую используют для золочения изделий. Однако не все металлы пластичны. Проволока из цинка или олова хрустит при сгибании; марганец и висмут при деформации вообще почти не сгибаются, а сразу ломаются. Пластичность зависит и от чистоты металла; так, очень чистый хром весьма пластичен, но, загрязнённый даже незначительными примесями, становится хрупким и более твёрдым. Некоторые металлы такие как золото, серебро, свинец, алюминий, осмий могут срастаться между собой, но на это может уйти десятки лет.

Все металлы хорошо проводят электрический ток; это обусловлено наличием в их кристаллических решётках подвижных электронов, перемещающихся под действием электрического поля. Серебро, медь и алюминий имеют наибольшую электропроводность; по этой причине последние два металла чаще всего используют в качестве материала для проводов. Очень высокую электропроводность имеет также натрий, в экспериментальной аппаратуре известны попытки применения натриевых токопроводов в форме тонкостенных труб из нержавеющей стали, заполненных натрием. Благодаря малому удельному весу натрия, при равном сопротивлении натриевые «провода» получаются значительно легче медных и даже несколько легче алюминиевых.

Высокая теплопроводность металлов также зависит от подвижности свободных электронов. Поэтому ряд теплопроводностей похож на ряд электропроводностей и лучшим проводником тепла, как и электричества, является серебро. Натрий также находит применение как хороший проводник тепла; широко известно, например, применение натрия в клапанах автомобильных двигателей для улучшения их охлаждения.

Цвет у большинства металлов примерно одинаковый — светло-серый с голубоватым оттенком. Золото, медь и цезий соответственно жёлтого, красного и светло-жёлтого цвета.

Химические свойства металлов

На внешнем электронном уровне у большинства металлов небольшое количество электронов (1-3), поэтому они в большинстве реакций выступают как восстановители (то есть «отдают» свои электроны)

Реакции с простыми веществами

  • С кислородом реагируют все металлы, кроме золота, платины. Реакция с серебром происходит при высоких температурах, но оксид серебра(II) практически не образуется, так как он термически неустойчив. В зависимости от металла на выходе могут оказаться оксиды, пероксиды, надпероксиды:

 оксид лития

 пероксид натрия

 надпероксид калия

Чтобы получить из пероксида оксид, пероксид восстанавливают металлом:

Со средними и малоактивными металлами реакция происходит при нагревании:

  • С азотом реагируют только самые активные металлы, при комнатной температуре взаимодействует только литий, образуя нитриды:

При нагревании:

  • С серой реагируют все металлы, кроме золота и платины:

Железо взаимодействует с серой при нагревании, образуя сульфид:

  • С водородом реагируют только самые активные металлы, то есть металлы IA и IIA групп кроме Be. Реакции осуществляются при нагревании, при этом образуются гидриды. В реакциях металл выступает как восстановитель, степень окисления водорода −1:
  • С углеродом реагируют только наиболее активные металлы. При этом образуются ацетилениды или метаниды. Ацетилениды при взаимодействии с водой дают ацетилен, метаниды — метан.

Взаимодействие кислот с металлами

Взаимодействие неокисляющих кислот с металлами, стоящими в электрическом ряду активности металлов до водорода

Происходит реакция замещения, которая также является окислительно-восстановительной:

Взаимодействие серной кислоты H2SO4 с металлами

Окисляющие кислоты могут взаимодействовать и с металлами, стоящими в ЭРАМ после водорода:

Очень разбавленная кислота реагирует с металлом по классической схеме:

При увеличении концентрации кислоты образуются различные продукты:

Реакции для азотной кислоты (HNO3)

При взаимодействии с активными металлами вариантов реакций ещё больше:

Источник

В химических реакциях металлы выступают в роли восстановителей и повышают степень окисления, превращаясь из простых веществ в катионы. 

Химические свойства металлов различаются в зависимости от химической активности металла. По активности в водных растворах металлы расположены в ряд напряжений. 

В этот ряд, составленный русским химиком Н.Н. Бекетовым, включен также неметалл водород. Активность металлов убывает слева направо:

Запомнить! Металлы, стоящие в ЭХ ряду после водорода, называют неактивными металлами.

Читайте также:  Какие противоречия существуют между структурной формулой кекуле и свойствами бензола

Металлы, расположенные в ЭХ ряду до алюминия называют сильноактивными или активными металлами.       

Общие химические свойства металлов

1) Многие металлы вступают в реакцию с типичными неметаллами – галогенами, кислородом, серой. При этом образуются соответственно хлориды, оксиды, сульфиды и другие бинарные соединения:

  • с азотом некоторые металлы образуют нитриды, реакция практически всегда протекает при нагревании;

  • с серой металлы образуют сульфиды – соли сероводородной кислоты;

  • с водородом самые активные металлы образуют ионные гидриды (бинарные соединения, в которых водород имеет степень окисления -1;

  • с кислородом большинство металлов образует оксиды – амфотерные и основные. Основной продукт горения натрия – пероксид Na2O2; а калий и цезий горят с образованием надпероксидов MeO2.

2) Следует обратить внимание на особенности взаимодействие металлов с водой: Ca +2H2O=Ca(OH)2+H2

  • Активные металлы, находящиеся в ряду активности металлов до Mg (включительно), реагируют с водой с образованием щелочей и водорода:

  • Активные металлы (например, натрий и литий), взаимодействуют с водой со взрывом.

  • Металлы средней активности окисляются водой при нагревании до оксида:

  • Неактивные металлы (Au, Ag, Pt) – не реагируют с водой.

 2Na+ 2H2O=2NaOH+H2 активные металлы (до Al)

 Zn+ H2O=ZnO+H2 среднеактивные металлы (от Al до H), только при нагревании

 неактивные металлы не взаимодействуют с водой (после Н)

 3) С разбавленными кислотами реагируют металлы, стоящие в ЭХР до водорода: происходит реакция замещения с образованием соли и газообразного водорода. При этом кислота проявляет окислительные свойства за счет наличия катиона водорода: Mg + H Cl = Mg Cl2 +H2

4) Взаимодействие азотной кислоты (любой концентрации) и концентрированной серной кислоты протекает с образованием других продуктов: кроме соли и водорода в этих реакциях выделяется продукт восстановления серной (или азотной) кислоты. Подробнее см.тему “Взаимодействие азотной кислоты с металлами и неметаллами.

Запомнить! Все металлы, стоящие в ряду левее водорода, вытесняют его из разбавленных кислот, а металлы, расположенные справа от водорода, с растворами кислот не реагируют (азотная кислота – исключение).

5) Активность металлов также влияет на возможность протекания простого вещества металла с оксидом или солью другого металла. Металл вытесняет из солей менее активные металлы, стоящие правее его в ряду напряжений. 

Запомнить! Для протекания реакции между металлом и солью  другого требуется, чтобы соли, как вступающие в реакцию, так и образующиеся в ходе нее, были растворимы в воде.

 Металл вытесняет из соли только более слабый металл.

Например, для вытеснения меди из водного раствора сульфата меди подходит железо, CuSO4 + Fe = FeSO4 + Cu

но не подходят свинец – так как он образует нерастворимый сульфат. Если опустить кусочек  свинца в раствор сульфата меди, то с поверхности металла покроется тонким слоем сульфата, и реакция прекратится

Другой пример: цинк легко вытесняет серебро из раствора нитрата серебра, однако реакция цинка со взвесью сульфида серебра, нерастворимого в воде, практически не протекает. 

Общие химические свойства металлов обобщены в таблице:

Уравнение реакцииПродукты реакцииПримечания
с простыми веществами – неметаллами
с кислородом

4Li + O2 = 2Li2 O

оксиды  

2Na + O2 = Na2 O2

пероксиды только натрий

K+ O2 =  KO2

надпероксиды надпероксиды при горении образуют K, Rb, Cs
с водородом 

Ca + + H2 = CaH2 

гидридыщелочные металлы 0 при комнатной температуре; остальные металлы – при нагревании
с галогенами

2Fe +3 Cl2 =2 FeCl3

хлориды и др.

при взаимодействии с хлором и бромом (сильные окислители) железо и хром образуют хлориды в степени окисления +3
с серой

Fe + S = FeS

сульфидыпри взаимодействии с  серой и иодом железо приобретает степень окисления +2 
с азотом и фосфором

3Mg + N2 = Mg3N2

нитриды* при комнатной температуре с азотом реагируют только литий и магний

3Ca +2 P = Ca3 P2

фосфиды 
с углеродом

Ca + 2C = CaC2

карбиды 
с водой

Ca +2H2O = Ca(OH)2+H2

Основание + H2 щелочные металлы

 Zn+ H2O = ZnO+H2

 Оксид + H2 среднеактивные металлы, при нагревании

Au, Ag, Pt,

не реагируютнеактивные металлы (после Н)
с окисдами менее активных металлов
2Al + 3ZnO = Al2 O3 + 3Znдр оксид + др.металл 
с солями менее активных металлов

CuSO4 + Fe = FeSO4 + Cu

Др. соль + др. металл
  • Более сильный металл вытесняют более слабый из его соли.

  • Соли, как вступающие в реакцию, так и образующиеся в ходе нее, были растворимы в воде.

 Cu + Al Cl3 не реагируют 
с кислотами

Fe + 2H Cl = Fe Cl2 + H2

Др. соль +водородМеталлы, стоящие в электрохимическом ряду напряжений до H реагируют с разбавленными кислотами (кроме )

Cu + H3PO4 не реагируют

Источник

I. Элементы. Металлы образуют все s-элементы, все d-элементы, все f-элементы и все p-элементы, находящиеся в длиннопериодной таблице левее и ниже границы B – At.

Читайте также:  На множестве задано отношение какими свойствами оно обладает

II. Атомы. Атомы металлов большие (орбитальный радиус больше 0,1 нм). У них от одного (у атомов щелочных элементов, Cr, Mo, Cu, Ag и Au) до шести (у Po) электронов на внешнем уровне (у большинства – от одного до трех). Число валентных электронов у этих атомов может достигать восьми (у Fe, Ru и Os), а теоретически даже одиннадцати (у Cu, Ag и Au). Атомы металлов сравнительно легко отдают валентные электроны (но не более трех). Склонностью присоединять электроны атомы металлов не обладают.

У атомов элементов-металлов в периоде с увеличением порядкового номера

  • заряд ядра увеличивается;
  • радиусы атомов уменьшаются;
  • число электронов на внешнем слое увеличивается (только в у атомов элементов главных подгрупп);
  • число валентных электронов увеличивается (только в у атомов элементов главных подгрупп);
  • электроотрицательность увеличивается;
  • восстановительные (металлические) свойства ослабевают (только в у атомов элементов главных подгрупп).

У атомов элементов-металлов в подгруппе (в длиннопериодной таблице – в группе) с увеличением порядкового номера

  • заряд ядра увеличивается;
  • радиус атома увеличивается (только в у атомов элементов главных подгрупп);
  • электроотрицательность уменьшается (только в у атомов элементов главных подгрупп);
  • число валентных электронов не изменяется;
  • число внешних электронов, как правило, не изменяется;
  • восстановительные (металлические) свойства усиливаются (только в у атомов элементов главных подгрупп).

III. Простые вещества. Металлы – простые вещества, в которых атомы связаны металлической связью. Поэтому определяющие физические свойства чистых металлов (следствие наличия металлической связи)

  • высокая электропроводность;
  • высокая теплопроводность;
  • высокая пластичность.

Наличие даже незначительной примеси может резко ухудшать эти характеристики.

Кроме того, общими свойствами всех металлов является металлический блеск и непрозрачность.

Большинство металлов при комнатной температуре – твердые вещества (металлические кристаллы, “металлическая кристаллическая решетка”), ртуть – жидкость (как и расплавы – металлическая жидкость). Цезий и галлий плавятся в руке, температура плавления вольфрама 3387oС. Плотность металлов тоже весьма различна: от 0,53 г/cм3 у лития до 22,5 г/cм3 у иридия и осмия.

Некоторые элементы, лежащие вблизи границы B – At, образуют как металлические, так и неметаллические аллотропные модификации, например: белое олово – металл, а серое олово – неметалл.

IV. Химические свойства. Характерными для большинства металлов (кроме Au, Pt, Ta, W и некоторых других) являются восстановительные свойства. Большинство металлов окисляется кислородом (образуются оксиды, реже пероксиды):

2Ca + O2 = 2CaO    2Na + O2 = Na2O2    4Al + 3O2 = 2Al2O3

галогенами:

Mg + F2 = MgF2    2Fe + 3Cl2 = 2FeCl3    Zn + Br2 = ZnBr2

Щелочные и щелочноземельные металлы реагируют с водородом (при нагревании), образуя гидриды:

2Na + H2 = 2NaH    Ca + H2 = CaH2    Ba + H2 = BaH2

Многие металлы при нагревании реагируют с серой (ртуть – при комнатной температуре), образуя сульфиды:

2Na + S = Na2S    2Al + 3S = Al2S3    Hg + S = HgS

с азотом (литий – при комнатной температуре), образуя нитриды:

6Li + N2 = 2Li3N    6Na + N2 = 2Na3N    3Mg + N2 = Mg3N2

Металлы, стоящие в электрохимическом ряду напряжений до магния, реагируют с водой при комнатной температуре, от магния до свинца – при нагревании:

Металлы, стоящие в ряду напряжений до водорода, реагируют с кислотами-“неокислителями” (HCl, разбавленная H2SO4 и т. п.):

С кислотами-“окислителями” (HNO3, концентрированная H2SO4) реагируют и металлы, стоящие в ряду напряжений после водорода. Продукты реакции зависят от концентрации кислоты и активности металла. Для серной кислоты это может быть SO2 (обычно), S и H2S. Для азотной кислоты – NO2 (концентрированная, обычно), NO (разбавленная, обычно), N2O, N2, NH4NO3 (активные металлы, очень разбавленная кислота):

Амфотерные металлы реагируют с растворами щелочей:

2Al + 2KOH + 6H2O = 2K[Al(OH)4] + 3H2

Активные металлы реагируют с некоторыми органическими веществами:

2Na + 2C2H4OH = 2C2H5ONa + H2

V. Оксиды и гидроксиды. Тип оксида и соответствующего ему гидроксида в основном зависит от размера и степени окисления атома элемента-металла.

Чем больше атом, тем в большей степени для его оксидов и гидроксидов характерны основные свойства.

Степень окисления +I (или +1) – оксиды основные (Na2O, K2O, Ag2O, Tl2O и др.), соответствующие гидроксиды (если они есть) – сильные основания (NaOH, KOH, TlOH).

Степень окисления +II (или +2) – обычно оксиды основные (BaO, MgO, FeO, CrO, MnO и др.) и, реже, если атом маленький, амфотерные (BeO, ZnO, PbO, CuO); к тем же классам относятся и соответствующие гидроксиды.

Степень окисления +III (или +3) – большинство оксидов амфотерны (Al2O3, Cr2O3 и др.), таковы же и гидроксиды.

Высшие оксиды (степень окисления больше +IV) – кислотные (Mn2O7, CrO3), а гидроксиды – кислоты (HMnO4, H2CrO4).

Источник