Какими химическими свойствами обладает пропан
Пропан | |||
---|---|---|---|
Хим. формула | C3H8 | ||
Рац. формула | CH3CH2CH3 | ||
Молярная масса | 44,1 г/моль | ||
Плотность | газ: 1,8641 кг/м³ в стандартных условиях по ГОСТ 2939—63; жидк. при +20°C 0,5005 г/см3 (4 атм.) | ||
Энергия ионизации | 11,07 ± 0,01 эВ[2] | ||
Температура | |||
• плавления | −187,6 °C | ||
• кипения | −42,09 °C | ||
• самовоспламенения | 472 °C | ||
Пределы взрываемости | 2,1 ± 0,1 об.%[2] | ||
Энтальпия | |||
• образования | −104 680 Дж/моль[1] | ||
Давление пара | 8,4 ± 0,1 атм[2] | ||
Рег. номер CAS | 74-98-6 | ||
PubChem | 6334 | ||
Рег. номер EINECS | 200-827-9 | ||
SMILES | CCC | ||
InChI | 1S/C3H8/c1-3-2/h3H2,1-2H3 ATUOYWHBWRKTHZ-UHFFFAOYSA-N | ||
Кодекс Алиментариус | E944 | ||
RTECS | TX2275000 | ||
ChEBI | 32879 | ||
ChemSpider | 6094 | ||
NFPA 704 | 4 1 | ||
Приведены данные для стандартных условий (25 °C, 100 кПа), если не указано иное. | |||
Медиафайлы на Викискладе |
Пропа́н (лат. propanum), C3H8 — органическое вещество класса алканов. Содержится в природном газе, образуется при крекинге нефтепродуктов, при разделении попутного нефтяного газа, «жирного» природного газа как побочная продукция при различных химических реакциях. Чистый пропан не имеет запаха, однако в технический газ могут добавляться компоненты, обладающие сигнальным запахом. Как представитель углеводородных газов пожаро- и взрывоопасен. Малотоксичен, но оказывает вредное воздействие на центральную нервную систему (отравление, рвота, возможен летальный исход)[3][4].
Физические свойства[править | править код]
Бесцветный газ без запаха[5]. Очень мало растворим в воде. Точка кипения −42,1 °C. Точка замерзания −188 °C.
Образует с воздухом взрывоопасные смеси при концентрации паров от 1,7 до 10,9 %.
Критическая температура пропана Tкр = 370 К, критическое давление Pкр = 4,27 МПа, критический удельный объём Vкр = 0,00444 м3/кг[6] Плотность сжиженного пропана при 298 K — 0,493 т/м3. Газ легко сжижается при повышении давления.
- Плотность газовой фазы при нормальных условиях = 2,019 кг/м3.
- Плотность газовой фазы при температуре 15°С = 1,900 кг/м3.
- Удельная теплота сгорания = 48 МДж/кг.
Химические свойства[править | править код]
Аналогичны свойствам других представителей ряда алканов (дегидрирование, хлорирование и т. д.)
- Окисление
- Галогирование
- Хлорирование.
При термическом хлорировании пропана массовый выход 1-хлорпропан составляет — 75 %, 2-хлорпропан — 25 %
При фотохимическом хлорировании пропана массовый выход 1-хлорпропан составляет 43 %, 2-хлорпропан 57 %
- Бромирование протекает медленнее, чем хлорирование, а значит селективно, то есть с образованием преимущественно одного продукта. Так, при фотохимическом бромировании пропана образуется преимущественно 2-бромпропан (92 %)
Применение[править | править код]
Топливо[править | править код]
Несмотря на более высокую цену, пропан во многом удобнее природного газа (метана), так как в отличие от метана сжижается при комнатной температуре и сравнительно невысоком давлении (12-15 атм), а метан при комнатной температуре не сжижается, и его приходится хранить сжатым под высоким давлением (200—250 атм), либо транспортировать в жидком виде при криогенных температурах. Поэтому баллоны для пропана значительно легче и дешевле метановых, и содержат гораздо больше газа (например, 50-литровый метановый баллон весит 55 кг и вмещает 9 кг газа, а пропановый такого же объема весит 19 кг и вмещает 22 кг газа, кроме того, баллон для метана в 3-4 раза дороже. Композитные баллоны в 2-3 раза легче, но еще в несколько раз дороже). Это делает пропан гораздо более удобным для хранения и транспортировки, поэтому пропан (или его смесь с бутаном) широко применяется для подключения переносного газового оборудования (переносные газовые плитки, газовые горелки для кровельных работ и т. д.), в качестве автомобильного топлива, а также для газификации небольших отдаленных населенных пунктов или отдельных зданий, для которых строительство газопровода природного газа экономически нецелесообразно.
Пропан товарный — жидкость, содержащая не менее 93 % пропана или пропилена, упругость паров которой при 45 °С не превышает 1,6 МПа. Содержание бутанов-бутилен допускается до 3 %, этана-этилена (до 4 %) ограничивается максимальным давлением паров. Коррозионная активность, содержание серы, влаги и плотность товарного пропана регламентируются техническими условиями на его доставку. Если пропан используется в качестве моторного топлива, то ограничивается допустимое содержание пропилена. Жидкостный остаток при −20 °С ограничивается 2 %, содержание сероводорода — 50 мг/м3 газа[7].
Пропан-бутановая смесь товарная — жидкость, содержащая этан-этилена до 4 %, пентана до 3 %, сероводорода до 50 мг м3 газа. Упругость паров при 45 °С не должна превышать упругость паров пропана (см. Пропан товарный). Температура испарения (объемная доля 95 %) должна быть равной температуре испарения бутана. Состав смеси (сжиженного газа), которая используется в качестве топлива для коммунально-бытового потребления, ограничивается упругостью пара 1,6 МПа при температуре 45 °С. При этом обеспечивается достаточная летучестью газового топлива[7].
Пропан применяется:
Баллон пропана на лёгком грузовике
- При выполнении газопламенных работ на заводах и предприятиях:
- в заготовительном производстве;
- для резки металлолома;
- для сварки неответственных металлоконструкций.
- При кровельных работах.
- При дорожных работах для разогрева битума и асфальта.
- В качестве топлива для переносных электрогенераторов.
- Для обогрева производственных помещений в строительстве.
- Для обогрева производственных помещений (на фермах, птицефабриках, в теплицах).
- Для газовых плит, водогрейных колонок в пищевой промышленности.
- В быту
- при приготовлении пищи в домашних и походных условиях;
- для подогрева воды;
- для сезонного обогрева отдалённых помещений — частных домов, отелей, ферм;
- для сварки труб, теплиц, гаражей и других хозяйственных конструкций с использованием газосварочных постов.
- В последнее время широко используется в качестве автомобильного топлива, так как дешевле бензина.
Хранится и перевозится в металлических баллонах ярко-красного цвета и полимерно-композитных баллонах (не путать с коричневыми баллонами для гелия)
Химия и пищевая промышленность[править | править код]
В химической промышленности используется для получения пропилена, сырья для производства полипропилена.
Является исходным сырьём для производства растворителей.
Используется как пропеллент.
В пищевой промышленности пропан зарегистрирован в качестве пищевой добавки E944.
Хладагент[править | править код]
Смесь из осушенного чистого пропана (R-290a) (коммерческое обозначение для описания изобутаново-пропановых смесей) с изобутаном (R-600a) не разрушает озоновый слой и обладает низким коэффициентом парникового потенциала (GWP). Смесь подходит для функционального замещения устаревших хладагентов (R-12, R-22) в традиционных стационарных холодильных установках и системах кондиционирования воздуха (с обязательной сменой типа компрессорного масла).
Токсикомания[править | править код]
В 2000-е годы стало входить в моду употребление пропана в качестве наркотического средства. Главным образом дышали из баллонов для зажигалок или же из самих зажигалок .Вдыхание пропана вызывает галлюцинации, также может вызвать удушье. В России зафиксировано множество смертей, вызванных газовой токсикоманией.
Примечания[править | править код]
- ↑ Smith J. M., H.C. Van Ness, M.M. Abbott Introduction to Chemical Engineering Thermodynamics (англ.) // J. Chem. Educ. — American Chemical Society, 1950. — Vol. 27, Iss. 10. — P. 789. — ISSN 0021-9584; 1938-1328 — doi:10.1021/ED027P584.3
- ↑ 1 2 3 https://www.cdc.gov/niosh/npg/npgd0524.html
- ↑ ГОСТ 20448-90. Газы углеводородные сжиженные топливные для коммунально-бытового потребления
- ↑ Газохроматографическое измерение массовых концентраций углеводородов: метана, этана, этилена, пропана, пропилена, нбутана, альфа-бутилена, изопентана в воздухе рабочей зоны. Методические указания. МУК 4.1.1306-03 (Утв. главным государственным санитарным врачом РФ 30.03.2003) (недоступная ссылка)
- ↑ [www.xumuk.ru/encyklopedia/2/3699.html XuMuK.ru — ПРОПАН — Химическая энциклопедия]
- ↑ Библиографическая проработка по теме: Критическая температура
- ↑ 1 2 Мала гірнича енциклопедія : у 3 т. / за ред. В. С. Білецького. — Д. : Східний видавничий дім, 2004—2013.
Некоторые внешние ссылки в этой статье ведут на сайты, занесённые в спам-лист. Эти сайты могут нарушать авторские права, быть признаны неавторитетными источниками или по другим причинам быть запрещены в Википедии. Редакторам следует заменить такие ссылки ссылками на соответствующие правилам сайты или библиографическими ссылками на печатные источники либо удалить их (возможно, вместе с подтверждаемым ими содержимым). Список проблемных доменов |
Источник
Пропан, получение, свойства, химические реакции.
Пропан, C3H8 – органическое вещество класса алканов. В природе содержится в природном газе, добываемом из газовых и газоконденсатных месторождений, в попутном нефтяном газе. Образуется также при крекинге нефтепродуктов.
Пропан, формула, газ, характеристики
Физические свойства пропана
Химические свойства пропана
Получение пропана
Химические реакции – уравнения получения пропана
Применение и использование пропана
Пропан, формула, газ, характеристики:
Пропан (лат. propanum) – органическое вещество класса алканов, состоящий из трех атомов углерода и восьми атомов водорода.
Химическая формула пропана C3H8, рациональная формула CH3CH2CH3. Изомеров не имеет.
Строение молекулы:
Пропан – бесцветный газ, без вкуса и запаха. Однако в пропан, используемый в качестве технического газа, могут добавляться одоранты – вещества, имеющие резкий неприятный запах для предупреждения его утечки.
В природе содержится в природном газе, добываемом из газовых и газоконденсатных месторождений, в попутном нефтяном газе. Для выделения из природного и попутного нефтяного газа производят их очистку и сепарацию газа.
Образуется также при крекинге нефтепродуктов., в т.ч. сланцевой нефти.
Также содержится в сланцевом газе и сжиженном газе (сжиженном природном газе).
Пожаро- и взрывоопасен.
Не растворяется в воде и других полярных растворителях. Зато растворяется в некоторых неполярных органических веществах (метанол, ацетон, бензол, тетрахлорметан, диэтиловый эфир и другие).
Пропан по токсикологической характеристике относится к веществам 4-го класса опасности (малоопасным веществам) по ГОСТ 12.1.007.
Физические свойства пропана:
Наименование параметра: | Значение: |
Цвет | без цвета |
Запах | без запаха |
Вкус | без вкуса |
Агрегатное состояние (при 20 °C и атмосферном давлении 1 атм.) | газ |
Плотность (при 20 °C и атмосферном давлении 1 атм.), кг/м3 | 1,8641 |
Плотность (при температуре кипения и атмосферном давлении 1 атм.), кг/м3 | 585 |
Температура плавления, °C | -187,6 |
Температура кипения, °C | -42,09 |
Температура самовоспламенения, °C | 472 |
Критическая температура*, К | 370 |
Критическое давление, МПа | 4,27 |
Критический удельный объём, м3/кг | 0,00444 |
Взрывоопасные концентрации смеси газа с воздухом, % объёмных | от 1,7 до 10,9 |
Удельная теплота сгорания, МДж/кг | 48 |
Молярная масса, г/моль | 44,1 |
* при температуре выше критической температуры газ невозможно сконденсировать ни при каком давлении.
Химические свойства пропана:
Пропан трудно вступает в химические реакции. В обычных условиях не реагирует с концентрированными кислотами, расплавленными и концентрированными щелочами, щелочными металлами, галогенами (кроме фтора), перманганатом калия и дихроматом калия в кислой среде.
Химические свойства пропана аналогичны свойствам других представителей ряда алканов. Поэтому для него характерны следующие химические реакции:
- 1. каталитическое дегидрирование пропана:
CH3-CH2-CH3 → CH2=CH-CH3 + H2 (kat = Pt, Ni, Al2O3, Cr2O3, to = 575 °C).
- 2. галогенирование пропана:
CH3-CH2-CH3 + Br2 → CH3-CHBr-CH3 + HBr (hv или повышенная to);
CH3-CH2-CH3 + I2 → CH3-CHI-CH3 + HI (hv или повышенная to).
Реакция носит цепной характер. Молекула брома или йода под действием света распадается на радикалы, затем они атакуют молекулы пропана, отрывая у них атом водорода, в результате этого образуется свободный пропил CH3-CH·-CH3, который сталкиваются с молекулами брома (йода), разрушая их и образуя новые радикалы йода или брома:
Br2 → Br·+ Br· (hv); – инициирование реакции галогенирования;
CH3-CH2-CH3 + Br· → CH3-CH·-CH3 + HBr; – рост цепи реакции галогенирования;
CH3-CH·-CH3 + Br2 → CH3-CHBr-CH3 + Br·;
CH3-CH·-CH3 + Br· → CH3-CHBr-CH3; – обрыв цепи реакции галогенирования.
Галогенирование — это одна из реакций замещения. В первую очередь галогенируется наименее гидрированый атом углерода (третичный атом, затем вторичный, первичные атомы галогенируются в последнюю очередь). Галогенирование пропана проходит поэтапно – за один этап замещается не более одного атома водорода.
CH3-CH2-CH3 + Br2 → CH3-CHBr-CH3 + HBr (hv или повышенная to);
CH3-CHBr-CH3 + Br2 → CH3-CBr2-CH3 + HBr (hv или повышенная to);
и т.д.
Галогенирование будет происходить и далее, пока не будут замещены все атомы водорода.
- 3. нитрование пропана:
См. нитрование этана.
- 4. окисление (горение) пропана:
При избытке кислорода:
C3H8 + 5O2 → 3CO2 + 4H2O.
Горит желтым пламенем.
При нехватке кислорода вместо углекислого газа (СО2) получается оксид углерода (СО), при еще меньшем количестве кислорода выделяется мелкодисперсный углерод (в различном виде, в т.ч. в виде графена, фуллерена и пр.) либо их смесь.
- 5. сульфохлорирование пропана:
C3H8 + SO2 + Cl2 → C3H7-SO2Cl + … (hv).
- 6. сульфоокисление пропана:
2C3H8 + 2SO2 + О2 → 2C3H7-SO2ОН (повышенная to).
Получение пропана. Химические реакции – уравнения получения пропана:
Так как пропан в достаточном количестве содержится в природном газе, попутном нефтяном газе и выделяется при крекинге нефтепродуктов, его не получают искусственно. Его выделяют при очистке и сепарации из природного газа, ПНГ и нефти при перегонке.
Пропан в лабораторных условиях получается в результате следующих химических реакций:
- 1. гидрирования непредельных углеводородов, например, пропена:
CH3-CH=CH2 + H2 → CH3-CH2-CH3 (kat = Ni, Pt или Pd, повышенная to).
- 2. восстановления галогеналканов:
C3H7I + HI → C3H8 + I2 (повышенная to);
C3H7Br + H2 → C3H8 + HBr.
- 3. взаимодействия галогеналканов с металлическим щелочным металлом, например, натрием (реакция Вюрца):
C2H5Br + СH3Br + 2Na → CH3-CH2-CH3 + 2NaBr;
C2H5CI + СH3Cl + 2Na → CH3-CH2-CH3 + 2NaCl.
Суть данной реакции в том, что две молекулы галогеналкана связываются в одну, реагируя с щелочным металлом.
- 4. декарбоксилирования масляной кислоты и ее солей:
C3H7-COOH + NaOH → C3H8 + Na2CO3 (повышенная to);
C3H7-COONa + NaOH → C3H8 + NaHCO3.
Применение и использование пропана:
– в качестве топлива в быту для приготовления пищи, транспортных средствах, в отопительных приборах и т.п. Как топливо пропан более удобен, чем метан. Пропан сжижается при комнатной температуре и давлении 12-15 атмосфер, что делает возможным его хранение и транспортировку как в обычных, так и более легких – композитных баллонах;
– для проведения различных технологических операций, например, газопламенных работ;
– как сырье в химической промышленности для производства других химических веществ, например, растворителей, полипропилена;
– в пищевой промышленности как пищевая добавка E944, используемая в качестве пропеллента;
– как хладагент в холодильниках, холодильных камерах, холодильных установках и системах кондиционирования воздуха. Используется в смеси с изобутаном. В отличие от других хладагентов данная смесь не разрушает озоновый слой.
Примечание: © Фото //www.pexels.com, //pixabay.com
карта сайта
газовая газ редуктор газовый баллон метан пропан этан бутан пропен цена купить реакции 1 4 50 3 какой кислород вещество авто температура кг воздух вода
заправка баллонов пропаном
сколько литров стоимость сгорание уравнение реакций давление смесь расход объем литр пропана
сжиженный пропан
Коэффициент востребованности
6 934
Источник
Пропан — это органическое соединение, третий представитель алканов в гомологическом ряду. При комнатной температуре он представляет собой газ без цвета и запаха. Химическая формула пропана – C3H8. Пожаро- и взрывоопасен. Обладает небольшой токсичностью. Он оказывает слабое воздействие на нервную систему и обладает наркотическими свойствами.
Строение
Пропан — это предельный углеводород, состоящий из трех атомов углерода. По этой причине он имеет изогнутую форму, но из-за постоянного вращения вокруг осей связей существует несколько молекулярных конформаций. Связи в молекуле ковалентные: С-С неполярные, C-H слабополярные. Из-за этого их сложно разорвать, а вещество довольно трудно вступает в химические реакции. Это и задает все химические свойства пропана. Изомеров у него нет. Молярная масса пропана – 44,1 г/моль.
Способы получения
В промышленности пропан почти не синтезируют искусственно. Его выделяют из природного газа и нефти с помощью перегонки. Для этого существуют специальные производственные установки.
В лаборатории пропан можно получить следующими химическими реакциями:
- Гидрирование пропена. Данная реакция идет только при повышении температуры и при наличии катализатора (Ni, Pt, Pd).
- Восстановление галогенидов алканов. Для разных галогенидов применяются разные реагенты и условия.
- Синтез Вюрца. Его суть в том, что две молекулы галогенаклкана связываются в одну, реагируя с щелочным металлом.
- Декарбоксилирование масляной кислоты и ее солей.
Физические свойства пропана
Как уже упоминалось, пропан — это газ без цвета и запаха. Он не растворяется в воде и других полярных растворителях. Зато растворяется в некоторых органических веществах (метанол, ацетон и другие). При – 42,1 °C сжижается, а при − 188 °C становится твердым. Огнеопасен, так как образует с воздухом легковоспламеняющиеся и взрывоопасные смеси.
Химические свойства пропана
Они представляют собой типичные свойства алканов.
- Каталитическое дегидрирование. Осуществляется при 575 °C с использованием катализатора оксида хрома (III) или оксида алюминия.
- Галогенирование. Для хлорирования и бромирования нужно ультрафиолетовое излучение или повышенная температура. Хлор преимущественно замещает крайний атом водорода, хотя в некоторых молекулах происходит замещение среднего. Повышение температуры может привести к увеличению доли выхода 2-хлорпропана. Хлорпропан может галогенироваться и дальше с образованием дихлорпропана, трихлорпропана и так далее.
Механизм реакций галогенирования — цепной. Под действием света или высокой температуры молекула галогена распадается на радикалы. Они вступают во взаимодействие с пропаном, отнимая у него атом водорода. В результате этого образуется свободный пропил. Он взаимодействует с молекулой галогена, вновь разбивая ее на радикалы.
Бромирование происходит по такому же механизму. Йодирование можно осуществлять только специальными йодсодержащими реагентами, так как пропан не взаимодействует с чистым йодом. При взаимодействии с фтором происходит взрыв, образуется полизамещенное производное пропана.
Нитрование может осуществятся разбавленной азотной кислотой (реакция Коновалова) или оксидом азота (IV) при повышенной температуре (130-150 °C).
Сульфоокисление и сульфохлорирование осуществляется при УФ-свете.
Реакция горения пропана: C3H8+ 5O2 → 3CO2 + 4H2O.
Можно провести и более мягкое окисление, используя определенные катализаторы. Реакция горения пропана будет другой. В этом случае получают пропанол, пропаналь или пропионовую кислоту. В качестве окислителей, кроме кислорода, могут использоваться перекиси (чаще всего перекись водорода), оксиды переходных металлов, соединения хрома (VI) и марганца (VII).
Пропан реагирует с серой с образованием изопропилсульфида. Для этого в качестве катализаторов используется тетрабромэтан и бромид алюминия. Реакция идет при 20 °C в течение двух часов. Выход реакции составляет 60 %.
С теми же катализаторами может реагировать с оксидом углерода (I) с образованием изопропилового эфира 2-метилпропановой кислоты. Реакционная смесь после реакции должна быть обработана изопропанолом. Итак, мы рассмотрели химические свойства пропана.
Применение
Из-за хорошей горючести пропан находит применение в быту и промышленности как топливо. Он может быть использован также в качестве горючего для автомобилей. Пропан горит с температурой почти 2000° C, поэтому его используют для сварки и резки металла. Пропановыми горелками разогревают битум и асфальт в дорожном строительстве. Но зачастую на рынке используется не чистый пропан, а его смесь с бутаном (пропан-бутан).
Как ни странно, но нашел он применение и в пищевой промышленности как добавка Е944. Благодаря своим химическим свойствам пропан используется там в качестве растворителя ароматизаторов, а также для обработки масел.
Смесь пропана и изобутана используется как хладагент R-290a. Он более эффективен, чем старые хладагенты, и также является экологически чистым, так как не разрушает озоновый слой.
Большое применение пропан нашел в органическом синтезе. Его используют для получения полипропилена и различного рода растворителей. В нефтепереработке его используют для деасфальтизации, то есть уменьшения доли тяжелых молекул в битумной смеси. Это необходимо для вторичного использования старого асфальта.
Источник