Какими химическими свойствами обладает литий

Какими химическими свойствами обладает литий thumbnail

[Deposit Photos]

Литий (Li) — химический элемент с порядковым номером «3» и атомной массой 6,941. Литий встречается в природе в виде двух стабильных нуклидов: 6Li (7,6% по массе) и 7Li (92,4%). В периодической таблице Менделеева литий расположен во втором периоде, первой группе. Элемент принадлежит к щелочным металлам. В соединениях литий проявляет степень окисления +1. В виде простого вещества литий — это пластичный легкий металл серебристого цвета.

[Deposit Photos]

Химические и физические характеристики лития

Литий — самый легкий из металлов. Имеет плотность 0,534 г/см³. Плавится при температуре 180,5 °С, кипит при температуре 1330 °С.

Литий очень активен. Вступает в реакцию с кислородом и азотом воздуха при нормальных условиях. По этой причине на воздухе литий быстро окисляется с образованием темного налета продуктов взаимодействия. Уравнения реакций:

4Li + O₂ = 2Li₂O;

6Li + N₂ = 2Li₃N.

Кусочки лития в масле

[Wikimedia]

Нажмите здесь, чтобы узнать больше о свойствах лития и других металлов.

Открытие лития и нахождение элемента в природе

Литий был открыт шведским ученым Арфведсоном в 1817 году. Сначала химик обнаружил элемент в минерале петалите, а затем — в сподумене и в лепидолите. Свое название металл получил из-за того, что был обнаружен в «камнях» (в переводе с греческого litos означает «камень»).

В 1818 году немецкий химик Гмелин впервые наблюдал характерное для солей лития пламя красного цвета. В 1821 году английскому химику Уильяму Томасу Бранду удалось выделить металл путем электролиза. В бóльших количествах литий смогли получить в 1855 году путем электролиза расплавленного хлорида. Уравнение реакции:

2Li­Cl = 2Li + Cl₂.

Литий распространен в земной коре, содержание металла в ней составляет примерно 3% по массе. Литий содержится в преимущественно в таких минералах: петалит, сподумен, лепидолит и амблигонит.

Лепидолит

[Deposit Photos]

В виде примеси литий содержится в некоторых породообразующих минералах и присутствует в минерализованных водах и рапе некоторых озер.

Литий: реакция с кислородом, применение металла

Щелочные металлы и их соединения широко используются в технике. Литий применяется в ядерной энергетике. В частности, изотоп 6Li служит промышленным источником для производства трития, а изотоп 7Li используется как теплоноситель. LiF используется при плавке алюминия. Литий и его соединения используются и в качестве добавок к ракетному топливу.

[Flickr, Creative commons by Steve Jurvetson is licensed under CC BY 2.0]

Смазки, содержащие соединения лития, сохраняют свои свойства при повышенных температурах. Гидроксид лития входит в состав электролита щелочных аккумуляторов, благодаря чему в два-три раза возрастает срок их службы. Применяется литий также в керамической, стекольной и других отраслях химической промышленности. В целом, по значимости в современной технике этот металл является одним из важнейших элементов.

Реакция лития с кислородом приводит к образованию оксида Li₂O — бесцветного кристаллического вещества, имеющего температуру плавления 1438 °С и температуру кипения — около 2600 °С. Оксид лития получается при непосредственном окислении металлического лития при температуре выше 200 °С, а также разложением гидроксида LiOH, нитрата LiNO₃, карбоната Li₂СO₃.

Оксид лития Li₂O легко взаимодействует с водой с образованием гидроксида, LiOH. Данная реакция сопровождается сильным разогревом; LiOH поглощает CO₂ из воздуха, образуя карбонат, Li₂­CO₃.

Источник

Характеристика, основные физические и химические свойства лития. Использование соединений лития в органическом синтезе и в качестве катализаторов. История открытия лития, способы получения, нахождение в природе, применение и особенности обращения.

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ РФ

Государственное образовательное учреждение

Среднего профессионального образования

Владимирский строительный колледж

Доклад

По теме: “Щелочные металлы. Литий”

Выполнил:

студент группы С-108

Катков Павел

Проверил:

преподаватель Шаврина Л.Е.

Владимир

2008

Li — Литий

ЛИТИЙ (лат. Lithium), Li, химический элемент с атомным номером 3, атомная масса 6,941. Химический символ Li читается так же, как и название самого элемента.

Литий встречается в природе в виде двух стабильных нуклидов 6Li (7,52% по массе) и 7Li (92,48%). В периодической системе Д. И. Менделеева литий расположен во втором периоде, группе IA и принадлежит к числу щелочных металлов. Конфигурация электронной оболочки нейтрального атома лития 1s22s1. В соединениях литий всегда проявляет степень окисления +1.

Металлический радиус атома лития 0,152 нм, радиус иона Li+ 0,078 нм. Энергии последовательной ионизации атома лития 5,39 и 75,6 эВ. Электроотрицательность по Полингу 0,98, самая большая у щелочных металлов.

В виде простого вещества литий — мягкий, пластичный, легкий, серебристый металл.

Физические и химические свойства: из металлов литий самый легкий, его плотность 0,534 г/см3. Температура плавления 180,5°C, температура кипения 1326°C. При температурах от -193°C до температуры плавления устойчива кубическая объемно центрированная модификация лития с параметром элементарной ячейки а = 0,350 нм.

Из-за небольшого радиуса и маленького ионного заряда литий по своим свойствам больше всего напоминает не другие щелочные металлы, а элемент группы IIA магний (Mg). Литий химически очень активен. Он способен взаимодействовать с кислородом (O) и азотом (N) воздуха при обычных условиях, поэтому на воздухе он быстро окисляется с образованием темного налета продуктов взаимодействия:

4Li + O2 = 2Li2O,

6Li + N2 = 2Li3N

При контактах с галогенами литий самовоспламеняется при обычных условиях. Подобно магнию (Mg), нагретый литий способен гореть в CO2:

4Li + CO2 = C + 2Li2O

Стандартный электродный потенциал Li/Li+ имеет наибольшее отрицательное значение (E°298 = -3,05 B) по сравнению со стандартными электродными потенциалами других металлов. Это обусловлено большой энергией гидратации маленького иона Li+, что значительно смещает равновесие в сторону ионизации металла:

Liтвердый <> Li+раствор + e

Для слабо сольватирующих растворителей значение электродного потенциала лития соответствует его меньшей химической активности в ряду щелочных металлов.

Соединения лития — соли — как правило, бесцветные кристаллические вещества. По химическому поведению соли лития несколько напоминают аналогичные соединения магния (Mg) или кальция (Ca). Плохо растворимы в воде фторид LiF, карбонат Li2CO3, фосфат Li2PO4, хорошо растворим хлорат лития LiClO3 — это, пожалуй, одно из самых хорошо растворимых соединения в неорганической химии (при 18°C в 100 г воды растворяется 313,5 г LiClO3).

Оксид лития Li2O — белое твердое вещество — представляет собой типичный щелочной оксид. Li2O активно реагирует с водой с образованием гидроксида лития LiOH.

Этот гидроксид получают электролизом водных растворов LiCl:

2LiCl + 2H2O = 2LiOH + Cl2 + H2

LiOH — сильное основание, но оно отличается по свойствам от гидроксидов других щелочных металлов. Гидроксид лития уступает им в растворимости. При прокаливании гидроксид лития теряет воду:

2LiOH = Li2O + H2O

Большое значение в синтезе органических и неорганических соединений имеет гидрид лития LiH, который образуется при взаимодействии расплавленного лития с водородом (H):

2Li + H2 = 2LiH

LiH — ионное соединение, строение кристаллической решетки которого похоже на строение кристаллической решетки хлорида натрия NaCl. Гидрид лития можно использовать в качестве источника водорода для наполнения аэростатов и спасательного снаряжения (надувных лодок и т.п.), так как при его гидролизе образуется большое количество водорода (1 кг LiH дает 2,8 м3 H2):

LiH + H2O = LiOH + H2

Он также находит применение при синтезе различных гидридов, например, борогидрида лития:

BCl3 + 4LiH = Li[BH4] + 3LiCl.

Литий образует соединения с частично ковалентной связью Li–C, т. е. литийорганические соединения. Например, при реакции иодбензола C6H5I с литием в органических растворителях протекает реакция:

C6H5I + 2Li = C6H5Li + LiI.

Литий-органические соединения широко используются в органическом синтезе и в качестве катализаторов.

История открытия: литий был открыт в 1817 году шведским химиком и минералогом А. Арфведсоном сначала в минерале петалите (Li,Na)[Si4AlO10], а затем в сподумене LiAl[Si2O6] и в лепидолите KLi1.5Al1.5[Si3AlO10](F,OH)2. Свое название получил из-за того, что был обнаружен в «камнях» (греч. Litos — камень). Характерное для соединений лития красное окрашивание пламени впервые наблюдал немецкий химик Х. Г. Гмелин в 1818 году. В этом же году английский химик Г. Дэви электролизом расплава гидроксида лития получил кусочек металла. Получить свободный металл в достаточных количествах удалось впервые только в 1855 году путем электролиза расплавленного хлорида:

2LiCl = 2Li + Cl2

Получение: в настоящее время для получения металлического лития его природные минералы или разлагают серной кислотой (кислотный способ), или спекают с CaO или CaCO3 (щелочной способ), или обрабатывают K2SO4 (солевой способ), а затем выщелачивают водой. В любом случае из полученного раствора выделяют плохо растворимый карбонат лития Li2CO3, который затем переводят в хлорид LiCl. Электролиз расплава хлорида лития проводят в смеси с KCl или BaCl2 (эти соли служат для понижения температуры плавления смеси). В дальнейшем полученный литий очищают методом вакуумной дистилляции.

Нахождение в природе: литий довольно широко распространен в земной коре, его содержание в ней составляет 6,5·10-3% по массе. Как уже упоминалось, основные минералы, содержащие литий, — это петалит (содержит 3,5-4,9 % Li2O), сподумен (6-7 % Li2O), лепидолит (4-6 % Li2O) и амблигонит LiAl[PO4] — 8-10 % Li2O. В виде примеси литий содержится в ряде породообразующих минералов, а также присутствует в рапе некоторых озер и в минерализованных водах. В морской воде содержится около 2·10-5 % лития.

Применение: из лития изготовляют аноды химических источников тока, работающих на основе неводных твердых электролитов. Жидкий литий может служить теплоносителем в ядерных реакторах. С использованием нуклида 6Li получают радиоактивный тритий 31H (Т):

63Li + 10n = 31H + 42He.

Литий и его соединения широко применяют в силикатной промышленности для изготовления специальных сортов стекла и покрытия фарфоровых изделий, в черной и цветной металлургии (для раскисления, повышения пластичности и прочности сплавов), для получения пластичных смазок. Соединения лития используются в текстильной промышленности (отбеливание тканей), пищевой (консервирование) и фармацевтической (изготовление косметики).

Биологическая роль: литий в незначительных количествах присутствует в живых организмах, но, по-видимому, не выполняет никаких биологических функций. Установлено его стимулирующее действие на некоторые процессы в растениях, способность повышать их устойчивость к заболеваниям.

В организме среднего человека (масса 70 кг) содержится около 0,7 мг лития. Токсическая доза 90-200 мг.

Особенности обращения с литием: как и другие щелочные металлы, металлический литий способен вызывать ожоги кожи и слизистых, особенно в присутствии влаги. Поэтому работать с ним можно только в защитной одежде и очках. Хранят литий в герметичной таре под слоем минерального масла. Отходы лития нельзя выбрасывать в мусор, для уничтожения их следует обработать этиловым спиртом:

2С2Н5ОН + 2Li = 2С2Н5ОLi + Н2

Образовавшийся этилат лития затем разлагают водой до спирта и гидроксида лития LiOH.

Источник

Литий, свойства атома, химические и физические свойства.

Какими химическими свойствами обладает литийКакими химическими свойствами обладает литийКакими химическими свойствами обладает литийКакими химическими свойствами обладает литийКакими химическими свойствами обладает литийКакими химическими свойствами обладает литийКакими химическими свойствами обладает литийКакими химическими свойствами обладает литийКакими химическими свойствами обладает литийКакими химическими свойствами обладает литий

Li 3  Литий

6,938-6,997*      1s2 2s1

Литий — элемент периодической системы химических элементов Д. И. Менделеева с атомным номером 3. Расположен в 1-й группе (по старой классификации — главной подгруппе первой группы), втором периоде периодической системы.

Атом и молекула лития. Формула лития. Строение атома лития

Изотопы и модификации лития

Свойства лития (таблица): температура, плотность и пр.

Физические свойства лития

Химические свойства лития. Взаимодействие лития. Химические реакции с литием

Получение лития

Применение лития

Таблица химических элементов Д.И. Менделеева

Атом и молекула лития. Формула лития. Строение атома лития:

Литий (Li, лат. lithium, c греч. λίθος – «камень») – химический элемент 1 груп­пы ко­рот­кой фор­мы (по старой классификации – главной подгруппы первой группы) периодической системы химических элементов второго периода системы химических элементов Д. И. Менделеева, с атомным номером 3.

Литий возглавляет группу щелочных металлов в периодической таблицы химических элементов Д. И. Менделеева.

Как простое вещество литий представляет собой мягкий щелочной металл серебристо-белого цвета.

Молекула лития одноатомна.

Химическая формула лития Li.

Электронная конфигурация атома лития 1s2 2s1. Потенциал ионизации (первый электрон) атома лития равен 5,39 эВ (519,9 кДж/моль).

Строение атома лития. Атом лития состоит из положительно заряженного ядра (+3), вокруг которого по атомным оболочкам (двум s-орбиталям) движутся три электрона. Поскольку литий расположен во втором периоде, оболочки всего две, одна из которых является внешней. При этом 2 электрона находятся на внутреннем уровне, а 1 электрон – на внешнем. Первая – внутренняя оболочка представлена s-орбиталью. Вторая – внешняя оболочка представлена s-орбиталью. На внешнем энергетическом уровне атома цезия на 2s-орбитали находятся один неспаренный электрон. Электроны, расположенные на внешней оболочке, называются валентными и участвуют в образовании химических связей. В свою очередь ядро атома лития состоит из трех протонов и четырех нейтронов. Литий относится к элементам s-семейства.

Радиус атома лития составляет 145 пм.

Атомная масса атома лития составляет 6,938-6,997 а. е. м. (г/моль).

Изотопы и модификации лития:

Свойства лития (таблица): температура, плотность и пр.:

Общие сведения 
НазваниеЛитий
Прежнее название
Латинское названиеLithium
СимволLi
Номер в таблице3
ТипМеталл
ПодтипЩелочной металл
ОткрытИоганн Аугуст Арфведсон, Швеция, 1817 г.
Внешний вид и пр.Очень лёгкий, очень мягкий металл серебристо-белого цвета
Содержание в атмосфере и воздухе (по массе)
Содержание в земной коре (по массе)0,0017 %
Содержание в морях и океанах (по массе)0,000018 %
Содержание во Вселенной и космосе (по массе)6,0×10-7 %
Содержание в Солнце (по массе)6,0×10-9 %
Содержание в организме человека (по массе)3,0×10-6 %
Свойства атома 
Атомная масса (молярная масса)*6,938-6,997 а. е. м. (г/моль)
Электронная конфигурация1s2 2s1
Радиус атома (вычисленный)167 пм
Эмпирический радиус152 пм
Ковалентный радиус****134 пм
Радиус иона76 (+1e) пм
Радиус Ван-дер-Ваальса182 пм
Химические свойства 
Степени окисления+1
ВалентностьI
Электроотрицательность0,98 (шкала Полинга)
Энергия ионизации (первый электрон)520,22 кДж/моль (5,39171495(4) эВ)
Электродный потенциал-3,06 В
Физические свойства
Плотность0,534 г/см3 (при 20 °C и при  нормальных условиях, состояние вещества – кристаллы, твердое тело),

0,507 г/см3 (при  нормальных условиях – при 200 °C, состояние вещества – жидкость),

0,49 г/см3 (при  нормальных условиях – при 400 °C, состояние вещества – жидкость),

0,474 г/см3 (при  нормальных условиях – при 600 °C, состояние вещества – жидкость),

0,457 г/см3 (при  нормальных условиях – при 800 °C, состояние вещества – жидкость),

0,441 г/см3 (при  нормальных условиях – при 1000 °C, состояние вещества – жидкость)

Температура плавления180,54 °C (453,69 K, 356,97 °F)
Температура кипения1330 °C (1603 K, 2426 °F)
Температура разложения
Температура самовоспламенения смеси газа с воздухом
Удельная теплота плавления (энтальпия плавления ΔHпл)3,00 кДж/моль
Удельная теплота испарения (энтальпия кипения ΔHкип)136  кДж/моль
Удельная теплоемкость при постоянном давлении3,4122 (при 25°C)
Молярная теплоёмкость24,86 Дж/(K·моль)
Молярный объём13,1 см³/моль
Теплопроводность (при нормальных условиях)84,8 Вт/(м·К)
Теплопроводность (при 300 K)84,8 Вт/(м·К)
Критическая температура2946,85 °C (3220 К, 5336,33 °F) (экстраполировано)
Критическое давление67 МПа (экстраполировано)
Критическая плотность
Тройная точка
Давление паров0,00776 мм.рт.ст. (при 527°C),
1 мм.рт.ст. (при 732°C),
5 мм.рт.ст. (при 828°C),
20 мм.рт.ст. (при 940°C),
40 мм.рт.ст. (при 1003°C),
60 мм.рт.ст. (при 1042°C),
100 мм.рт.ст. (при 1097°C),
200 мм.рт.ст. (при 1178°C),
400 мм.рт.ст. (при 1232°C)
Взрывоопасные концентрации смеси газа с воздухом, % объёмных
Взрывоопасные концентрации смеси газа с кислородом, % объёмных
Стандартная энтальпия образования ΔH0 кДж/моль (при 298 К, для состояния вещества – твердое тело),

2,4 кДж/моль (при 298 К, для состояния вещества – жидкость),

159,3 кДж/моль (при 298 К, для состояния вещества – газ)

Стандартная энергия Гиббса образования ΔG0 кДж/моль (при 298 К, для состояния вещества – твердое тело)
Стандартная энтропия вещества S29,1 Дж/(моль·K) (при 298 К, для состояния вещества – твердое тело),

34 Дж/(моль·K) (при 298 К, для состояния вещества – жидкость),

138,7 Дж/(моль·K) (при 298 К, для состояния вещества – газ)

Стандартная мольная теплоемкость Cp24,86 Дж/(моль·K) (при 298 К, для состояния вещества – твердое тело),

31,3 Дж/(моль·K) (при 298 К, для состояния вещества – жидкость),

20,79 Дж/(моль·K) (при 298 К, для состояния вещества – газ)

Энтальпия диссоциации ΔHдисс 
Диэлектрическая проницаемость
Магнетизмпарамагнитный материал
Магнитная восприимчивость+14.2·10−63/моль (при 298 K)
Электропроводность в твердой фазе1,7·107 См/м
Удельное электрическое сопротивление92,8 нОм·м (при 20 °C)
Сверхпроводимость при температуре
Твёрдость по Моосу0,6
Твёрдость по Бринеллю5 МПа
Твёрдость по Виккерсу
Скорость звука6000 м/с (при 20 °C) (в тонком стержне)
Поверхностное натяжение
Динамическая вязкость газов и жидкостей
Коэффициент теплового расширения46 мкм/(М·К)
Модуль Юнга4,9 ГПа
Модуль сдвига4,2 ГПа
Объемный модуль упругости11 ГПа
Коэффициент Пуассона
Структура решёткикубическая объёмноцентрированная
Параметры решётки3,490 Å
Отношение c/a
Температура Дебая400 K
Конденсат Бозе-Эйнштейна7Li
Двумерные материалы

Примечание:

* Указан диапазон значений атомной массы в связи с различной распространённостью изотопов данного элемента в природе.

**** Ковалентный радиус лития согласно https://en.wikipedia.org/wiki/Lithium [англ.] составляет 128±7 пм.

Физические свойства лития:

Литий представляет собой серебристо-белый металл, мягкий и пластичный, твёрже натрия, но мягче свинца. В связи с ем его можно обрабатывать прессованием и прокаткой.

При комнатной температуре металлический литий имеет кубическую объёмноцентрированную решётку (координационное число 8), пространственная группа I m3m, параметры ячейки a = 0,35021 нм, Z = 2.

Однако ниже 78 К устойчивой кристаллической формой является гексагональная плотноупакованная структура, в которой каждый атом лития имеет 12 ближайших соседних атома, расположенных в вершинах кубооктаэдра. Кристаллическая решётка относится к пространственной группе P 63/mmc, параметры a = 0,3111 нм, c = 0,5093 нм, Z = 2.

Литий – очень легкий металл.

Литий имеет самую низкую плотность при комнатной температуре среди всех металлов (0,534 г/см³, почти в два раза меньше плотности воды). Вследствие своей низкой плотности литий всплывает не только в воде, но и, например, в керосине.

Литий не растворяется в воде, но реагирует с ней. Литий плохо растворяется в органических растворителях, ртути. Растворяется в жидком аммиаке с образованием синего раствора с металлической проводимостью. Растворяется в расплавленном алюминии.

Расплавленный литий растворяет металлы и обезуглероживает стали, что приводит к изменению прочности конструкционных материалов. Расплавленный литий не растворяет инертные газы.

Пары лития имеют ярко-красный цвет.

Температура плавления лития (Li) составляет 180,54 °C.

Температура кипения лития (Li) составляет 1330 °C.

Из всех щелочных металлов литий характеризуется самыми высокими температурами плавления и кипения (180,54 и 1339,85 °C, соответственно).

Маленькие размеры атома лития приводят к появлению особых свойств металла. Например, он смешивается с натрием только при температуре ниже 380 °C и не смешивается с расплавленными калием, рубидием и цезием, в то время как другие пары щелочных металлов смешиваются друг с другом в любых соотношениях.

Теплопроводность лития при 300 K составляет 84,8 Вт/(м·К).

Химические свойства лития. Взаимодействие лития. Химические реакции с литием:

1. Реакция взаимодействия лития и кислорода:

4Li + O2 → 2Li2O (t > 200 °C).

Реакция взаимодействия лития и кислорода происходит с образованием оксида лития. В ходе реакции также образуется примесь – пероксид лития Li2O2.

2. Реакция взаимодействия лития и углерода:

2Li + 2C → Li2C2 (t°).

Реакция взаимодействия лития и углерода происходит с образованием ацетиленида лития.

3. Реакция взаимодействия лития и кремния:

4Li + Si → Li4Si (t = 600-700 °C).

Реакция взаимодействия кремния и лития происходит с образованием силицида лития.

4. Реакция взаимодействия лития и хлора:

2Li + Cl2 → 2LiCl.

Реакция взаимодействия лития и хлора происходит с образованием хлорида лития. Реакция протекает при комнатной температуре.

5. Реакция взаимодействия лития и водорода:

2Li + H2 → 2LiH (t = 500-700 °C).

Реакция взаимодействия лития и водорода происходит с образованием гидрида лития.

6. Реакция взаимодействия лития и брома:

2Li + Br2 → 2LiBr.

Реакция взаимодействия лития и брома происходит с образованием бромида лития. Реакция протекает при комнатной температуре.

7. Реакция взаимодействия лития и йода:

2Li + I2 → 2LiI (t > 200 °C).

Реакция взаимодействия йода и лития происходит с образованием йодида лития.

8. Реакция взаимодействия лития и фтора:

2Li + F2 → 2LiF.

Реакция взаимодействия фтора и лития происходит с образованием фторида лития. Реакция протекает при комнатной температуре.

Аналогичным образом литий вступает в реакции и с другими неметаллами: мышьяком, серой, азотом.

9. Реакция взаимодействия лития и сурьмы:

Sb + 3Li → Li3Sb (t°).

Реакция взаимодействия лития и сурьмы происходит с образованием стибида лития. Реакция протекает при сплавлении реакционной смеси.

10. Реакция взаимодействия лития, оксида азота (II) и оксида азота (IV):

Li2O + NO2 + NO → 2LiNO2 (t = 300 °C).

Реакция взаимодействия лития, оксида азота (II) и оксида азота (IV) происходит с образованием нитрита лития.

11. Реакция взаимодействия лития и воды:

2Li + 2H2O → 2LiOH + H2.

Реакция взаимодействия лития и воды происходит с образованием гидроксида лития и водорода. Реакция протекает бурно.

12. Реакция взаимодействия лития и оксида фосфора (V):

3P4O10 + 16Li → 10LiPO3 + 2Li3P (t = 300-400 °C).

Реакция взаимодействия оксида фосфора (V) и лития происходит с образованием метафосфата лития и фосфида лития.

13. Реакция взаимодействия лития и азотной кислоты:

Li + 2HNO3 → LiNO3 + NO2 + H2O,

3Li + 4HNO3 → 3LiNO3 + NO + 2H2O.

Реакция взаимодействия лития и азотной кислоты происходит с образованием в первом случае – нитрата лития, оксида азота (IV) и воды, во втором случае – нитрата лития, оксида азота (II) и воды. В ходе первой реакции используется концентрированный раствор азотной кислоты, в ходе второй – разбавленный раствор.

Аналогичные реакции протекают и с другими минеральными кислотами.

14. Реакция взаимодействия лития и сероводорода:

2Li + H2S → Li2S + H2.

Реакция взаимодействия лития и сероводорода происходит с образованием сульфида лития и водорода.

Аналогичные реакции протекают и с другими водородосодержащими соединениями: хлороводородом.

15. Реакция взаимодействия лития и этанола:

2Li + 2C2H5OH → 2C2H5OLi + H2.

Реакция взаимодействия лития и этанола происходит с образованием этанолята лития и водорода.

Получение лития:

Применение лития:

Таблица химических элементов Д.И. Менделеева

  1. 1. Водород
  2. 2. Гелий
  3. 3. Литий
  4. 4. Бериллий
  5. 5. Бор
  6. 6. Углерод
  7. 7. Азот
  8. 8. Кислород
  9. 9. Фтор
  10. 10. Неон
  11. 11. Натрий
  12. 12. Магний
  13. 13. Алюминий
  14. 14. Кремний
  15. 15. Фосфор
  16. 16. Сера
  17. 17. Хлор
  18. 18. Аргон
  19. 19. Калий
  20. 20. Кальций
  21. 21. Скандий
  22. 22. Титан
  23. 23. Ванадий
  24. 24. Хром
  25. 25. Марганец
  26. 26. Железо
  27. 27. Кобальт
  28. 28. Никель
  29. 29. Медь
  30. 30. Цинк
  31. 31. Галлий
  32. 32. Германий
  33. 33. Мышьяк
  34. 34. Селен
  35. 35. Бром
  36. 36. Криптон
  37. 37. Рубидий
  38. 38. Стронций
  39. 39. Иттрий
  40. 40. Цирконий
  41. 41. Ниобий
  42. 42. Молибден
  43. 43. Технеций
  44. 44. Рутений
  45. 45. Родий
  46. 46. Палладий
  47. 47. Серебро
  48. 48. Кадмий
  49. 49. Индий
  50. 50. Олово
  51. 51. Сурьма
  52. 52. Теллур
  53. 53. Йод
  54. 54. Ксенон
  55. 55. Цезий
  56. 56. Барий
  57. 57. Лантан
  58. 58. Церий
  59. 59. Празеодим
  60. 60. Неодим
  61. 61. Прометий
  62. 62. Самарий
  63. 63. Европий
  64. 64. Гадолиний
  65. 65. Тербий
  66. 66. Диспрозий
  67. 67. Гольмий
  68. 68. Эрбий
  69. 69. Тулий
  70. 70. Иттербий
  71. 71. Лютеций
  72. 72. Гафний
  73. 73. Тантал
  74. 74. Вольфрам
  75. 75. Рений
  76. 76. Осмий
  77. 77. Иридий
  78. 78. Платина
  79. 79. Золото
  80. 80. Ртуть
  81. 81. Таллий
  82. 82. Свинец
  83. 83. Висмут
  84. 84. Полоний
  85. 85. Астат
  86. 86. Радон
  87. 87. Франций
  88. 88. Радий
  89. 89. Актиний
  90. 90. Торий
  91. 91. Протактиний
  92. 92. Уран
  93. 93. Нептуний
  94. 94. Плутоний
  95. 95. Америций
  96. 96. Кюрий
  97. 97. Берклий
  98. 98. Калифорний
  99. 99. Эйнштейний
  100. 100. Фермий
  101. 101. Менделеевий
  102. 102. Нобелий
  103. 103. Лоуренсий
  104. 104. Резерфордий
  105. 105. Дубний
  106. 106. Сиборгий
  107. 107. Борий
  108. 108. Хассий
  109. 109. Мейтнерий
  110. 110. Дармштадтий
  111. 111. Рентгений
  112. 112. Коперниций
  113. 113. Нихоний
  114. 114. Флеровий
  115. 115. Московий
  116. 116. Ливерморий
  117. 117. Теннессин
  118. 118. Оганесон

Таблица химических элементов Д.И. Менделеева

Источник: https://ru.wikipedia.org/wiki/Литий, https://en.wikipedia.org/wiki/Lithium, https://de.wikipedia.org/wiki/Lithium, https://chemister.ru/Database/properties.php?dbid=1&id=213

Примечание: © Фото https://www.pexels.com, https://pixabay.com

карта сайта

литий атомная масса степень окисления валентность плотность температура кипения плавления физические химические свойства структура теплопроводность электропроводность кристаллическая решетка
атом нарисовать строение число протонов в ядре строение электронных оболочек электронная формула конфигурация схема строения электронной оболочки заряд ядра состав масса орбита уровни модель радиус энергия электрона переход скорость спектр длина волны молекулярная масса объем атома
электронные формулы сколько атомов в молекуле лития 
сколько электронов в атоме свойства металлические неметаллические термодинамические 

Коэффициент востребованности
733

Источник