Какими химическими свойствами обладает элемент номер 87

Какими химическими свойствами обладает элемент номер 87 thumbnail

Задача 777. 
Чем объяснить сходство химических свойств лантаноидов?
Решение:
Семейство лантаноидов (или лантанидов) состоит из четырнадцати f – элементов с порядковыми номерами от 58 до 71, сходны по своим химическим и физическим свойствам друг к другу.

Задача 777. 
Чем объяснить сходство химических свойств лантаноидов?
Решение:
Семейство лантаноидов (или лантанидов) состоит из четырнадцати f – элементов с порядковыми номерами от 58 до 71, сходны по своим химическим и физическим свойствам друг к другу. Сходство их химических свойств можно объяснить отсутствием у атомов существенных различий в структуре внешнего и предвнешнего электронных слоёв. Характерной особенностью построения электронных оболочек атомов лантаноидов является то, что при переходе к последующему f – элементу (от Ce до Lu) новый электрон занимает место не во внешнем (n = 5), а в ещё более глубоко расположенном третьем снаружи электронном  слое (n = 4). Заполнение 5d – подуровня, начатое у лантана, возобновляется у гафния (Z = 72)  и заканчивается у ртути (Z = 80).
Электронная структура атома церия может быть представлена формулой:

+58Сe1s22p63s23p63d104s24p64d104f25s25p65s2

Далее у каждого последующего лантаноида до иттербия (Z = 70) происходит заполнение f–подуровня очередным электроном, а у атома лютеция (Z = 71) появляется электрон на 5d-подуровне.

Задача 778. 
С каким элементом более сходен молибден по свойствам с селеном или с хромом? Чем это объясняется?
Решение:
Наружный электронный слой атома молибдена содержит один s – электрон, атом хрома тоже содержит один s – электрон на наружном электронном слое, а у атома селена содержится шесть электронов (два s – и четыре р – электрона). Содержание по одному электро-ну на внешнем электронном уровне у атомов молибдена и хрома, естественно, сходство их свойств (металлические свойства) и отличие этих элементов от элементов главной подгруппы VI-й группы, в том числе от селена. Электронная конфигурация атомов молибдена и хрома имеет вид: …nd5ns1, а атома селена: …ns2np4.

Максимальная степень окисления молибдена равна +6, так как, помимо наружных электронов, в образовании связей может участвовать ещё пять неспаренных электронов с 4d – подуровня, точно также проявляет себя и атом хрома. Молибден и хром образует связи, только отдавая электроны, в то время как атом селена образует связи за счёт s- и р – электронов. К тому же атом селена может проявлять степень окисления -2, т.е. проявляет себя как типичный неметалл.

Задача 779.
 Исходя из положения элементов в периодической системе, определить: а) у какого из гидроксидов — Sn(OH)2 или РЬ(ОН)2 более выражены основные свойства; б) какая из солей гидролизуется в большей степени: станнат натрия или плюмбат натрия; в) какой из оксидов является более сильным окислителем: SnO2 или РЬО2?
Решение:
а) Исходя из положения элементов в периодической системе, более выражены основные свойства у Pb(OH)2, чем у Sn(OH)2, так как в группах с ростом зарядов ядра атомов кислотные свойства гидроксидов уменьшается, а основные – усиливаются. Pb(OH)2, и Sn(OH)2 – амфотерные гидроксиды, но основные свойства более выражены у Pb(OH)2, чем у Sn(OH)2. 

б) Так как в группах с ростом заряда атомных ядер кислотные свойства гидроксидов уменьшаются, то кислота H2PbO3 будет слабее кислоты H2SnO3, поэтому плюмбат натрия гидролизуется в большей степени, чем станат натрия. Гидролиз Na2PbO3, как соли сильного основания и слабой кислоты протекает по аниону:

PbO32- + H2O ↔ HPbO3- + HO-

или в молекулярной форме:

Na2PbO3 + H2O ↔ NaHPO3 + NaOH

в) В группах с ростом зарядов атомов элементов окислительные свойства оксидов и гидроксидов уменьшаются, поэтому SnO2 более сильный окислитель, чем PbO2. 

Задача 780. Какими химическими свойствами обладает искусственно полученный элемент с порядковым номером 87? С каким из элементов периодической системы он наиболее сходен?
Решение:
Искусственно полученный элемент с порядковым номером 87 (франций) на внешнем электронном слое имеет один электрон (7s1). Имея на внешнем электронном слое только один электрон, находящийся на сравнительно большом удалении от ядра. Атом этого элемента довольно легко отдаёт свой единственный валентный электрон, т.е. характеризуется низкой энергией ионизации (I = 0,280 эВ). Образующийся  при этом однозарядный ион имеет устойчивую электронную структуру благородного газа (атома радона). Лёгкость отдачи внешнего электрона характеризует этот элемент как наиболее типичный представитель металлов. Подобное строение имеют щелочные металлы, из которых наиболее сходен с францием цезий.

Источник

Спи́сок хими́ческих элеме́нтов упорядочен в порядке возрастания атомных номеров с возможностью сортировки по другим параметрам. В таблице приводятся название химического элемента, используемый для его обозначения символ (признанный IUPAC, Международным союзом теоретической и прикладной химии), группа и период в Периодической системе химических элементов, относительная атомная масса элемента (с учётом их природной (процентной) распространённости в земной коре и атмосфере); а также плотность, температура плавления, температура кипения простого вещества, и год открытия, фамилия первооткрывателя. Цвета строк отвечают семействам элементов:

НазваниеСимволЛатинское названиеПериод,
группа
Атомная масса
(а.е.м.)
Плотность,
г/см³
(при 20 °C)
Температура плавления (°C)Температура кипения (°C)Год
открытия
Первооткрыватель
1ВодородHHydrogenium1, 11,00794 (7)[1][2][3]0,08988 г/л-259,1-252,91766Кавендиш
2ГелийHeHelium1, 184,002602 (2)[1][3]0,17 г/л-272,2 (при 2,5 МПа)-268,91895Локьер, Жансен (в спектре Солнца), Рамзай (на Земле)
3ЛитийLiLithium2, 16,941 (2)[1][2][3][4]0,53180,513171817Арфведсон
4БериллийBeBeryllium2, 29,012182 (3)1,85127829701797Воклен
5БорBBorum2, 1310,811 (7)[1][2][3]2,46230025501808Дэви и Гей-Люссак
6УглеродCCarboneum2, 1412,0107 (8)[1][3]3,5135504827доисторический периоднеизвестен
7АзотNNitrogenium2, 1514,0067 (2)[1][3]1,17 г/л-209,9-195,81772Резерфорд
8КислородOOxygenium2, 1615,9994 (3)[1][3]1,33 г/л-218,4-182,91774Пристли и Шееле
9ФторFFluorum2, 1718,9984032 (5)1,58 г/л-219,6-188,11886Муассан
10НеонNeNeon2, 1820,1797 (6)[1][2]0,84 г/л-248,7-246,11898Рамзай и Траверс
11НатрийNaNatrium3, 122,98976928 (2)0,9797,88921807Дэви
12МагнийMgMagnesium3, 224,3050 (6)1,74648,811071808Дэви
13АлюминийAlAluminium3, 1326,9815386 (8)2,70660,524671825Эрстед
14КремнийSiSilicium3, 1428,0855 (3)[3]2,33141023551824Берцелиус
15ФосфорPPhosphorus3, 1530,973762 (2)1,8244 (P4)280 (P4)1669Бранд
16СераSSulfur, Sulphur3, 1632,065 (5)[1][3]2,06113444,7доисторический периоднеизвестен
17ХлорClChlorum3, 1735,453 (2)[1][2][3]2,95 г/л-101-34,61774Шееле
18АргонArArgon3, 1839,948 (1)[1][3]1,66 г/л-189,4-185,91894Рамзай и Рэлей
19КалийKKalium, Calium4, 139,0983 (1)0,8663,77741807Дэви
20КальцийCaCalcium4, 240,078 (4)[1]1,5483914871808Дэви
21СкандийScScandium4, 344,955912 (6)2,99153928321879Нильсон
22ТитанTiTitanium4, 447,867 (1)4,51166032601791Грегор и Клапрот
23ВанадийVVanadium4, 550,9415 (1)6,09189033801801дель Рио
24ХромCrChromium4, 651,9961 (6)7,14185724821797Воклен
25МарганецMnManganum,
Manganesium
4, 754,938045 (5)7,44124420971774Ган
26ЖелезоFeFerrum4, 855,845 (2)7,8715352750доисторический периоднеизвестен
27КобальтCoCobaltum4, 958,933195 (5)8,89149528701735Брандт
28НикельNiNiccolum4, 1058,6934 (2)8,91145327321751Кронштедт
29МедьCuCuprum4, 1163,546 (3)[3]8,921083,52595доисторический периоднеизвестен
30ЦинкZnZincum4, 1265,409 (4)7,14419,6907доисторический период[источник не указан 1859 дней]неизвестен
31ГаллийGaGallium4, 1369,723 (1)5,9129,824031875де Буабодран
32ГерманийGeGermanium4, 1472,64 (1)5,32937,428301886Винклер
33МышьякAsArsenicum4, 1574,92160 (2)5,72613613
(subl.)
около 1250Альберт Великий
34СеленSeSelenium4, 1678,96 (3)[3]4,822176851817Берцелиус
35БромBrBromum4, 1779,904 (1)3,14-7,358,81826Балар
36КриптонKrKrypton, Crypton4, 1883,798 (2)[1][2]3,48 г/л-156,6-152,31898Рамзай и Траверс
37РубидийRbRubidium5, 185,4678 (3)[1]1,53396881861Бунзен и Кирхгоф
38СтронцийSrStrontium5, 287,62 (1)[1][3]2,6376913841790Кроуфорд
39ИттрийYYttrium5, 388,90585 (2)4,47152333371794Гадолин
40ЦирконийZrZirconium5, 491,224 (2)[1]6,51185243771789Клапрот
41НиобийNbNiobium5, 592,90638 (2)8,58246849271801Хэтчетт
42МолибденMoMolybdaenum5, 695,94 (2)[1]10,28261755601778Шееле
43ТехнецийTcTechnetium5, 7[98,9063][5]11,49217250301937Перрье и Сегре
44РутенийRuRuthenium5, 8101,07 (2)[1]12,45231039001844Клаус
45РодийRhRhodium5, 9102,90550 (2)12,41196637271803Волластон
46ПалладийPdPalladium5, 10106,42 (1)[1]12,02155231401803Волластон
47СереброAgArgentum5, 11107,8682 (2)[1]10,49961,92212доисторический периоднеизвестен
48КадмийCdCadmium5, 12112,411 (8)[1]8,643217651817Штромейер
49ИндийInIndium5, 13114,818 (3)7,31156,220801863Райх и Рихтер
50ОловоSnStannum5, 14118,710 (7)[1]7,292322270доисторический периоднеизвестен
51СурьмаSbStibium5, 15121,760 (1)[1]6,69630,71750доисторический периоднеизвестен
52ТеллурTeTellurium5, 16127,60 (3)[1]6,25449,69901782Франц Йозеф Мюллер
53ИодIIodium, Jodium5, 17126,90447 (3)4,94113,5184,41811Куртуа
54КсенонXeXenon5, 18131,293 (6)[1][2]4,49 г/л-111,9-1071898Рамзай и Траверс
55ЦезийCsCaesium6, 1132,9054519 (2)1,9028,46901860Бунзен и Кирхгоф
56БарийBaBarium6, 2137,327 (7)3,6572516401808Дэви
57ЛантанLaLanthanum6138,90547 (7)[1]6,1692034541839Мосандер
58ЦерийCeCerium6140,116 (1)[1]6,7779832571803фон Хисингер и Берцелиус
59ПразеодимPrPraseodymium6140,90765 (2)6,4893132121895Ауэр фон Вельсбах
60НеодимNdNeodymium6144,242 (3)[1]7,00101031271895Ауэр фон Вельсбах
61ПрометийPmPromethium6[146,9151][5]7,22108027301945Маринский и Гленденин
62СамарийSmSamarium6150,36 (2)[1]7,54107217781879де Буабодран
63ЕвропийEuEuropium6151,964 (1)[1]5,2582215971901Демарсе
64ГадолинийGdGadolinium6157,25 (3)[1]7,89131132331880де Мариньяк
65ТербийTbTerbium6158,92535 (2)8,25136030411843Мосандер
66ДиспрозийDyDysprosium6162,500 (1)[1]8,56140923351886де Буабодран
67ГольмийHoHolmium6164,93032 (2)8,78147027201878Соре
68ЭрбийErErbium6167,259 (3)[1]9,05152225101842Мосандер
69ТулийTmThulium6168,93421 (2)9,32154517271879Клеве
70ИттербийYbYtterbium6173,04 (3)[1]6,9782411931878де Мариньяк
71ЛютецийLuLutetium6, 3174,967 (1)[1]9,84165633151907Урбэн
72ГафнийHfHafnium6, 4178,49 (2)13,31215054001923Костер и де Хевеши
73ТанталTaTantalum6, 5180,9479 (1)16,68299654251802Экеберг
74ВольфрамWWolframium6, 6183,84 (1)19,26340759271783Элюяр
75РенийReRhenium6, 7186,207 (1)21,03318058731925Ноддак, Такке и Берг
76ОсмийOsOsmium6, 8190,23 (3)[1]22,61304550271803Теннант
77ИридийIrIridium6, 9192,217 (3)22,65241041301803Теннант
78ПлатинаPtPlatinum6, 10195,084 (9)21,45177238271557Скалигер
79ЗолотоAuAurum6, 11196,966569 (4)19,321064,42940доисторический периоднеизвестен
80РтутьHgHydrargyrum6, 12200,59 (2)13,55-38,9356,6доисторический периоднеизвестен
81ТаллийTlThallium6, 13204,3833 (2)11,85303,614571861Крукс
82СвинецPbPlumbum6, 14207,2 (1)[1][3]11,34327,51740доисторический периоднеизвестен
83ВисмутBiBismuthum6, 15208,98040 (1)9,80271,415601753Жоффруа
84ПолонийPoPolonium6, 16[208,9824][5]9,202549621898Мария и Пьер Кюри
85АстатAtAstatum6, 17[209,9871][5]3023371940Д. Р. Корсон, К. Р. Маккензи и Э. Сегре
86РадонRnRadon6, 18[222,0176][5]9,23 г/л-71-61,81900Дорн
87ФранцийFrFrancium7, 1[223,0197][5]1,87276771939Перей
88РадийRaRadium7, 2[226,0254][5]5,5070011401898Мария и Пьер Кюри
89АктинийAcActinium7[227,0278][5]10,07104731971899Дебьерн
90ТорийThThorium7232,03806 (2)[5][1]11,72175047871829Берцелиус
91ПротактинийPaProtactinium7231,03588 (2)[5]15,37155440301917Содди, Кранстон и Ган
92УранUUranium7238,02891 (3)[5][1][2]18,971132,438181789Клапрот
93НептунийNpNeptunium7[237,0482][5]20,4864039021940Макмиллан и Абелсон
94ПлутонийPuPlutonium7[244,0642][5]19,7464133271940Сиборг
95АмерицийAmAmericium7[243,0614][5]13,6799426071944Сиборг
96КюрийCmCurium7[247,0703][5]13,5113401944Сиборг
97БерклийBkBerkelium7[247,0703][5]13,259861949Сиборг
98КалифорнийCfCalifornium7[251,0796][5]15,19001950Сиборг
99ЭйнштейнийEsEinsteinium7[252,0829][5]13,58601952Сиборг
100ФермийFmFermium7[257,0951][5]1952Сиборг
101МенделевийMdMendelevium,
Mendeleevium
7[258,0986][5]1955Сиборг
102НобелийNoNobelium7[259,1009][5]1965Флёров
103ЛоуренсийLrLawrencium,
Laurentium
7, 3[266][5]1961Гиорсо
104РезерфордийRfRutherfordium7, 4[267][5]231964/69Флёров
105ДубнийDbDubnium7, 5[268][5]291967/70Флёров
106СиборгийSgSeaborgium7, 6[269][5]351974Флёров
107БорийBhBohrium7, 7[270][5]371976Оганесян
108ХассийHsHassium7, 8[277][5]1984GSI (*)
109МейтнерийMtMeitnerium7, 9[278][5]37,41982GSI
110ДармштадтийDsDarmstadtium7, 10[281][5]1994GSI
111РентгенийRgRoentgenium7, 11[282][5]1994GSI
112КоперницийCnCopernicium7, 12[285][5]1996GSI
113НихонийNhNihonium7, 13[286][5]2004ОИЯИ (*), LLNL (*)
114ФлеровийFlFlerovium7, 14[289][5]1999ОИЯИ
115МосковийMcMoscovium7, 15[290][5]2004ОИЯИ, LLNL
116ЛиверморийLvLivermorium7, 16[293][5]2000ОИЯИ, LLNL
117ТеннессинTsTennessine7, 17[294][5]2010ОИЯИ
118ОганесонOgOganesson7, 18[294][5]2004ОИЯИ
119УнуненнийUue Ununennium
120УнбинилийUbn Unbinilium
121УнбиунийUbu Unbiunium
122УнбибийUbb Unbibium
123УнбитрийUbt Unbitrium
124УнбиквадийUbq Unbiquadium
125УнбипентийUbp Unbipentium
126Унбигексий Ubh Unbihexium
127УнбисептийUbs Unbiseptium

Дальше — смотрите по атомному номеру… Расширенная периодическая таблица элементов.

Аббревиатуры[править | править код]

  • GSI — Gesellschaft für Schwerionenforschung (Институт тяжёлых ионов), Виксхаузен, Дармштадт, Германия.
  • ОИЯИ — Объединённый институт ядерных исследований, Дубна, Московская область, Россия (JINR, Joint Institute for Nuclear Research).
  • LLNL — Lawrence Livermore National Laboratory (Ливерморская национальная лаборатория им. Э. Лоуренса), Ливермор, Калифорния, США.
  • LBNL — Lawrence Berkeley National Laboratory (Национальная лаборатория имени Лоуренса в Беркли), Беркли, Калифорния, США.

Примечания[править | править код]

  1. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 Изотопный состав этого элемента различается в различных геологических образцах, и отклонения могут превышать указанную в таблице погрешность.
  2. 1 2 3 4 5 6 7 8 Изотопный состав элемента может различаться в различных продажных материалах, что может приводить к существенным отклонениям от приведённых значений.
  3. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Изотопный состав различается в земных материалах настолько, что более точный атомный вес не может быть приведён.
  4. ↑ Атомный вес продажного лития может варьироваться между 6,939 и 6,996, для получения более точного значения необходим анализ конкретного материала.
  5. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 Данный элемент не имеет стабильных изотопов, и значение в скобках, например, [209], обозначает массовое число наиболее долгоживущего изотопа элемента или характерный изотопный состав.

Ссылки[править | править код]

  • Atomic Weights of the Elements 2001, Pure Appl. Chem. 75(8), 1107—1122, 2003. Retrieved June 30, 2005. Atomic weights of elements with atomic numbers from 1-109 taken from this source.
  • IUPAC Standard Atomic Weights Revised (2005).
  • WebElements Periodic Table. Retrieved June 30, 2005. Atomic weights of elements with atomic numbers 110—116 taken from this source.
  • M. E. Wieser. Atomic weights of the elements 2005 (IUPAC Technical Report) (англ.) // Pure Appl. Chem. : journal. — IUPAC, 2006. — Vol. 78, no. 11. — P. 2051—2066. — doi:10.1351/pac200678112051. (for atomic weights of elements with atomic numbers from 1-102)
  • M. E. Wieser. IUPAC Standard Atomic Weights Revised (2007). IUPAC (2007). Дата обращения 7 июля 2008. Архивировано 5 января 2013 года.
  • Atomic weights of the elements 2009 (IUPAC Technical Report). IUPAC (2010). Дата обращения 10 февраля 2012. Архивировано 5 января 2013 года.
  • Sonzogni, Alejandro. Interactive Chart of Nuclides. National Nuclear Data Center: Brookhaven National Laboratory. Дата обращения 6 июня 2008. Архивировано 5 января 2013 года. (for atomic weights of elements with atomic numbers 103—118)

Источник

Еще в школе, сидя на уроках химии, все мы помним таблицу на стене класса или химической лаборатории. Эта таблица содержала классификацию всех известных человечеству химических элементов, тех фундаментальных компонентов, из которых состоит Земля и вся Вселенная. Тогда мы и подумать не могли, что таблица Менделеева бесспорно является одним из величайших научных открытий, который является фундаментом нашего современного знания о химии.

Периодическая система химических элементов Д. И. Менделеева

На первый взгляд, ее идея выглядит обманчиво просто: организовать химические элементы в порядке возрастания веса их атомов. Причем в большинстве случаев оказывается, что химические и физические свойства каждого элемента сходны с предыдущим ему в таблице элементом. Эта закономерность проявляется для всех элементов, кроме нескольких самых первых, просто потому что они не имеют перед собой элементов, сходных с ними по атомному весу. Именно благодаря открытию такого свойства мы можем поместить линейную последовательность элементов в таблицу, очень напоминающую настенный календарь, и таким образом объединить огромное количество видов химических элементов в четкой и связной форме. Разумеется, сегодня мы пользуемся понятием атомного числа (количества протонов) для того, чтобы упорядочить систему элементов. Это помогло решить так называемую техническую проблему «пары перестановок», однако не привело к кардинальному изменению вида периодической таблицы.

В периодической таблице Менделеева все элементы упорядочены с учетом их атомного числа, электронной конфигурации и повторяющихся химических свойств. Ряды в таблице называются периодами, а столбцы группами. В первой таблице, датируемой 1869 годом, содержалось всего 60 элементов, теперь же таблицу пришлось увеличить, чтобы поместить 118 элементов, известных нам сегодня.

Периодическая система Менделеева систематизирует не только элементы, но и самые разнообразные их свойства. Химику часто бывает достаточно иметь перед глазами Периодическую таблицу для того, чтобы правильно ответить на множество вопросов (не только экзаменационных, но и научных).

The YouTube ID of 1M7iKKVnPJE is invalid.

Периодический закон

Существуют две формулировки периодического закона химических элементов: классическая и современная.

Классическая, в изложении его первооткрывателя Д.И. Менделеева: свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величин атомных весов элементов.

Современная: свойства простых веществ, а также свойства и формы соединений элементов находятся в периодической зависимости от заряда ядра атомов элементов (порядкового номера).

Графическим изображением периодического закона является периодическая система элементов, которая представляет собой естественную классификацию химических элементов, основанную на закономерных изменениях свойств элементов от зарядов их атомов. Наиболее распространёнными изображениями периодической системы элементов Д.И. Менделеева являются короткая и длинная формы.

Группы и периоды Периодической системы

Группами называют вертикальные ряды в периодической системе. В группах элементы объединены по признаку высшей степени окисления в оксидах. Каждая группа состоит из главной и побочной подгрупп. Главные подгруппы включают в себя элементы малых периодов и одинаковые с ним по свойствам элементы больших периодов. Побочные подгруппы состоят только из элементов больших периодов. Химические свойства элементов главных и побочных подгрупп значительно различаются.

Периодом называют горизонтальный ряд элементов, расположенных в порядке возрастания порядковых (атомных) номеров. В периодической системе имеются семь периодов: первый, второй и третий периоды называют малыми, в них содержится соответственно 2, 8 и 8 элементов; остальные периоды называют большими: в четвёртом и пятом периодах расположены по 18 элементов, в шестом — 32, а в седьмом (пока незавершенном) — 31 элемент. Каждый период, кроме первого, начинается щелочным металлом, а заканчивается благородным газом.

Физический смысл порядкового номера химического элемента: число протонов в атомном ядре и число электронов, вращающихся вокруг атомного ядра, равны порядковому номеру элемента.

Свойства таблицы Менделеева

Напомним, что группами называют вертикальные ряды в периодической системе и химические свойства элементов главных и побочных подгрупп значительно различаются.

Свойства элементов в подгруппах закономерно изменяются сверху вниз:

  • усиливаются металлические свойства и ослабевают неметаллические;
  • возрастает атомный радиус;
  • возрастает сила образованных элементом оснований и бескислородных кислот;
  • электроотрицательность падает.

Все элементы, кроме гелия, неона и аргона, образуют кислородные соединения, существует всего восемь форм кислородных соединений. В периодической системе их часто изображают общими формулами, расположенными под каждой группой в порядке возрастания степени окисления элементов: R2O, RO, R2O3, RO2, R2O5, RO3, R2O7, RO4, где символом R обозначают элемент данной группы. Формулы высших оксидов относятся ко всем элементам группы, кроме исключительных случаев, когда элементы не проявляют степени окисления, равной номеру группы (например, фтор).

Оксиды состава R2O проявляют сильные основные свойства, причём их основность возрастает с увеличением порядкового номера, оксиды состава RO (за исключением BeO) проявляют основные свойства. Оксиды состава RO2, R2O5, RO3, R2O7 проявляют кислотные свойства, причём их кислотность возрастает с увеличением порядкового номера.

Элементы главных подгрупп, начиная с IV группы, образуют газообразные водородные соединения. Существуют четыре формы таких соединений. Их располагают под элементами главных подгрупп и изображают общими формулами в последовательности RH4, RH3, RH2, RH.

Соединения RH4 имеют нейтральный характер; RH3 — слабоосновный; RH2 — слабокислый; RH — сильнокислый характер.

Напомним, что периодом называют горизонтальный ряд элементов, расположенных в порядке возрастания порядковых (атомных) номеров.

В пределах периода с увеличением порядкового номера элемента:

  • электроотрицательность возрастает;
  • металлические свойства убывают, неметаллические возрастают;
  • атомный радиус падает.

Элементы таблицы Менделеева

Щелочные и щелочноземельные элементы

К ним относятся элементы из первой и второй группы периодической таблицы. Щелочные металлы из первой группы — мягкие металлы, серебристого цвета, хорошо режутся ножом. Все они обладают одним-единственным электроном на внешней оболочке и прекрасно вступают в реакцию. Щелочноземельные металлы из второй группы также имеют серебристый оттенок. На внешнем уровне помещено по два электрона, и, соответственно, эти металлы менее охотно взаимодействуют с другими элементами. По сравнению со щелочными металлами, щелочноземельные металлы плавятся и кипят при более высоких температурах.

Показать / Скрыть текст

Щелочные металлыЩелочноземельные металлы
Литий Li 3Бериллий Be 4
Натрий Na 11Магний Mg 12
Калий K 19Кальций Ca 20
Рубидий Rb 37Стронций Sr 38
Цезий Cs 55Барий Ba 56
Франций Fr 87Радий Ra 88

Лантаниды (редкоземельные элементы) и актиниды

Лантаниды — это группа элементов, изначально обнаруженных в редко встречающихся минералах; отсюда их название «редкоземельные» элементы. Впоследствии выяснилось, что данные элементы не столь редки, как думали вначале, и поэтому редкоземельным элементам было присвоено название лантаниды. Лантаниды и актиниды занимают два блока, которые расположены под основной таблицей элементов. Обе группы включают в себя металлы; все лантаниды (за исключением прометия) нерадиоактивны; актиниды, напротив, радиоактивны.

Показать / Скрыть текст

ЛантанидыАктиниды
Лантан La 57Актиний Ac 89
Церий Ce 58Торий Th 90
Празеодимий Pr 59Протактиний Pa 91
Неодимий Nd 60Уран U 92
Прометий Pm 61Нептуний Np 93
Самарий Sm 62Плутоний Pu 94
Европий Eu 63Америций Am 95
Гадолиний Gd 64Кюрий Cm 96
Тербий Tb 65Берклий Bk 97
Диспрозий Dy 66Калифорний Cf 98
Гольмий Ho 67Эйнштейний Es 99
Эрбий Er 68Фермий Fm 100
Тулий Tm 69Менделевий Md 101
Иттербий Yb 70Нобелий No 102

Галогены и благородные газы

Галогены и благородные газы объединены в группы 17 и 18 периодической таблицы. Галогены представляют собой неметаллические элементы, все они имеют семь электронов во внешней оболочке. В благородных газахвсе электроны находятся во внешней оболочке, таким образом с трудом участвуют в образовании соединений. Эти газы называют «благородными, потому что они редко вступают в реакцию с прочими элементами; т. е. ссылаются на представителей благородной касты, которые традиционно сторонились других людей в обществе.

Показать / Скрыть текст

ГалогеныБлагородные газы
Фтор F 9Гелий He 2
Хлор Cl 17Неон Ne 10
Бром Br 35Аргон Ar 18
Йод I 53Криптон Kr 36
Астат At 85Ксенон Xe 54
 —Радон Rn 86

Переходные металлы

Переходные металлы занимают группы 3—12 в периодической таблице. Большинство из них плотные, твердые, с хорошей электро- и теплопроводностью. Их валентные электроны (при помощи которых они соединяются с другими элементами) находятся в нескольких электронных оболочках.

Показать / Скрыть текст

Переходные металлы
Скандий Sc 21
Титан Ti 22
Ванадий V 23
Хром Cr 24
Марганец Mn 25
Железо Fe 26
Кобальт Co 27
Никель Ni 28
Медь Cu 29
Цинк Zn 30
Иттрий Y 39
Цирконий Zr 40
Ниобий Nb 41
Молибден Mo 42
Технеций Tc 43
Рутений Ru 44
Родий Rh 45
Палладий Pd 46
Серебро Ag 47
Кадмий Cd 48
Лютеций Lu 71
Гафний Hf 72
Тантал Ta 73
Вольфрам W 74
Рений Re 75
Осмий Os 76
Иридий Ir 77
Платина Pt 78
Золото Au 79
Ртуть Hg 80
Лоуренсий Lr 103
Резерфордий Rf 104
Дубний Db 105
Сиборгий Sg 106
Борий Bh 107
Хассий Hs 108
Мейтнерий Mt 109
Дармштадтий Ds 110
Рентгений Rg 111
Коперниций Cn 112

Металлоиды

Металлоиды занимают группы 13—16 периодической таблицы. Такие металлоиды, как бор, германий и кремний, являются полупроводниками и используются для изготовления компьютерных чипов и плат.

Показать / Скрыть текст

Металлоиды
Бор B 5
Кремний Si 14
Германий Ge 32
Мышьяк As 33
Сурьма Sb 51
Теллур Te 52
Полоний Po 84

Постпереходными металлами

Элементы, называемые постпереходными металлами, относятся к группам 13—15 периодической таблицы. В отличие от металлов, они не имеют блеска, а имеют матовую окраску. В сравнении с переходными металлами постпереходные металлы более мягкие, имеют более низкую температуру плавления и кипения, более высокую электроотрицательность. Их валентные электроны, с помощью которых они присоединяют другие элементы, располагаются только на внешней электронной оболочке. Элементы группы постпереходных металлов имеют гораздо более высокую температуру кипения, чем металлоиды.

Показать / Скрыть текст

Постпереходные металлы
Алюминий Al 13
Галлий Ga 31
Индий In 49
Олово Sn 50
Таллий Tl 81
Свинец Pb 82
Висмут Bi 83

Неметаллы

Из всех элементов, классифицируемых как неметаллы, водород относится к 1-й группе периодической таблицы, а остальные — к группам 13—18. Неметаллы не являются хорошими проводниками тепла и электричества. Обычно при комнатной температуре они пребывают в газообразном (водород или кислород) или твердом состоянии (углерод).

Показать / Скрыть текст

Неметаллы
Водород H 1
Углерод C 6
Азот N 7
Кислород O 8
Фосфор P 15
Сера S 16
Селен Se 34
Флеровий Fl 114
Унунсептий Uus 117

А теперь закрепите полученные знания, посмотрев видео про таблицу Менделеева и не только.