Каким замечательным свойством обладают медианы треугольника

Каким замечательным свойством обладают медианы треугольника thumbnail

У этого термина существуют и другие значения, см. Медиана.

Треугольник и его медианы.

Медиа́на треуго́льника (лат. mediāna — средняя) ― отрезок, соединяющий вершину треугольника с серединой противоположной стороны. Иногда медианой называют также прямую, содержащую этот отрезок. Точка пересечения медианы со стороной треугольника называется основанием медианы.

Связанные определения[править | править код]

Три медианы, проходящие через общую точку

На рис. справа в треугольнике ABC через точку O проведены 3 медианы: AD, BE и CF. Тогда точка O пересечения 3 медиан разбивает каждую медиану на 2 отрезка прямых, один из них (который начинается в вершине, а заканчивается в точке пересечения O) мы назовем домедианой или предмедианой, а второй из них (который начинается в точке пересечения O, а заканчивается в точке его пересечения со стороной, противоположной вершине) мы назовем постмедианой.[1]
С помощью этих 2 понятий совсем просто формулируются некоторые теоремы геометрии. Например, в любом треугольнике отношение пред- и постмедианы равно двум.

Свойства[править | править код]

Основное свойство[править | править код]

Все три медианы треугольника пересекаются в одной точке, которая называется центроидом или центром тяжести треугольника, и делятся этой точкой на две части в отношении 2:1, считая от вершины.

Свойства медиан равнобедренного треугольника[править | править код]

В равнобедренном треугольнике две медианы, проведенные к равным сторонам треугольника, равны, а третья медиана одновременно является биссектрисой и высотой. Верно и обратное: если в треугольнике две медианы равны, то треугольник — равнобедренный, а третья медиана одновременно является биссектрисой и высотой угла при своей вершине.

У равностороннего треугольника все три медианы равны.

Свойства оснований медиан[править | править код]

  • Теорема Эйлера для окружности девяти точек: основания трёх высот произвольного треугольника, середины трёх его сторон (основания его медиан) и середины трёх отрезков, соединяющих его вершины с ортоцентром, все лежат на одной окружности (так называемой окружности девяти точек).
  • Отрезок, проведенный через основания двух любых медиан треугольника, является его средней линией. Средняя линия треугольника всегда параллельна той стороне треугольника, с которой она не имеет общих точек.
    • Следствие (теорема Фалеса о параллельных отрезках). Средняя линия треугольника равна половине длины той стороны треугольника, которой она параллельна.
  • Теркем доказал теорему Теркема.[2] Она утверждает, что если окружность девяти точек пересекает стороны треугольника или их продолжения в 3 парах точек (в 3 основаниях соответственно высот и медиан), являющихся основаниями 3 пар чевиан, то, если 3 чевианы для 3 из этих оснований пересекаются в 1 точке (например 3 медианы пересекаются в 1 точке), то 3 чевианы для 3 других оснований также пересекаются в 1 точке (т. е. 3 высоты также обязаны пересечься в 1 точке).

Другие свойства[править | править код]

  • Если треугольник разносторонний (неравносторонний), то его биссектриса, проведённая из любой вершины, лежит между медианой и высотой, проведёнными из той же вершины.
  • Медиана разбивает треугольник на два равновеликих (по площади) треугольника.
  • Треугольник делится тремя медианами на шесть равновеликих треугольников. Центры описанных окружностей этих шести треугольников лежат на одной окружности, которая называется окружностью Ламуна.
  • Из отрезков, образующих медианы, можно составить треугольник, площадь которого будет равна 3/4 от всего треугольника. Длины медиан удовлетворяют неравенству треугольника.
  • В прямоугольном треугольнике медиана, проведённая из вершины с прямым углом, равняется половине гипотенузы.
  • Большей стороне треугольника соответствует меньшая медиана.
  • Отрезок прямой, симметричный или изогонально сопряжённый внутренней медиане относительно внутренней биссектрисы, называется симедианой треугольника. Три симедианы проходят через одну точку — точку Лемуана.
  • Медиана угла треугольника изотомически сопряжена самой себе.

Бесконечно удаленная прямая — трилинейная поляра центроида

  • Трилинейная поляра центроида (точки пересечения трех медиан) — бесконечно удаленная прямая (см. рис.).

Основные соотношения[править | править код]

Чтобы вычислить длину медианы, когда известны длины сторон треугольника, применяется теорема Аполлония (выводится через теорему Стюарта или достроением до параллелограмма и использованием равенства в параллелограмме суммы квадратов сторон и суммы квадратов диагоналей):

где  — медианы к сторонам треугольника соответственно.

В частности, сумма квадратов медиан произвольного треугольника составляет 3/4 от суммы квадратов его сторон:

.

Обратно, можно выразить длину произвольной стороны треугольника через медианы:

где  — медианы к соответствующим сторонам треугольника,  — стороны треугольника.

Площадь любого треугольника, выраженная через длины его медиан:

где  — полусумма длин медиан.

См. также[править | править код]

  • Биссектриса
  • Высота треугольника
  • Инцентр
  • Симедиана
  • Центроид
  • Чевиана

Примечания[править | править код]

Литература[править | править код]

  • Ефремов Дм. Новая геометрия треугольника, 1902 год.

Источник

Высоты, медианы и биссектрисы треугольника постоянно встречаются нам в задачах по геометрии. Мы начнем с таблицы, в которой показано, что такое высоты, медианы и биссектрисы, и какими свойствами они обладают. Затем — подробные объяснения и решение задач.

Высоты, медианы, биссектрисы треугольника

Напомним, что высота треугольника — это перпендикуляр, опущенный из его вершины на противоположную сторону.

Высота в треугольнике

Три высоты треугольника всегда пересекаются в одной точке. Вот как это выглядит в случае остроугольного треугольника.

Высоты в остроугольном треугольнике

Попробуйте провести три высоты в тупоугольном треугольнике. Получилось? Да, редкий выпускник справляется с этим заданием. Действительно, мы не можем опустить перпендикуляр из точки  на отрезок , зато можем опустить его на прямую  — то есть на продолжение стороны .

Высота в тупоугольном треугольнике

В этом случае в одной точке пересекаются не сами высоты, а их продолжения.

Высоты в тупоугольном треугольнике

А как выглядят три высоты в прямоугольном треугольнике? В какой точке они пересекаются?

Медиана треугольника — отрезок, соединяющий его вершину с серединой противоположной стороны.

Три медианы треугольника пересекаются в одной точке и делятся в ней в отношении , считая от вершины.

Свойство медианы

Биссектриса треугольника — отрезок, соединяющий вершину треугольника с точкой на противоположной стороне и делящий угол треугольника пополам.

У биссектрисы угла есть замечательное свойство — точки, принадлежащие ей, равноудалены от сторон угла. Поэтому три биссектрисы треугольника пересекаются в одной точке, равноудаленной от всех сторон треугольника. Эта точка является центром окружности, вписанной в треугольник.

Еще одно свойство биссектрисы пригодится тем, кто собирается решать задачу . Биссектриса треугольника делит противоположную сторону в отношении длин прилежащих сторон.

Свойство биссектрисы

Разберем несколько задач, в которых речь идет о высотах, медианах и биссектрисах треугольника. Все задачи взяты из Банка заданий ФИПИ.

1. Найдите острый угол между биссектрисами острых углов прямоугольного треугольника. Ответ дайте в градусах.

Рисунок к задаче 1

Пусть биссектрисы треугольника (в котором угол  равен ) пересекаются в точке .

Рассмотрим треугольник .

,

, тогда

Острый угол между биссектрисами на рисунке обозначен .

Угол  смежный с углом , следовательно, .

Поскольку треугольник  — прямоугольный, то .

Тогда .

Ответ: .

2. Острые углы прямоугольного треугольника равны и . Найдите угол между высотой и биссектрисой, проведенными из вершины прямого угла. Ответ дайте в градусах.

Рисунок к задаче 2

Пусть  — высота, проведенная из вершины прямого угла ,  — биссектриса угла .

Тогда

.

Угол между высотой и биссектрисой — это угол .

Ответ: .

3. Два угла треугольника равны и . Найдите тупой угол, который образуют высоты треугольника, выходящие из вершин этих углов. Ответ дайте в градусах.

Рисунок к задаче 3

Из треугольника (угол  — прямой) найдем угол . Он равен .

Из треугольника ( — прямой) найдем угол . Он равен .

В треугольнике известны два угла. Найдем третий, то есть угол , который и является тупым углом между высотами треугольника :

.

Ответ: .

4. В треугольнике угол  равен ,  и  — биссектрисы, пересекающиеся в точке . Найдите угол . Ответ дайте в градусах.

Рисунок к задаче 4

Пусть в треугольнике угол равен , угол равен .

Рассмотрим треугольник .

, тогда .

Из треугольника получим, что .

Тогда .

Ответ: .

5. В треугольнике угол  равен , угол  равен . , и  — биссектрисы, пересекающиеся в точке . Найдите угол . Ответ дайте в градусах.

Рисунок к задаче 5

Найдем угол . Он равен .

Тогда .

Из треугольника найдем угол . Он равен .

Рассмотрим треугольник .

, . Значит

Ответ: .

6. В треугольнике ,  — медиана, угол равен , угол  равен . Найдите угол . Ответ дайте в градусах.

Как решать эту задачу? У медианы прямоугольного треугольника, проведенной из вершины прямого угла, есть особое свойство. Мы докажем его в теме «Прямоугольник и его свойства».

Подсказка: Сделайте чертеж, найдите на нем равнобедренные треугольники и докажите, что они равнобедренные.

Правильный ответ: .

Источник

      Определение. Медианой треугольника называют отрезок, соединяющий вершину треугольника с серединой противоположной стороны (рис 1).

Медиана треугольника свойства формулы длина медианы

Рис.1

      Поскольку в каждом треугольнике имеется три вершины, то в каждом треугольнике можно провести три медианы.

      На рисунке 1 медианой является отрезок BD.

      Утверждение 1. Медиана треугольника делит его на два треугольника равной площади (равновеликих треугольника).

      Доказательство. Проведем из вершины B треугольника ABC медиану BD и высоту BE (рис. 2),

Медиана треугольника свойства формулы длина медианы

Рис.2

и заметим, что (см. раздел нашего справочника «Площадь треугольника»)

      Поскольку отрезок BD является медианой, то

что и требовалось доказать.

      Утверждение 2. Точка пересечения двух любых медиан треугольника делит каждую из этих медиан в отношении 2 : 1, считая от вершины треугольника.

      Доказательство. Рассмотрим две любых медианы треугольника, например, медианы AD и CE, и обозначим точку их пересечения буквой O (рис. 3).

Медиана треугольника свойства формулы длина медианы

Рис.3

      Обозначим середины отрезков AO и CO буквами F и G соответственно (рис. 4).

Медиана треугольника свойства формулы длина медианы

Рис.4

      Теперь рассмотрим четырёхугольник FEDG (рис. 5).

Медиана треугольника свойства формулы длина медианы

Рис.5

      Сторона ED этого четырёхугольника является средней линией в треугольнике ABC. Следовательно,

      Сторона FG четырёхугольника FEDG является средней линией в треугольнике AOC. Следовательно,

откуда вытекает, что стороны ED и FG четырёхугольника FEDG равны и параллельны. Следовательно, четырехугольник FEDG является параллелограммомСледовательно, четырехугольник FEDG является параллелограммомСледовательно, четырехугольник FEDG является параллелограммом, а у параллелограмма диагонали в точке пересечения делятся пополаму параллелограмма диагонали в точке пересечения делятся пополаму параллелограмма диагонали в точке пересечения делятся пополам (рис.6).

Медиана треугольника свойства формулы длина медианы

Рис.6

      Таким образом,

| FO | = | OD | ,       | GO | = | OE | .

      Следовательно,

| AF | = | FO | = | OD | ,       | CG | = | GO | = | OE | .

      Отсюда вытекает, что точка O делит каждую из медиан AD и CE в отношении   2 : 1, считая от вершины треугольника.

      Доказательство завершено.

      Следствие. Все три медианы треугольника пересекаются в одной точке.

      Доказательство. Рассмотрим медиану AD треугольника ABC и точку O, которая делит эту медиану в отношении   2 : 1, считая от вершины A (рис.7).

Медиана треугольника свойства формулы длина медианы

Рис.7

      Поскольку точка, делящая отрезок в заданном отношении, является единственной, то и другие медианы треугольника будут проходить через эту точку, что и требовалось доказать.

      Определение. Точку пересечения медиан треугольника называют центроидом треугольника.

      Утверждение 3. Медианы треугольника делят треугольник на 6 равновеликих треугольников (рис. 8).

Медиана треугольника свойства формулы длина медианы

Рис.8

      Доказательство. Докажем, что площадь каждого из шести треугольников, на которые медианы разбивают треугольник ABC, равна  площади треугольника ABC. Для этого рассмотрим, например, треугольник AOF и опустим из вершины A перпендикуляр AK на прямую BF (рис. 9).

Медиана треугольника свойства формулы длина медианы

Рис.9

      Тогда

      В силу утверждения 1,

что и требовалось доказать.

      Утверждение 4. Длина медианы треугольника (рис. 10) вычисляется по формуле:

Медиана треугольника свойства формулы длина медианы

Рис.10

      Доказательство. Воспользуемся теоремой косинусов, примененной к треугольникам DBC и ABD:

      Складывая эти равенства, получим:

что и требовалось доказать.

      Следствие. Длины медиан и длины сторон треугольника связаны формулой

      Доказательство. В силу утверждения 4 справедливы равенства:

      Складывая эти равенства, получим:

что и требовалось доказать.

      Утверждение 5. В параллелограммепараллелограмме сумма квадратов диагоналей равна сумме квадратов сторон.

      Доказательство. Рассмотрим рисунок 11.

Медиана треугольника свойства формулы длина медианы

Рис.11

      Поскольку AO – медиана треугольника ABD, а DO – медиана треугольника ADC, то, в силу утверждения 4, справедливы равенства:

      Следовательно,

d12 = 2a2 + 2b2 – d22,

d22 = 2a2 + 2b2 – d12.

      Складывая эти равенства, получим

что и требовалось доказать.

      Утверждение 6. Медиана, проведенная к гипотенузе прямоугольного треугольника, равна половине гипотенузы (рис. 12).

Медиана треугольника свойства формулы длина медианы

Рис.12

      Доказательство. Продолжим медиану CO за точку O до точки D так, чтобы было выполнено равенство CO = OD, и соединим полученную точку D с точками A и B (рис. 13).

Медиана треугольника свойства формулы длина медианы

Рис.13

      Получим четырехугольник ADBC, диагонали которого в точке пересечения делятся пополам. В силу признака параллелограммапризнака параллелограммапризнака параллелограмма заключаем, что четырехугольник ADBC является параллелограммом, а поскольку полученный параллелограмм содержит прямой угол C, то и все его углы прямые, следовательно, четырехугольник ADBC – прямоугольникпрямоугольник. Поскольку диагонали прямоугольника равны, получаем равенства:

что и требовалось доказать.

      Следствие. Середина гипотенузы прямоугольного треугольника является центром описанной около треугольника окружности (рис. 14).

Медиана треугольника свойства формулы длина медианы

Рис.14

      Утверждение 7. Рассмотрим в пространстве или на плоскости декартову систему координат с началом в точке O и произвольный треугольник ABC. Если обозначить буквой M точку пересечения медиан этого треугольника (рис.15), то будет справедливо равенство

Медиана треугольника свойства формулы длина медианы

Медиана треугольника свойства формулы длина медианы

Рис.15

      Доказательство. По свойствам векторов

      Далее получаем

что и требовалось доказать.

      На нашем сайте можно также ознакомиться нашими учебными материалами для подготовки к ЕГЭ и ОГЭ по математике.

Источник

Медиана треугольника, так же, как и высота служит графическим параметром, определяющим весь треугольник, значение его сторон и углов. Три значения: медианы, высоты и биссектрисы – это, как штрих-код на товаре, наша задача просто уметь его считать.

Каким замечательным свойством обладают медианы треугольника

Определение

Медиана – это отрезок, соединяющий высоту и середину противоположной стороны. В треугольнике три вершины, а значит и медианы три. Медианы не всегда совпадают с высотами или биссектрисами. Чаще всего это отдельные отрезки.

Свойства медиан

  • Медиана равнобедренного треугольника, проведенная к основанию, совпадает с высотой и биссектрисой. В равностороннем треугольнике все медианы совпадают с биссектрисами и высотами.
  • Все медианы треугольника пересекаются в одной точке.
  • Медиана делит треугольник на два равновеликих, а три медианы, на 6 равновеликих треугольника.

Равновеликими называют треугольники, площади которых равны.

Три медианы образуют 6 равновеликих треугольника

Рис. 1. Три медианы образуют 6 равновеликих треугольника.

  • Точка пересечения медиан делит их в отношении 2:1, считая от вершины.
  • Медиана, проведенная к гипотенузе прямоугольного треугольника, равна половине гипотенузы.

Задачи

Все эти свойства несложно запомнить, они легко закрепляются на практике. Для большего понимания темы, решим несколько задач:

  • В прямоугольном треугольнике известны катеты, которые равны a=3 и b=4. Найти значение медианы m, проведенной к гипотенузе c.

Каким замечательным свойством обладают медианы треугольника

Рис. 2. Рисунок к задаче.

Для того, чтобы найти значение медианы, нам необходимо найти гипотенузу, так как медиана, проведенная к гипотенузе равна ее половине. Гипотенуза через теорему Пифагора: $$a^2+b^2=c^2$$

$$c=sqrt{a^2+b^2}=sqrt{9+16}=sqrt{25}=5$$

Найдем значение медианы: $$m={cover2}={5over2}=2,5$$ – получившееся число и есть значение медианы.

Значения медиан в треугольнике не равны. Поэтому нужно обязательно представлять, какую именно величину необходимо найти.

  • В треугольнике известны значения сторон : a=7; b=8; c=9. Найти значение медианы, опущенной к стороне b.

Рисунок к задаче

Рис. 3. Рисунок к задаче.

Чтобы решить эту задачу нужно воспользоваться одной из трех формул для нахождения медианы по сторонам треугольника:

$$m^2 ={1over2}*(a^2+c^2-b^2)$$

Как видно, главное здесь запомнить коэффициент при скобках и знаки у значения сторон. Знаки запомнить проще всего – вычитается всегда сторона, к которой опущена медиана. В нашем случае это b, но может быть любая другая.

Подставим значения в формулу и найдем величину медианы: $$m=sqrt{{1over2}*(a^2+c^2-b^2)}$$

$$m=sqrt{{1over2}*(49+81-64)}=sqrt{33}$$ – оставим результат в виде корня.

  • В равнобедренном треугольнике медиана, проведенная к основанию равна 8, а само основание 6. Вместе с оставшимися двумя, эта медиана делит треугольник на 6 треугольников. Найти площадь каждого из них.

Медианы, разбивают треугольник на шесть равновеликих. Значит, площади малых треугольников будут равны между собой. Достаточно найти площадь большего и поделить ее на 6.

Дана медиана, проведенная к основанию, в равнобедренном треугольнике она является биссектрисой и высотой. Значит в треугольнике известны основание и высота. Можно найти площадь.

$$S={1over2}*6*8=24$$

Площадь каждого из малых треугольников: $${24over6}=4$$

Что мы узнали?

Мы узнали, что такое медиана. Определили свойства медианы, и нашли решение типовых задач. Поговорили о базовых ошибках и разобрались как просто и быстро запомнить формулу нахождения медианы через стороны треугольника.

Тест по теме

Оценка статьи

Средняя оценка: 4.7. Всего получено оценок: 137.

Источник

Pro raider

Ученик

(100),
закрыт

8 лет назад

Дополнен 9 лет назад

чётко и кратко

NO ONE

Мастер

(1669)

9 лет назад

Медиана:
Медианы треугольника пересекаются в одной точке, которая называется центроидом, и делятся этой точкой на две части в отношении 2:1, считая от вершины.
Треугольник делится тремя медианами на шесть равновеликих треугольников.
Большей стороне треугольника соответствует меньшая медиана.
Из векторов, образующих медианы, можно составить треугольник.
При аффинных преобразованиях медиана переходит в медиану.

Высота:
перпендикулярна к проведенной стороне
Высоты треугольника пересекаются в одной точке, называемой ортоцентром. – Это утверждение легко доказать, используя векторное тождество, справедливое для любых точек A, B, C, E, не обязательно даже лежащих в одной плоскости:
В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобные исходному.
В остроугольном треугольнике две его высоты отсекают от него подобные треугольники.
Основания высот образуют так называемый ортотреугольник, обладающий собственными свойствами.
Минимальная из высот треугольника обладает многими экстремальными свойствами. Например:
Минимальная ортогональная проекция треугольника на прямые, лежащие в плоскости треугольника, имеет длину, равную наименьшей из его высот.
Минимальный прямолинейный разрез в плоскости, через который можно протащить несгибаемую треугольную пластину, должен иметь длину, равную наименьшей из высот этой пластины.
При непрерывном движении двух точек по периметру треугольника друг навстречу другу, максимальное расстояние между ними за время движения от первой встречи до второй, не может быть меньше длины наименьшей из высот треугольника.
Минимальная высота в треугольнике всегда проходит внутри этого треугольника.

Бисектриса:
Теорема о биссектрисе: Биссектриса угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон
Биссектрисы внутренних углов треугольника пересекаются в одной точке — инцентре — центре вписанной в этот треугольник окружности.
Биссектрисы одного внутреннего и двух внешних углов треугольника пересекаются в одной точке. Эта точка — центр одной из трёх вневписанных окружностей этого треугольника.
Основания биссектрис двух внутренних и одного внешнего углов треугольника лежат на одной прямой, если биссектриса внешнего угла не параллельна противоположной стороне треугольника.
Если биссектрисы внешних углов треугольника не параллельны противоположным сторонам, то их основания лежат на одной прямой.
Если 2 биссектрисы равны, то треугольник — равнобедренный (теорема Штейнера — Лемуса) .
Построение треугольника по трем заданным биссектрисам с помощью циркуля и линейки невозможно, [1] причём даже при наличии трисектора.

Источник: Википедия

Маринет Франк

Ученик

(212)

4 года назад

Медиана:
Медианы треугольника пересекаются в одной точке, которая называется центроидом, и делятся этой точкой на две части в отношении 2:1, считая от вершины.
Треугольник делится тремя медианами на шесть равновеликих треугольников.
Большей стороне треугольника соответствует меньшая медиана.
Из векторов, образующих медианы, можно составить треугольник.
При аффинных преобразованиях медиана переходит в медиану.

Высота:
перпендикулярна к проведенной стороне
Высоты треугольника пересекаются в одной точке, называемой ортоцентром. – Это утверждение легко доказать, используя векторное тождество, справедливое для любых точек A, B, C, E, не обязательно даже лежащих в одной плоскости:
В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобные исходному.
В остроугольном треугольнике две его высоты отсекают от него подобные треугольники.
Основания высот образуют так называемый ортотреугольник, обладающий собственными свойствами.
Минимальная из высот треугольника обладает многими экстремальными свойствами. Например:
Минимальная ортогональная проекция треугольника на прямые, лежащие в плоскости треугольника, имеет длину, равную наименьшей из его высот.
Минимальный прямолинейный разрез в плоскости, через который можно протащить несгибаемую треугольную пластину, должен иметь длину, равную наименьшей из высот этой пластины.
При непрерывном движении двух точек по периметру треугольника друг навстречу другу, максимальное расстояние между ними за время движения от первой встречи до второй, не может быть меньше длины наименьшей из высот треугольника.
Минимальная высота в треугольнике всегда проходит внутри этого треугольника.

Бисектриса:
Теорема о биссектрисе: Биссектриса угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон
Биссектрисы внутренних углов треугольника пересекаются в одной точке — инцентре — центре вписанной в этот треугольник окружности.
Биссектрисы одного внутреннего и двух внешних углов треугольника пересекаются в одной точке. Эта точка — центр одной из трёх вневписанных окружностей этого треугольника.
Основания биссектрис двух внутренних и одного внешнего углов треугольника лежат на одной прямой, если биссектриса внешнего угла не параллельна противоположной стороне треугольника.
Если биссектрисы внешних углов треугольника не параллельны противоположным сторонам, то их основания лежат на одной прямой.
Если 2 биссектрисы равны, то треугольник — равнобедренный (теорема Штейнера — Лемуса) .
Построение треугольника по трем заданным биссектрисам с помощью циркуля и линейки невозможно, [1] причём даже при наличии трисектора.

Степан Казанцев

Ученик

(145)

8 месяцев назад

Медиана- отрезок, соединяющий вершину треугольника с серединой противоположной стороны.
Биссектриса- луч, исходящий из вершин треугольника и делящий его по попал.
Высота треугольника- это перпендикуляр, опущенный из вершин треугольника на противоположную сторону.

Источник