Каким свойством обладают органические вещества
Метан, CH4; одно из простейших органических веществ
Органи́ческие соединения, органические вещества́ — вещества, относящиеся к углеводородам или их производным, то есть это класс химических соединений, объединяющий почти все химические соединения, в состав которых входит углерод[1] (за исключением карбидов, угольной кислоты, карбонатов, некоторых оксидов углерода, роданидов, цианидов).
Органические соединения редки в земной коре, но обладают большой важностью, потому что все известные формы жизни основаны на органических соединениях. Такие вещества часто включены в дальнейший круговорот жизни, как например органические вещества почвы (к слову, годовая продукция биосферы составляет 380 млрд.т)[2]. Основные дистилляты нефти считаются строительными блоками органических соединений[3]. Органические соединения, кроме углерода (C), чаще всего содержат водород (H), кислород (O), азот (N), значительно реже — серу (S), фосфор (P), галогены (F, Cl, Br, I), бор (B) и некоторые металлы (порознь или в различных комбинациях)[4].
История[править | править код]
Название органические вещества появилось на ранней стадии развития химии во времена господства виталистических воззрений, продолжавших традицию Аристотеля и Плиния Старшего о разделении мира на живое и неживое. В 1807 году шведский химик Якоб Берцелиус предложил назвать вещества, получаемые из организмов, органическими, а науку, изучающую их, — органической химией. Считалось, что для синтеза органических веществ необходима особая «жизненная сила» (лат. vis vitalis), присущая только живому, и поэтому синтез органических веществ из неорганических невозможен. Это представление было опровергнуто Фридрихом Вёлером, учеником Берцелиуса, в 1829 году путём синтеза «органической» мочевины из «минерального» цианата аммония, однако деление веществ на органические и неорганические сохранилось в химической терминологии и по сей день.
Количество известных органических соединений составляет почти 27 млн.
Таким образом, органические соединения — самый обширный класс химических соединений. Многообразие органических соединений связано с уникальным свойством углерода образовывать цепочки из атомов, что в свою очередь обусловлено высокой стабильностью (то есть энергией) углерод-углеродной связи. Связь углерод-углерод может быть как одинарной, так и кратной — двойной, тройной. При увеличении кратности углерод-углеродной связи возрастает её энергия, то есть стабильность, а длина уменьшается. Высокая валентность углерода — 4, а также возможность образовывать кратные связи, позволяет образовывать структуры различной размерности (линейные, плоские, объёмные).
Классификация[править | править код]
Основные классы органических соединений биологического происхождения — белки, липиды, углеводы, нуклеиновые кислоты — содержат, помимо углерода, преимущественно водород, азот, кислород, серу и фосфор. Именно поэтому «классические» органические соединения содержат прежде всего водород, кислород, азот и серу — несмотря на то, что элементами, составляющими органические соединения, помимо углерода могут быть практически любые элементы.
Соединения углерода с другими элементами составляют особый класс органических соединений — элементоорганические соединения. Металлоорганические соединения содержат связь металл-углерод и составляют обширный подкласс элементоорганических соединений.
Характерные свойства[править | править код]
Существует несколько важных свойств, которые выделяют органические соединения в отдельный, ни на что не похожий класс химических соединений.
- Органические соединения обычно представляют собой газы, жидкости или легкоплавкие твёрдые вещества, в отличие от неорганических соединений, которые в большинстве своём представляют собой твёрдые вещества с высокой температурой плавления.
- Органические соединения большей частью построены ковалентно, а неорганические соединения — ионно.
- Различная топология образования связей между атомами, образующими органические соединения (прежде всего, атомами углерода), приводит к появлению изомеров — соединений, имеющих один и тот же состав и молекулярную массу, но обладающих различными физико-химическими свойствами. Данное явление носит название изомерии.
- Явление гомологии — существование рядов органических соединений, в которых формула любых двух соседей ряда (гомологов) отличается на одну и ту же группу — гомологическую разницу CH2. Целый ряд физико-химических свойств в первом приближении изменяется симбатно (мера схожести зависимостей в математическом анализе) по ходу гомологического ряда. Это важное свойство используется в материаловедении при поиске веществ с заранее заданными свойствами.
- Горючесть. [источник не указан 1444 дня]
Номенклатура[править | править код]
Органическая номенклатура — это система классификации и наименований органических веществ.
В настоящее время распространена номенклатура ИЮПАК.
Классификация органических соединений построена на важном принципе, согласно которому физические и химические свойства органического соединения в первом приближении определяются двумя основными критериями — строением углеродного скелета соединения и его функциональными группами.
В зависимости от природы углеродного скелета органические соединения можно разделить на ациклические и циклические. Среди ациклических соединений различают предельные и непредельные. Циклические соединения разделяются на карбоциклические (алициклические и ароматические) и гетероциклические.
- Органические соединения
- Углеводороды
- Ациклические соединения
- Предельные углеводороды (алканы)
- Непредельные углеводороды
- Алкены
- Алкины
- Алкадиены (диеновые углеводороды)
- Циклические углеводороды
- Карбоциклические соединения
- Алициклические соединения
- Ароматические соединения
- Гетероциклические соединения
- Карбоциклические соединения
- Ациклические соединения
- Функциональные производные углеводородов:
- Спирты, Фенолы
- Простые эфиры
- Альдегиды, Кетоны
- Карбоновые кислоты
- Сложные эфиры
- Жиры
- Углеводы
- Моносахариды
- Олигосахариды
- Полисахариды
- Мукополисахариды
- Амины
- Аминокислоты
- Белки
- Нуклеиновые кислоты
- Углеводороды
Алифатические соединения[править | править код]
Алифатические соединения — органические вещества, не содержащие в структуре ароматических систем.
Углеводороды — Алканы — Алкены — Диены или Алкадиены — Алкины — Галогенуглеводороды — Спирты — Тиолы — Простые эфиры — Альдегиды — Кетоны — Карбоновые кислоты — Сложные эфиры — Углеводы или сахара — Нафтены — Амиды — Амины — Липиды — Нитрилы
Ароматические соединения[править | править код]
Ароматические соединения, или арены, — органические вещества, в структуру которых входит одна (или более) ароматическая циклическая система (см. Ароматизация).
Бензол-Толуол-Ксилол-Анилин-Фенол-Ацетофенон-Бензонитрил-
Галогенарены-Нафталин-Антрацен-Фенантрен-Бензпирен-Коронен-Азулен-Бифенил-Ионол.
Гетероциклические соединения[править | править код]
Гетероциклические соединения — вещества, в молекулярной структуре которых присутствует хотя бы один цикл с одним (или несколькими) гетероатомом.
Пиррол-Тиофен-Фуран-Пиридин
Полимеры[править | править код]
Полимеры представляют собой особый вид веществ, также известный как высокомолекулярные соединения. В их структуру обычно входят многочисленные сегменты (соединения) меньшего размера. Эти сегменты могут быть идентичны, и тогда речь идёт о гомополимере. Полимеры относятся к макромолекулам — классу веществ, состоящих из молекул очень большого размера и массы.
Полимеры могут быть органическими (полиэтилен, полипропилен, плексиглас и т. д.) или неорганическими (силикон); синтетическими (поливинилхлорид) или природными (целлюлоза, крахмал).
Структурный анализ[править | править код]
В настоящее время существует несколько методов характеристики органических соединений:
- Кристаллография (рентгеноструктурный анализ) — наиболее точный метод, требующий, однако, наличия высококачественного кристалла достаточного размера для получения высокого разрешения. Поэтому пока этот метод не используется слишком часто.
- Элементный анализ — деструктивный метод, использующийся для количественного определения содержания элементов в молекуле вещества.
- Инфракрасная спектроскопия (ИК): используется главным образом для доказательства наличия (или отсутствия) определённых функциональных групп.
- Масс-спектрометрия: используется для определения молекулярных масс веществ и способов их фрагментации.
- Спектроскопия ядерного магнитного резонанса ЯМР.
- Ультрафиолетовая спектроскопия (УФ): используется для определения степени сопряжения в системе.
См. также[править | править код]
- Неорганические вещества
- Органическая химия
Примечания[править | править код]
Источник
Характерные свойства органических соединений
Органические вещества обладают рядом характерных особенностей, среди которых наиболее важные:
- атомы углерода в молекулах органических соединений способны соединяться друг с другом;
- атомы углерода в молекулах органических соединений образуют цепи и кольца, что является одной из причин многообразия органических соединений;
- связи между атомами в молекулах органических соединений ковалентные. В своем большинстве органические вещества являются неэлектролитами, т.е. не диссоциируют на ионы в растворах, а также сравнительно медленно взаимодействуют друг с другом.
- для органических соединений характерно явление изомерии, в связи с чем имеется множество соединений углерода, которые обладают одинаковым качественным и количественным составом, одинаковой молекулярной массой, но совершенно различными физическими и даже химическими свойствами;
- многие органические соединения являются непосредственными носителями, участниками или продуктами процессов, которые протекают в живых организмах, – ферменты, гормоны, витамины.
Физические свойства органических соединений
Чаще всего органические соединения представляют собой газы, жидкости или низкоплавкие твердые вещества. Большое число твердых органических веществ плавится в интервале сравнительно невысоких температур (от комнатной до 400 °С).
Взаимное влияние атомов в молекулах органических соединений
Взаимное влияние атомов в молекуле передается через систему ковалентных связей с помощью электронных эффектов. Электронным эффектом называют смещение электронной плотности в молекуле под влиянием заместителей.
Индуктивный эффект (I) – смещение электронной плотности по цепи σ-связей.
Мезомерный эффект (M) — смещение электронной плотности по цепи π-связей.
-I (отрицательный индуктивный эффект): -Cl, -Br, -OH, -NH2;
+ I (положительный индуктивный эффект):-CH3, -C2H5;
-M (отрицательный мезомерный эффект): -CH=O, -COOH, -NO2;
+M (положительный мезомерный эффект):-OH, -NH2;
Химические свойства органических соединений
Реакции органических веществ классифицируют по типу разрыва связей на:
— радикальные реакции, протекающие с гомолитическим разрывом ковалентной связи
А:В → А. + В.
— ионные реакции, протекающие с гетеролитическим разрывом ковалентной связи
А:В → А:— + В+
По типу реакции:
— присоединение
RCH=CH2 +XY → RCHX + CH2Y
— замещение
RCH2X + Y → RCHY + X
— отщепление (элеменирование)
RCHX-CH2Y → RCH=CH2 + XY
— полимеризация
N(CH2=CH2) → (-CH2-CH2-)n
Окисление и восстановление в органической химии связывают с потерей и приобретением водорода и кислорода. Вещество окисляется, если оно теряет атомы Н и приобретает атомы О. Окислитель в общем виде обозначают [O].
Вещество восстанавливается, если оно приобретает атом Н и (или) теряет атомы О. Восстановитель в общем виде обозначается [H].
Генетическая связь между классами органических соединений
Генетические ряды органических соединений выглядит следующим образом:
Рассмотрим на примере ряда этана:
CH3-CH3 +Cl2→ CH3-CH2Cl + HCl (получение из алканов галогеналканов)
CH3-CH3 → CH2=CH2 + H2↑ (получение из алканов алкенов)
CH2=CH2 → C2H2 + H2↑ (получение из алкенов алкинов)
CH2=CH2 + H2O → C2H5OH (получение из алкенов предельных одноатомных спиртов)
C2H5OH + [O] → CH3CHO + H2O (получение из предельных одноатомных спиртов альдегидов)
CH3CHO + [O] → CH3COOH (получение из альдегидов предельных одноосновных карбоновых кислот)
CH3COOH + Cl2 → CH2Cl-COOH (получение из предельных одноосновных карбоновых кислот хлорзамещенных карбоновых кислот)
CH2Cl-COOH + NH3→ NH2-CH2– COOH + HCl (получение хлорзамещенных карбоновых кислот аминокислот)
(получение из аминокислот пептидов)
Примеры решения задач
Источник
История развития органической химии
В истории развития органической химии выделяют два периода: эмпирический (с середины XVII до конца XVIII века), в который познание органических веществ, способов их выделения и переработки происходило опытным путем и аналитический (конец XVIII – середина XIX века), связанный с появлением методов установления состава органических веществ. В аналитический период было установлено, что все органические вещества содержат углерод. Среди, других элементов, входящих в состав органических соединений были обнаружены водород, азот, сера, кислород и фосфор.
Важное значение в истории органической химии имеет структурный период (вторая половина XIX – начало XX века), ознаменовавшийся рождением научной теории строения органических соединений, основоположником которой был А.М. Бутлеров.
Основные положения теории строения органических соединений:
- атомы в молекулах соединены между собой в определенном порядке химическими связями в соответствии с их валентностью. Углерод во всех органических соединениях четырехваленнтен;
- свойства веществ зависят не только от их качественного и количественного состава, но и от порядка соединения атомов;
- атомы в молекуле взаимно влияют друг на друга.
Порядок соединения атомов в молекуле описывается структурной формулой, в которой химические связи изображаются черточками.
Характерные свойства органических веществ
Существует несколько важных свойств, которые выделяют органические соединения в отдельный, ни на что не похожий класс химических соединений:
- Органические соединения обычно представляют собой газы, жидкости или легкоплавкие твердые вещества, в отличие неорганических соединений, которые в большинстве своём представляют собой твердые вещества с высокой температурой плавления.
- Органические соединения большей частью построены ковалентно , а неорганические соединения — ионно.
- Различная топология образования связей между атомами, образующими органические соединения (прежде всего, атомами углерода), приводит к появлению изомеров — соединений, имеющих один и тот же состав и молекулярную массу, но обладающих различными физико-химическими свойствами. Данное явление носит название изомерии.
- Явление гомологии — существование рядов органических соединений, в которых формула любых двух соседей ряда (гомологов) отличается на одну и ту же группу — гомологическую разницу CH2. Органические вещества горят.
Классификация органических веществ
В классификации принимают за основу два важных признака – строение углеродного скелета и наличие в молекуле функциональных групп.
В молекулах органических веществ атомы углерода соединяются друг с другом, образуя т.н. углеродный скелет или цепь. Цепи бывают открытыми и замкнутыми
(циклическими), открытые цепи могут быть неразветвленными (нормальными) и разветвленными:
По строению углеродного скелета различают:
— алициклические органические вещества, имеющие открытую углеродную цепь как разветвленную, так и неразветвленную. Например,
СН3-СН2-СН2-СН3 (бутан)
СН3-СН(СН3)-СН3 (изобутан)
— карбоциклические органические вещества, в которых углеродная цепь замкнута в цикл (кольцо). Например,
— гетероциклические органические соединения, содержащие в цикле не только атомы углерода, но и атомы других элементов, чаще всего азота, кислорода или серы:
Функциональная группа – атом или группа атомов неуглеводородного характера, которые определяют принадлежность соединения к определенному классу. Признаком, по которому органическое вещество относят к тому или иному классу, является природа функциональной группы (табл. 1).
Таблица 1. Функциональные группы и классы.
Соединения могут содержать не одну, а несколько функциональных групп. Если эти группы одинаковые, то соединения называют полифункциональными, например хлороформ, глицерин. Соединения, содержащие различные функциональные группы, называют гетерофункциональными, их можно одновременно отнести к нескольким классам соединений, например молочную кислоту можно рассматривать, как карбоновую кислоту и как спирт, а коламин – как амин и спирт.
Примеры решения задач
Источник
Органические вещества. Общая характеристика. Липиды
Органические вещества — это сложные углеродсодержащие соединения. К ним относятся присутствующие в живых организмах белки, жиры, углеводы, ферменты, гормоны, витамины и продукты их превращений.
Название «органические соединения» появилось на ранней стадии развития химии и говорит само за себя: учёные той эпохи считали, что живые существа состоят из особых органических соединений.
Среди всех химических элементов углерод наиболее тесно связан с живыми организмами. Известно более миллиона различных молекул, построенных на его основе. Интересна уникальная способность атомов углерода вступать в ковалентную связь друг с другом, образуя длинные цепи, сложные кольца и другие структуры.
Большинство органических соединений в природе образуется в результате процесса фотосинтеза — из углекислого газа и воды с участием энергии солнечного излучения в хлорофиллсодержащих организмах.
Низкомолекулярные органические соединения получили свое название из-за небольшого молекулярного веса. К ним относятся аминокислоты, липиды, органические кислоты, витамины, коферменты (производные витаминов, обусловливающие активность ферментов) и другие.
Низкомолекулярные органические соединения составляют 0,1 — 0,5 % от массы клетки.
Высокомолекулярные органические соединения (биополимеры)
Макромолекула, состоящая из мономеров, называется полимером (от греческого poly — «много»). Следовательно, полимер — это многозвеньевая цепь, в которой звеном является какое-либо относительно простое вещество.
Полимеры — это молекулы, состоящие из повторяющихся структурных единиц — мономеров.
Свойства биополимеров зависят от числа и разнообразия мономерных звеньев, образующих полимер. Если соединить вместе 2 типа мономеров А и Б, то можно получить разнообразные полимеры, строение и свойства которых будут зависеть от числа, соотношения и порядка чередования мономеров в цепях.
Допустим, в парафине 16 звеньев. Не станете же вы 16 раз повторять метилен — метилен — метилен… Для такого длинного слова существует упрощение — «гексадекан». А если в молекуле тысяча звеньев? Говорим упрощённо поли — «много». Например, берём тысячу звеньев этилена, соединяем, получаем всем знакомый полиэтилен.
Гомополимеры (или регулярные) построены из мономеров одного типа (например, гликоген, крахмал и целлюлоза состоят из молекул глюкозы).
Гетерополимеры (или нерегулярные) построены из различающихся мономеров (например, белки, состоящие из 20 аминокислот, и нуклеиновые кислоты, построенные из 8 нуклеотидов).
Каждый из мономеров определяет какое-то свойство полимера. Например, А — высокую прочность, Б — электропроводность. Чередуя их по-разному, можно получить огромное число полимеров с разными свойствами. Этот принцип лежит в основе многообразия жизни на нашей планете.
Липиды, их строение, свойства и функции
Липиды — это сложные эфиры трёхатомного спирта глицерина и высших жирных кислот. В каждом из них есть кислотный остаток СООН, он, теряя атом водорода, соединяется с глицерином, а с остатком соединяется углеродная цепочка. Липиды — низкомолекулярные гидрофобные органические соединения.
«Жирными» кислоты называют потому, что некоторые высокомолекулярные члены этой группы входят в состав жиров. Общая формула жирных кислот: СН3 — (СН2)п — СООН. Большая часть жирных кислот содержит чётное число атомов углерода (от 14 до 22).
Синтезируются жирные кислоты из холестерина в печени, затем с желчью поступают в двенадцатиперстную кишку, где способствуют перевариванию жиров, эмульгируя их, тем самым стимулируя их всасывание.
Содержание жирных кислот в крови составляет в среднем 0,8 мг%, в желчи печени — 0,9—1,8%, в пузырной желчи — 5,7—10,8%.
К липидам относятся жиры, воски, стероиды, фосфолипиды, терпены, гликолипиды, липопротеиды.
Липиды принято делить на жиры и масла в зависимости от того, остаются ли они твёрдыми при 20°С (жиры) или имеют при этой температуре жидкую консистенцию (масла).
Чистый жир всегда бывает белого цвета, а чистое масло всегда бесцветное. Жёлтая, оранжевая и бурая окраска масла объясняется присутствием каротина или подобных ему соединений. Оливковое же масло иногда имеет зеленоватый оттенок: в нём содержится немного хлорофилла.
У жиров высокая температура кипения. Благодаря этому на жирах удобно жарить пищу. Они не испаряются с горячей сковороды, начинают пригорать лишь при температуре 200 — 3000 С.
Общее содержание липидов в клетке колеблется в пределах 5 — 15% от массы сухого вещества. В клетках подкожной жировой клетчатки их количество возрастает до 90%.
Нейтральные жиры (триглицериды) представляют собой соединения высокомолекулярных жирных кислот и трехатомного спирта глицерина. В цитоплазме клеток триглицериды откладываются в виде жировых капель.
Избыток жира может вызывать жировую дистрофию. Главный признак появления жировой дистрофии — увеличение и уплотнение печени за счет накопления жира в гепатоцитах (клетках печени).
Воски — пластичные вещества, обладающие водоотталкивающими свойствами. У насекомых они служат материалом для постройки сот. Восковой налет на поверхности листьев, стеблей, плодов защищает растения от механических повреждений, ультрафиолетового излучения и играет важную роль в регуляции водного баланса.
Фосфолипиды — представители класса жироподобных веществ, являющиеся сложными эфирами глицерина и жирных кислот, содержащие остаток фосфорной кислоты.
Они формируют основу всех биологических мембран. По своей структуре фосфолипиды сходны с жирами, но в их молекуле один или два остатка жирных кислот замещены остатком фосфорной кислоты.
Гликолипиды — вещества, образующиеся в результате соединения углеводов и липидов. Углеводные компоненты гликолипидных молекул полярны, и это определяет их роль: подобно фосфолипидам гликолипиды входят в состав клеточных мембран.
К жироподобным веществам (липоидам) относятся предшественники и производные простых и сложных липидов: холестерин, желчные кислоты, жирорастворимые витамины, стероидные гормоны, глицерин и другие.
Общие свойства липидов:
1) обладают высокой энергоёмкостью;
2) имеют плотность ниже, чем у воды;
3) имеют выгодную температуру кипения;
4) высококалорийные вещества.
Разновидность липидов | Роль в организмах растений и животных |
Жиры и масла | 1. Служат энергетическим депо. |
Воск | Используется главным образом в качестве водоотталкивающего покрытия: 1) образует дополнительный защитный слой на кутикуле эпидермиса некоторых органов растений, например листьев, плодов и семян (в основном у ксерофитов); Из воска пчёлы строят соты. |
Фосфолипиды | Компоненты мембран. |
Стероиды | Желчные кислоты, например холевая кислота, входят в состав желчи. |
Терпены | Вещества, от которых зависит аромат эфирных масел растений, например ментол у мяты, камфора. Гиббереллины — ростовые вещества растений. Фитон входит в состав хлорофилла. Каротиноиды — фотосинтетические пигменты. |
Липопротеины | Из липопротеинов состоят мембраны. |
Гликолипиды | Компоненты клеточных мембран, особенно в миелиновой оболочке нервных волокон и на поверхности нервных клеток, а также компоненты мембран хлоропластов. |
Общие функции липидов
Функция | Пояснение |
---|---|
Энергетическая | При расщеплении 1 г триглицеридов выделяется 38,9 кДж энергии |
Структурная | Фосфолипиды и гликолипиды принимают участие в образовании клеточных мембран |
Запасающая | Жиры и масла — важнейшие резервные вещества. Жиры откладываются в клетках жировой ткани животных и служат источником энергии во время спячки, миграций или голода. Масла семян растений обеспечивают энергией будущие проростки |
Источник метаболической воды | При окислении 1 г жира образуется 1,1 г воды |
Защитная | Прослойки жира обеспечивают амортизацию органов животных, а подкожная жировая клетчатка создает теплоизолирующий слой. Воск служит водоотталкивающим покрытием у растений |
Регуляторная | Стероидные гормоны регулируют фундаментальные процессы в организмах животных — рост, дифференцировку, размножение, адаптации и т. д. |
Каталитическая | Жирорастворимые витамины А, D, E, К являются кофакторами ферментов, и, хотя сами по себе они не обладают каталитической активностью, без них ферменты не могут выполнять свои функции |
< Предыдущая страница “Неорганические вещества клетки. Минеральные соли”
Следующая страница “Органические вещества. Углеводы” >
Источник