Каким свойством обладает колебательное движение

Каким свойством обладает колебательное движение thumbnail

Колебательные движения широко распространены в окружающей нас жизни. Примерами колебаний могут служить: движение иглы швейной машины, качелей, маятника часов, крыльев насекомых во время полёта и многих других тел.

В движении этих тел можно найти много различий. Например, качели движутся криволинейно, а игла швейной машины — прямолинейно; маятник часов колеблется с большим размахом, чем крылья стрекозы. За одно и то же время одни тела могут совершать большее число колебаний, чем другие.
Но при всём разнообразии этих движений у них есть важная общая черта: через определённый промежуток времени движение любого тела повторяется.

Действительно, если шарик отвести от положения равновесия и отпустить, то он, пройдя через положение равновесия, отклонится в противоположную сторону, остановится, а затем вернётся к месту начала движения. За этим колебанием последует второе, третье и т. д., похожие на первое.

Промежуток времени, через который движение повторяется, называется периодом колебаний.

Поэтому говорят, что колебательное движение периодично.

В движении колеблющихся тел кроме периодичности есть ещё одна общая черта.

Обрати внимание!

За промежуток времени, равный периоду колебаний, любое тело дважды проходит через положение равновесия (двигаясь в противоположных направлениях).

Повторяющиеся через равные промежутки времени движения, при которых тело многократно и в разных направлениях проходит положение равновесия, называются механическими колебаниями.

Под действием сил, возвращающих тело в положение равновесия, тело может совершать колебания как бы само по себе. Первоначально эти силы возникают благодаря совершению над телом некоторой работы (растяжению пружины, поднятию на высоту и т. п.), что приводит к сообщению телу некоторого запаса энергии. За счёт этой энергии и происходят колебания.

Пример:

чтобы заставить качели совершать колебательные движения, нужно сначала вывести их из положения равновесия, оттолкнувшись ногами, либо сделать это руками.

Колебания, происходящие благодаря только начальному запасу энергии колеблющегося тела при отсутствии внешних воздействий на него, называются свободными колебаниями.

Пример:

примером свободных колебаний тела являются колебания груза, подвешенного на пружине. Первоначально выведенный из равновесия внешними силами груз в дальнейшем будет колебаться только за счёт внутренних сил системы «груз-пружина» — силы тяжести и силы упругости.

Условия возникновения свободных колебаний в системе:

а) система должна находиться в положении устойчивого равновесия: при отклонении системы от положения равновесия должна возникать сила, стремящаяся вернуть систему в положение равновесия — возвращающая сила;
б) наличие у системы избыточной механической энергии по сравнению с её энергией в положении равновесия;
в) избыточная энергия, полученная системой при смещении её из положения равновесия, не должна быть полностью израсходована на преодоление сил трения при возвращении в положение равновесия, т. е. силы трения в системе должны быть достаточно малы.

Свободно колеблющиеся тела всегда взаимодействуют с другими телами и вместе с ними образуют систему тел, которая получила название колебательной системы.

Системы тел, которые способны совершать свободные колебания, называются колебательными системами.

Одно из основных общих свойств всех колебательных систем заключается в возникновении в них силы, возвращающей систему в положение устойчивого равновесия.

Пример:

в случае колебаний шарика на нити шарик совершает свободные колебания под действием двух сил: силы тяжести и силы упругости нити. Их равнодействующая направлена к положению равновесия.

Колебательные системы — довольно широкое понятие, применимое к разнообразным явлениям.

Частным случаем колебательных систем являются маятники.

Маятником называется твёрдое тело, совершающее под действием приложенных сил

колебания около неподвижной точки или вокруг оси.

Пример:

груз, подвешенный на пружине и совершающий колебательные движения по вертикали под действием сил упругости, называется пружинным маятником.

Источники:

Физика. 9 кл.: учебник / Перышкин А. В., Гутник Е. М. — М.: Дрофа, 2014. — 319 с.
www.fizmat.by, сайт «Подготовка к ЦТ (ЕГЭ), задачи по физике и математике»

www.gavewrites.com

www.netnado.ru

www.astersoft.net, сайт «Умные программы для умных детей»

www.m.gifmania.ru

www.playcast.ru

www.litsait.ru

www.ru.solverbook.com

Источник

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 30 апреля 2019;
проверки требуют 19 правок.

Отличие колебания от волны

Колеба́ния — повторяющийся в той или иной степени во времени процесс изменения состояний системы около точки равновесия. Например, при колебаниях маятника повторяются все углы его отклонения относительно вертикали; при колебаниях в электрическом колебательном контуре повторяются величина и направление тока, текущего через катушку.

Колебания почти всегда связаны с превращением энергии из одной формы в другую и обратно.

Колебания различной физической природы имеют много общих закономерностей и тесно связаны c волнами. Поэтому исследованиями этих закономерностей занимается теория колебаний и волн. Принципиальное отличие волн в том, что их распространение сопровождается переносом энергии.

Классификация[править | править код]

Выделение разных видов колебаний зависит от подчёркиваемых свойств систем с колебательными процессами (осцилляторов).

По используемому математическому аппарату[править | править код]

  • Линейные колебания
  • Нелинейные колебания
  • Релаксационные колебания

По периодичности[править | править код]

  • Периодические
  • Квазипериодические
  • Апериодические
  • Антипериодические[A: 1]

Так, периодические колебания определены следующим образом:

По физической природе[править | править код]

  • Механические (звук, вибрация)
  • Электромагнитные (свет, радиоволны, тепловые)
  • Квантовый осциллятор
  • Смешанного типа — комбинации вышеперечисленных

По характеру взаимодействия с окружающей средой[править | править код]

  • Вынужденные — колебания, протекающие в системе под влиянием внешнего периодического воздействия. Примеры: листья на деревьях, поднятие и опускание руки. При вынужденных колебаниях может возникнуть явление резонанса: резкое возрастание амплитуды колебаний при совпадении собственной частоты осциллятора и частоты внешнего воздействия.
  • Свободные (или собственные) — это колебания в системе под действием внутренних сил после того, как система выведена из состояния равновесия (в реальных условиях свободные колебания всегда затухающие). Простейшими примерами свободных колебаний являются колебания груза, прикреплённого к пружине, или груза, подвешенного на нити.
  • Автоколебания — колебания, при которых система имеет запас потенциальной энергии, расходующейся на совершение колебаний (пример такой системы — механические часы). Характерным отличием автоколебаний от вынужденных колебаний является то, что их амплитуда определяется свойствами самой системы, а не начальными условиями.
  • Параметрические — колебания, возникающие при изменении какого-либо параметра колебательной системы в результате внешнего воздействия.
Читайте также:  Какие свойства у кварца

Параметры[править | править код]

Период колебаний и частота  — обратные величины:

и

В круговых или циклических процессах вместо характеристики «частота» используется понятие круговая (циклическая) частота (рад/с, Гц, с−1), показывающая число колебаний за единиц времени:

и

  • Смещение — отклонение тела от положения равновесия, (м)
  • Фаза колебаний — определяет смещение в любой момент времени, то есть определяет состояние колебательной системы.

Краткая история[править | править код]

Гармонические колебания были известны с XVII века.

Термин «релаксационные колебания» был предложен в 1926 г. ван дер Полем.[A: 2][A: 3] Обосновывалось введение такого термина лишь тем обстоятельством, что указанному исследователю казались все подобные колебания связанными с наличием «времени релаксации» — то есть с концептом, который на тот исторический момент развития науки представлялся наиболее понятным и широко распространённым. Ключевым свойством колебаний нового типа, описанных рядом перечисленных выше исследователей, было то, что они существенно отличались от линейных, — что проявляло себя в первую очередь как отклонение от известной формулы Томсона. Тщательное историческое исследование показало[A: 4], что ван дер Поль в 1926 г. ещё не осознавал того обстоятельства, что открытое им физическое явление «релаксационные колебания» соответствует введённому Пуанкаре математическому понятию «предельный цикл», и понял он это лишь уже после вышедшей в 1929 г. публикации А. А. Андронова.

Иностранные исследователи признают[A: 4] тот факт, что среди советских учёных мировую известность приобрели ученики Л. И. Мандельштама, выпустившие в 1937 г. первую книгу[B: 1], в которой были обобщены современные сведения о линейных и нелинейных колебаниях. Однако советские учёные «не приняли в употребление термин „релаксационные колебания“, предложенный ван дер Полем. Они предпочитали термин „разрывные движения“, используемый Блонделем, в частности потому, что предполагалось описывать эти колебания в терминах медленных и быстрых режимов. Этот подход стал зрелым только в контексте теории сингулярных возмущений»[A: 4].

Краткая характеристика основных типов колебательных систем[править | править код]

Линейные колебания[править | править код]

Важным типом колебаний являются гармонические колебания — колебания, происходящие по закону синуса или косинуса.
Как установил в 1822 году Фурье, любое периодическое колебание может быть представлено как сумма гармонических колебаний путём разложения соответствующей функции в ряд Фурье. Среди слагаемых этой суммы существует гармоническое колебание с наименьшей частотой, которая называется основной частотой, а само это колебание — первой гармоникой или основным тоном, частоты же всех остальных слагаемых, гармонических колебаний, кратны основной частоте, и эти колебания называются высшими гармониками или обертонами — первым, вторым и т. д.[B: 2]

Нелинейные релаксационные колебания[править | править код]

Указывается[A: 4], что формулировка, представленная Ван дер Полем: «медленная эволюция, сопровождаемая внезапным прыжком» (в оригинале: «slow evolution followed by a sudden jump»), — недостаточна, чтобы избежать неоднозначной интерпретации, причём на это обстоятельство указывали ещё современники ван дер Поля.

Тем не менее, похожим образом релаксационные колебания определяются и в более поздних работах. Например, Е. Ф. Мищенко и соавт.[2] определяют релаксационные колебания как такие «периодические движения» по замкнутой фазовой траектории, при которых «сравнительно медленные, плавные изменения фазового состояния чередуются с весьма быстрыми, скачкообразными». При этом далее указывается[3], что «сингулярно возмущённую систему, допускающую такое периодическое решение, называют релаксационной».

Рассматривались отдельно в классической коллективной монографии А. А. Андронова и соав.[4] под названием «разрывные колебания», более принятому в советской математической школе.

Позже сложилась в теорию сингулярных возмущений (см. напр.[B: 3]).

Примечания[править | править код]

Литература[править | править код]

  • Книги
  1. Андронов А. А., Витт А. А., Хайкин С. Э. Теория колебаний. — 2-е изд., перераб. и испр.. — М.: Наука, 1981. — 918 с.
  2. ↑ § 16. Резонансные явления при действии негармонической периодической силы. // Элементарный учебник физики / Под ред. Г.С. Ландсберга. — 13-е изд. — М.: ФИЗМАТЛИТ, 2003. — Т. 3. Колебания и волны. Оптика. Атомная и ядерная физика. — С. 41—44.
  3. Мищенко Е. Ф., Колесов Ю. С., Колесов А. Ю., Розов Н. Х. Периодические движения и бифуркационные процессы в сингулярно возмущенных системах. — М.: Физматлит, 1995. — 336 с. — 1000 экз. — ISBN 5-02-015129-7.
  • Статьи
  1. Колесов А. Ю. Структура окрестности однородного цикла в среде с диффузией (рус.) // Изв. АН СССР. Сер. матем. : журнал. — 1989. — Т. 53, № 2. — С. 345–362.
  2. Van der Pol. On „relaxation-oscillations“ (англ.) // The London, Edinburgh, and Dublin Philosophical magazine and Journal of Science : журнал. — 1926. — Vol. 2, no. 11. — P. 978–992. — doi:10.1080/14786442608564127.
  3. Van der Pol. Oscillations sinusoïdales et de relaxation (фр.) // Onde Électrique : журнал. — 1930. — No 9. — P. 245–256 & 293–312.
  4. 1 2 3 4 Ginoux J.-M. and Letellier Ch. Van der Pol and the history of relaxation oscillations: Toward the emergence of a concept (англ.) // Chaos : журнал. — 2012. — Vol. 22. — P. 023120. — doi:10.1063/1.3670008.
Читайте также:  У какого элемента хрома или селена сильнее металлические свойства

Ссылки[править | править код]

  • Физика. Большой энциклопедический словарь/Гл. ред. А. М. Прохоров. — 4-е изд. — М.: Большая Российская энциклопедия, 1999. — С. 293—295. ISBN 5-85270-306-0 (БРЭ)

Источник

Каким свойством обладает колебательное движение

Механические колебания – периодически повторяющееся перемещение материальной точки, при котором она движется по какой-либо траектории поочередно в двух противоположных направлениях относительно положения устойчивого равновесия.

Отличительными признаками колебательного движения являются:

  • повторяемость движения;
  • возвратность движения.

Для существования механических колебаний необходимо:

  • наличие возвращающей силы – силы, стремящейся вернуть тело в положение равновесия (при малых смещениях от положения равновесия);
  • наличие малого трения в системе.

Механические волны – это процесс распространения колебаний в упругой среде.

Виды волн

  • Поперечная – это волна, в которой колебание частиц среды происходит перпендикулярно направлению распространения волны.

Поперечная волна представляет собой чередование горбов и впадин.
Поперечные волны возникают вследствие сдвига слоев среды относительно друг друга, поэтому они распространяются в твердых телах.

  • Продольная – это волна, в которой колебание частиц среды происходит в направлении распространения волны.

Продольная волна представляет собой чередование областей уплотнения и разряжения.
Продольные волны возникают из-за сжатия и разряжения среды, поэтому они могут возникать в жидких, твердых и газообразных средах.

Важно!
Механические волны не переносят вещество среды. Они переносят энергию, которая складывается из кинетической энергии движения частиц среды и потенциальной энергии ее упругой деформации.

Гармонические колебания

Гармонические колебания – простейшие периодические колебания, при которых координата тела меняется по закону синуса или косинуса:

где ​( x )​ – координата тела – смещение тела от положения равновесия в данный момент времени; ​( A )​ – амплитуда колебаний; ​( omega t+varphi_0 )​ – фаза колебаний; ​( omega )​ – циклическая частота; ​( varphi_0 )​ – начальная фаза.

Если в начальный момент времени тело проходит положение равновесия, то колебания являются синусоидальными.

Если в начальный момент времени смещение тела совпадает с максимальным отклонением от положения равновесия, то колебания являются косинусоидальными.

Скорость гармонических колебаний
Скорость гармонических колебаний есть первая производная координаты по времени:

где ​( v )​ – мгновенное значение скорости, т. е. скорость в данный момент времени.

Амплитуда скорости – максимальное значение скорости колебаний, это величина, стоящая перед знаком синуса или косинуса:

Ускорение гармонических колебаний
Ускорение гармонических колебаний есть первая производная скорости по времени:

где ​( a )​ – мгновенное значение ускорения, т. е. ускорение в данный момент времени.

Амплитуда ускорения – максимальное значение ускорения, это величина, стоящая перед знаком синуса или косинуса:

Если тело совершает гармонические колебания, то сила, действующая на тело, тоже изменяется по гармоническому закону:

где ​( F )​ – мгновенное значение силы, действующей на тело, т. е. сила в данный момент времени.

Амплитуда силы – максимальное значение силы, величина, стоящая перед знаком синуса или косинуса:

Тело, совершающее гармонические колебания, обладает кинетической или потенциальной энергией:

где ​( W_k )​ – мгновенное значение кинетической энергии, т. е. кинетическая энергия в данный момент времени.

Амплитуда кинетической энергии – максимальное значение кинетической энергии, величина, стоящая перед знаком синуса или косинуса:

При гармонических колебаниях каждую четверть периода происходит переход потенциальной энергии в кинетическую и обратно.
В положении равновесия:

  • потенциальная энергия равна нулю;
  • кинетическая энергия максимальна.

При максимальном отклонении от положения равновесия:

  • кинетическая энергия равна нулю;
  • потенциальная энергия максимальна.

Полная механическая энергия гармонических колебаний
При гармонических колебаниях полная механическая энергия равна сумме кинетической и потенциальной энергий в данный момент времени:

Важно!
Следует помнить, что период колебаний кинетической и потенциальной энергий в 2 раза меньше, чем период колебаний координаты, скорости, ускорения и силы. А частота колебаний кинетической и потенциальной энергий в 2 раза больше, чем частота колебаний координаты, скорости, ускорения и силы.

Графики зависимости кинетической, потенциальной и полной энергий всегда лежат выше оси времени.

Если сила сопротивления отсутствует, то полная энергия сохраняется. График зависимости полной энергии от времени есть прямая, параллельная оси времени (в отсутствие сил трения).

Амплитуда и фаза колебаний

Амплитуда колебаний – модуль наибольшего смещения тела от положения равновесия.
Обозначение – ​( A, (X_{max}) )​, единицы измерения – м.

Фаза колебаний – это величина, которая определяет состояние колебательной системы в любой момент времени.
Обозначение – ​( varphi )​, единицы измерения – рад (радиан).

Фаза колебаний – это величина, стоящая под знаком синуса или косинуса. Она показывает, какая часть периода прошла от начала колебаний.
Фаза гармонических колебаний в процессе колебаний изменяется.
​( varphi_0 )​ – начальная фаза колебаний.
Начальная фаза колебаний – величина, которая определяет положение тела в начальный момент времени.

Важно!
Путь, пройденный телом за одно полное колебание, равен четырем амплитудам.

Период колебаний

Период колебаний – это время одного полного колебания.
Обозначение – ​( T )​, единицы измерения – с.

Период гармонических колебаний – постоянная величина.

Частота колебаний

Частота колебаний – это число полных колебаний в единицу времени.
Обозначение – ​( nu )​, единицы времени – с-1 или Гц (Герц).

1 Гц – это частота такого колебательного движения, при котором за каждую секунду совершается одно полное колебание:

Читайте также:  Какие свойства уз волны используются при медицинских методах исследования

Период и частота колебаний – взаимно обратные величины:

Циклическая частота – это число колебаний за 2π секунд.
Обозначение – ​( omega )​, единицы измерения – рад/с.

Свободные колебания (математический и пружинный маятники)

Свободные колебания – колебания, которые совершает тело под действием внутренних сил системы за счет начального запаса энергии после того как его вывели из положения устойчивого равновесия.

Условия возникновения свободных колебаний:

  • при выведении тела из положения равновесия должна возникнуть сила, стремящаяся вернуть его в положение равновесия;
  • силы трения в системе должны быть достаточно малы. При наличии сил трения свободные колебания будут затухающими.

При наличии сил трения свободные колебания будут затухающими.
Затухающие колебания – это колебания, амплитуда которых с течением времени уменьшается.

Математический маятник – это материальная точка, подвешенная на невесомой нерастяжимой нити.

Период колебаний математического маятника:

Частота колебаний математического маятника:

Циклическая частота колебаний математического маятника:

Максимальное значение скорости колебаний математического маятника:

Максимальное значение ускорения колебаний математического маятника:

Период свободных колебаний математического маятника, движущегося вверх с ускорением или вниз с замедлением:

Период свободных колебаний математического маятника, движущегося вниз с ускорением или вверх с замедлением:

Период свободных колебаний математического маятника, горизонтально с ускорением или замедлением:

Мгновенное значение потенциальной энергии математического маятника, поднявшегося в процессе колебаний на высоту ​( h )​, определяется по формуле:

где ​( l )​ – длина нити, ​( alpha )​ – угол отклонения от вертикали.

Пружинный маятник – это тело, подвешенное на пружине и совершающее колебания вдоль вертикальной или горизонтальной оси под действием силы упругости пружины.

Период колебаний пружинного маятника:

Частота колебаний пружинного маятника:

Циклическая частота колебаний пружинного маятника:

Максимальное значение скорости колебаний пружинного маятника:

Максимальное значение ускорения колебаний пружинного маятника:

Мгновенную потенциальную энергию пружинного маятника можно найти по формуле:

Амплитуда потенциальной энергии – максимальное значение потенциальной энергии, величина, стоящая перед знаком синуса или косинуса:

Важно!
Если маятник не является ни пружинным, ни математическим (физический маятник), то его циклическую частоту, период и частоту колебаний по формулам, применимым к математическому и пружинному маятнику, рассчитать нельзя. В данном случае эти величины рассчитываются из формулы силы, действующей на маятник, или из формул энергий.

Вынужденные колебания

Вынужденные колебания – это колебания, происходящие под действием внешней периодически изменяющейся силы.

Вынужденные колебания, происходящие под действием гармонически изменяющейся внешней силы, тоже являются гармоническими и незатухающими. Их частота равна частоте внешней силы и называется частотой вынужденных колебаний.

Резонанс

Резонанс – явление резкого возрастания амплитуды колебаний, которое происходит при совпадении частоты вынуждающей силы и собственной частоты колебаний тела.

Условие резонанса:

​( v_0 )​ – собственная частота колебаний маятника.

На рисунке изображены резонансные кривые для сред с разным трением. Чем меньше трение, тем выше и острее резонансная кривая.

Явление резонанса учитывается при периодически изменяющихся нагрузках в машинах и различных сооружениях.
Также резонанс используется в акустике, радиотехнике и т. д.

Длина волны

Длина волны – это расстояние, на которое волна распространяется за один период, т. е. это кратчайшее расстояние между двумя точками среды, колеблющимися в одинаковых фазах.
Обозначение – ​( lambda )​, единицы измерения – м.

Расстояние между соседними гребнями или впадинами в поперечной волне и между соседними сгущениями или разряжениями в продольной волне равно длине волны.

Скорость распространения волны – это скорость перемещения горбов и впадин в поперечной волне и сгущений или разряжений в продольной волне.

Звук

Звук – это колебания упругой среды, воспринимаемые органом слуха.

Условия, необходимые для возникновения и ощущения звука:

  • наличие источника звука;
  • наличие упругой среды между источником и приемником звука;
  • наличие приемника звука; • частота колебаний должна лежать в звуковом диапазоне;
  • мощность звука должна быть достаточной для восприятия.

Звуковые волны – это упругие волны, вызывающие у человека ощущение звука, представляющие собой зоны сжатия и разряжения, передающиеся на расстояние с течением времени.

Классификация звуковых волн:

  • инфразвук (​( nu )​ < 16 Гц);
  • звуковой диапазон (16 Гц < ( nu ) < 20 000 Гц);
  • ультразвук (( nu ) > 20 000 Гц).

Скорость звука – это скорость распространения фазы колебания, т. е. области сжатия и разряжения среды.

Скорость звука зависит

  • от упругих свойств среды:

в воздухе – 331 м/с, в воде – 1400 м/с, в металле – 5000 м/с;

  • от температуры среды:

в воздухе при температуре 0°С – 331 м/с,
в воздухе при температуре +15°С – 340 м/с.

Характеристики звуковой волны

  • Громкость – это величина, характеризующая слуховые ощущения человека, зависящая от амплитуды колебаний в звуковой волне. Единицы измерения – дБ (децибел).
  • Высота тона – это величина, характеризующая слуховые ощущения человека, зависящая от частоты колебаний в звуковой волне. Чем больше частота, тем выше звук. Чем меньше частота, тем ниже звук.
  • Тембр – это окраска звука.

Музыкальный звук – это звук, издаваемый гармонически колеблющимся телом. Каждому музыкальному тону соответствует определенная длина и частота звуковой волны.
Шум – хаотическая смесь тонов.

Основные формулы по теме «Механические колебания и волны»

Механические колебания и волны

3 (60%) 4 votes

Источник