Каким свойством обладает клеточная стенка мембрана
Клеточной стенкой обладают не только растения, но и грибы, а также многие прокариоты. Само открытие Робертом Гуком клетки связано именно с этой структурой. Для понимания устройства клеточной стенки полезно рассмотреть механизм ее образования. Начнем с самых ранних стадий. Как известно, цитокинез (процесс разделения клеток по завершении митоза) в клетках животных осуществляется посредством их отшнуровки, у растений это происходит совершенно иначе. Сначала в экваториальной плоскости делящейся клетки из микротрубочек образуется цилиндрической формы структура, которая называется фрагмопластом. Затем вдоль этих микротрубочек транспортируются мембранные пузырьки, которые отшнуровываются от мешочков комплексом Гольджи. Эти пузырьки сливаются, образуя окруженный мембраной диск. Такой диск является ранней клеточной пластинкой, с ней постоянно сливаются все новые пузырьки. В итоге ранняя клеточная пластинка достигает плазматической мембраны и сливается с ней, разделяя дочерние клетки. Следует отметить, что раннюю клеточную пластинку пронизывают элементы эндоплазматической сети, поэтому такое разделение дочерних клеток не является абсолютным. Прямые сообщения между растительными клетками называются плазмодесмами. Они специфичны для растительных клеток и будут более подробно рассмотрены ниже. Пузырьки комплекса Гольджи, из которого образовалась ранняя клеточная стенка, содержат различные полисахариды, основные из которых пектины и гемицеллюлоза. Связываясь между собой, эти вещества образуют срединную пластинку, которая в основном состоит из пектина. Позже в ее состав входят более плотные вещества – целлюлоза и лигнин. Как уже упоминалось, формирование срединной пластинки зависит от оси веретена деления, если учитывать, что ткани развиваются в трехмерном пространстве, легко представить, что каждая клетка со всех сторон окружена срединной пластинкой.
Рис. Ход цитокинеза в клетках высших растений, имеющих жесткую клеточную структуру
(по Б. Албертсу и соавт., с изменениями и дополнениями)
Рис. Расположение фрагмопласта (Phragmoplast) в делящейся растительной клетке
На следующих этапах формируются сначала первичная, а затем вторичная клеточная стенка. Строение этих структур нетрудно представить себе, если вспомнить принцип устройства железобетонных блоков, в которых присутствуют металлический каркас и связующее вещество в виде цемента. Такая конструкция обладает немалой прочностью. Такой же принцип наблюдается и в клеточных стенках растений (как в первичных, так и во вторичных). При этом роль нерастяжимых элементов каркаса выполняют пучки молекул целлюлозы, а роль связующего компонента принадлежит гемицеллюлозам и пектинам, которые образуют матрикс клеточной стенки. Все эти вещества транспортируются в пузырьках комплекса Гольджи к плазматической мембране, где пузырьки сливаются с ней и посредством экзоцитоза выбрасывают содержащиеся в ней вещества наружу. Эти вещества, попадая в пространство между плазматической мембраной и срединной пластинкой, служат материалом для образования клеточной стенки.
Молекулы целлюлозы образованы большим количеством (более 500) остатков глюкозы, которые ковалентно соединяются между собой посредством гликозидных связей. Эти молекулы не ветвятся, но образуют по всей длине многочисленные водородные связи с расположенными рядом молекулами. В результате возникают фибриллы, состоящие из 60 – 70 молекул целлюлозы, длиной несколько мкм (см. рис.). С целлюлозными фибриллами связаны молекулы гемицеллюлоз. Этот полисахарид образован из остатков двух пентоз – ксилозы и арабинозы. Они формируют цепи, к которым присоединяются боковые ответвления, образованные другими моносахаридами. В свою очередь, с молекулами гемицеллюлозы взаимодействуют пектины – полисахариды, образованные сахароподобными мономерами (см. рис.). Их отличительной особенностью является наличие большого количества карбоксильных групп (так называются атомные группы — COOH). Эти группы легко взаимодействуют с ионами кальция и магния, образуя гелеобразные соли – пектаты (это свойство активно используется в хозяйственной практике человека при производстве мармеладов и желе; особенно богаты пектинами некоторые виды водорослей, которые добываются для этих целей в больших количествах). Эта реакция обратима и зависит от различных физических условий – влажность, температура, а также наличие ионов.
Рис. Электронная микрофотография, на которой видны целлюлозные волокна в отдельных слоях клеточной стенки зеленой морской водоросли – Chaetomorpha melagonium.
Толщина целлюлозных микрофибрилл составляет 20 нм (по Н. Грину и соавт., с изменениями)
Рис. Схема строения клеточной оболочки (из Wiki)
Middle Lamella – срединная пластинка, Primary Cell Wall – первичная клеточная стенка, Plasma Membrane – цитоплазматическая мембрана, Pectin – молекулы пектина, Cellulose Microfibril – целлюлозные микрофибриллы, Hemicellulose – молекулы гемицеллюлозы, Soluble Protein – растворимый белок
Целлюлоза, гемицеллюлоза и пектины очень важные компоненты пищи человека. Это балластные вещества, или пищевые волокна, которые не перевариваются в кишечнике человека. Они связывают воду, набухают, стимулируют кишечную перистальтику, способствуют выведению из организма токсических веществ.
Рис. Схема возможного соединения двух главных компонентов первичной клеточной стенки – целлюлозных микрофибрилл и матрикса.
Молекулы гемицеллюлоз (например, ксилоглюканов) прикреплены к поверхности целлюлозных микрофибрилл водородными связями. Некоторые из этих молекул соединены поперечными сшивками, образованными короткими молекулами нейтральных пектинов (например, арабиногалактанов) и кислых пектинов (например, рамногалактуронанов). Гликопротеины плотно вплетены в ткань клеточной стенки
(по Б. Апьбертсу и соавт., с изменениями и дополнениями)
Первичная клеточная стенка содержит до 90% воды. Она характерна главным образом для меристематических (меристематические клетки – это клетки, способные постоянно делиться) и малодифференцированных (дифференциация – приобретение клеткой морфологических особенностей, связанных с функциональной специализацией клетки) клеток. Такие клетки способны значительно увеличивать свой объем и, соответственно, размеры. Необходимо учитывать, что целлюлозные фибриллы нерастяжимы, а увеличение линейных размеров осуществляется за счет смещения относительно друг друга упомянутых фибрилл.
Некоторые клетки, в частности мезофилла листьев (мезофилл – фотосинтезирующая паренхима вегетативных листьев), по достижении своих окончательных размеров перестают откладывать элементы оболочки. И у них в течение всей жизни сохраняется первичная оболочка. Но у большинства клеток этот процесс не прекращается. В этом случае между плазматической мембраной и первичной стенкой откладывается вторичная. Ее строение в принципе сходно с первичной стенкой, но соотношение компонентов различно. Вторичная стенка содержит значительно больше целлюлозы и меньше воды.
Во вторичной стенке обычно выделяют три слоя – наружный, самый мощный средний и внутренний (см. рис.). В ней (во вторичной стенке) имеется большое количество пор. Следует отметить, что, несмотря на название, пора представляет собой отнюдь не сквозное отверстие, а всего лишь обычное углубление во вторичной стенке. Первичная стенка и срединная пластинка остаются при этом интактными. Несмотря на это, через поры эффективно осуществляется транспорт, а у некоторых растений (например, у голосеменных) транспорт воды по ксилеме осуществляется только через поры. Поры могут быть простыми (см. рис.) и окаймленными (см. рис.). Окаймленные поры хвойных благодаря наличию такой структуры, как торус, способны активно влиять на интенсивность транспорта. Торус, смещаясь, может перекрывать поток воды (который в нормальном положении обтекает его по краям). Правда, такая акция может быть только одноразовой, потому что, сместившись, торус уже не способен больше вернуться в первоначальное положение.
Рис. Схема строения клеточной стенки:
А – общий вид; Б – часть оболочки при большом увеличении; В – вид сверху; 1 – срединная пластинка; 2, 3, 4- соответственно внешний, средний и внутренний слои вторичной оболочки; 5 – пора; 6 – слепая пора; 7 – плазмодесменные канальцы; 8 – поровое поле
(по В. А. Гуляеву)
Рис. Простые поры в оболочках каменистых клеток из семенной кожуры грецкого ореха:
1 – вторичная оболочка состоит из многих параллельных слоев, отложенных путем аппозиции; 2 – полость клетки; 3 – поровый канал; 4 – ветвистая пора; 5 – срединная пластинка, слившаяся с первичной оболочкой (по Каусману)
Рис. Схема строения пары окаймленных пор:
А – открытое положение поровой мембраны: 1 – первичные оболочки двух соседних клеток (и межклеточный слой между ними); 2 – вторичная оболочка; 3 – поровое окаймление; 4 – поровая мембрана (состоящая из двух первичных оболочек соседних клеток и межклеточного слоя между ними); 5 – поровая камера; 6 – торус; Б – закрытое положение поровой мембраны (по А. А. Яценко-Хмелевскому)
Транспорт также осуществляется через мелкие (до 30 – 60 нм) сквозные отверстия, которые ведут в каналы, пронизывающие клеточные стенки соседних клеток вместе с серединной пластинкой, – плазмодесмы. Эти каналы по всей длине выстланы плазматической мембраной. Через плазмодесмы проходит полая десмотубула, через нее элементы эндоплазматического ретикулума соседних клеток сообщаются между собой (см. рис.). Между плазматической мембраной и десмотубулой всегда имеется небольшое количество гиалоплазмы. Формирование плазмодесм обычно происходит в момент деления клеток в стадии цитокинеза, но современные исследования показывают, что такие межклеточные сообщения могут образовываться и после разделения сестринских клеток, кроме того, они имеются и между несестринскими клетками. Плазмодесмы позволяют веществам свободно мигрировать из одной клетки в другую, минуя при этом серьезные барьеры. Полагают, что ситовидные поля клеток флоэмы (флоэма – тип проводящей ткани, по которой синтезированные органические вещества транспортируются от фотосинтезирующих органов по направлению к корню) так же представляют собой крупные плазмодесмы.
Рис. Строение плазмодесмы
Рис. Плазмодесмы. Участок оболочек трех смежных клеток при средних увеличениях электронного микроскопа (схематизировано):
1 – эндоплазматический ретикулум смежных клеток сообщается между собой через десмотубулы (каналы плазмодесм); 2 – плазмалемма выстилает
каналы, отграничивая цитоплазму от оболочки; 3 – элементы эндоплазматического ретикулума; 4 – срединная пластинка; 5 – первичная оболочка; 6 – гиалоплазма (по И. А. Корчагиной)
При формировании вторичной клеточной стенки линейный роет клеток становится невозможен, поэтому этот процесс всегда сопровождается уменьшением объема протопласта (протопласт – содержимое живой клетки, за исключением клеточной оболочки). В некоторых случаях клетки, имеющие вторичные утолщения оболочек, сохраняют живой функционирующий протопласт (к примеру, клетки колленхимы – механической ткани, хотя здесь оболочка утолщается не везде, а лишь в определенных участках), но очень часто утолщение приводит к серьезному нарушению транспорта веществ, в результате чего протопласт отмирает, а главную функцию выполняет мощная оболочка (например, склеренхима). В этом случае оболочки одревесневают, т.е. пропитываются лигнином (лат. lignum – древесина). Одревеснение наблюдается у всех высших растений, за исключением мохообразных.
В результате повышается механическая прочность и понижается водопроницаемость.
Лигнин не является углеводом, а происходит из ароматических спиртов. Во вторичной оболочке его содержание доходит до 25 – 30% .
Кроме лигнина, в оболочке клеток некоторых неспециализированных тканей могут накапливаться вещества, обладающие гидрофобными свойствами: растительные воска, кутин и суберин (лат. suber – пробка). Суберин откладывается на внутренней поверхности стенок клеток пробки, что вызывает нарушение проницаемости и гибель клеток. Из суберина образуются и пояски Каспари клеток эндодермы (эндодерма – самый внутренний слой первичной коры, эндодерму стебля также называют крахмалоносным влагалищем из-за отложений крахмала) корня. Кутин выделяется эпидермальными клетками, где он вместе с растительными воска-ми образует защитную кутикулу.
Итак, каждая растительная клетка заключена в сложно устроенный деревянный футляр. Но что это дает клетке? Клеточная стенка выполняет множество функций, но наиболее важными представляются две – роль наружного скелета и обеспечение возможности тургора (лат. turgescere – набухать).
Наличие оболочки лишает клетку возможности изменять свою форму. Для животных клеток это не приемлемо, т.к. резко ограничивает подвижность. Однако растительные организмы являются автотрофами и поэтому в значительно меньшей степени нуждаются в перемещении своего тела в пространстве. Напротив, жесткая оболочка фиксирует клетку. Особенно четко роль клеточной стенки прослеживается у высших наземных растений.
Наземные формы растений должны как-то поддержать тело над землей. Воздух, по причине малой плотности, не может поддерживать растение, поэтому наличие жесткой клеточной стенки, в особенности мощной вторичной, пришлось как нельзя кстати. Но клетка не может без ограничения увеличивать толщину стенки, сохраняя при этом живой протопласт, т.к. нарушается транспорт веществ. И действительно, значительная часть клеток живого растения мертва, а функционируют у них именно толстые оболочки (ксилема – тип проводящей ткани, по которой осуществляется транспорт воды с растворенными в ней минеральными веществами по направлению от корня ко всем структурам побега, склеренхима – тип механической ткани, образованной исключительно толстостенными мертвыми клетками).
Живая растительная клетка характеризуется тургором – давлением, которое оказывает протопласт на клеточную стенку, и, если бы ее не было, клетка разорвалась бы. Тургор выполняет функцию опоры у живых клеток, стенки которых не имеют сильно выраженного вторичного утолщения. Это особенно характерно для травянистых растений.
Кроме того, в клеточных стенках могут запасаться питательные вещества.
Клеточные стенки разделяют организм растения на два пространства. То из них, которое объединяет между собой все протопласты, связанные между собой посредством плазмодесм, называется симпластом. Пространство, которое отграничено клеточными стенками и включает в себя межклетники, называется апопластом. Соответственно транспорт через плазмодесмы называется симпластическим, а транспорт по оболочкам и межклетникам – апопластическим.
Рис. Симпластический и апопластический транспорт веществ
Растительные клетки довольно прочно связаны между собой в основном за счет срединной пластинки. Мы уже говорили, что в ее состав входит большое количество пектинов. Если их каким-то образом растворить, то клетки потеряют связь друг с другом. Такой процесс носит название мацерации. Ее можно вызвать искусственным путем с помощью некоторых веществ, но часто встречается природная мацерация (ее легко можно наблюдать у перезрелых плодов дыни, арбузов, помидоров или бананов).
Источник
Все живые организмы на Земле состоят из клеток, а каждая клетка окружена защитной оболочкой – мембраной. Однако функции мембраны не ограничиваются защитой органоидов и отделением одной клетки от другой. Клеточная мембрана представляет собой сложнейший механизм, напрямую участвующий в размножении, регенерации, питании, дыхании и многих других важных функциях клетки.
Термин «клеточная мембрана» используется уже около ста лет. Само слово «мембрана» в переводе с латыни означает «пленка». Но в случае в клеточной мембраной правильнее будет говорить и совокупности двух пленок, соединенных между собой определенным образом, причем, разные стороны этих пленок обладают разными свойствами.
Клеточная мембрана (цитолемма, плазмалемма) – это трехслойная липопротеиновая (жиро-белковая) оболочка, отделяющая каждую клетку от соседних клеток и окружающей среды, и осуществляющая управляемый обмен между клетками и окружающей средой.
Решающее значение в этом определении имеет не то, что клеточная оболочка отделяет одну клетку от другой, а то, что она обеспечивает её взаимодействие другими клетками и окружающей средой. Мембрана – весьма активная, постоянно работающая структура клетки, на которую природой возложено множество функций. Из нашей статьи вы узнаете все о составе, строении, свойствах и функциях клеточной мембраны, а также о той опасности, которую представляют для здоровья человека нарушения в работе клеточных мембран.
Содержание:
- История исследования клеточной мембраны
- Свойства и функции клеточной мембраны
- Строение клеточной мембраны
- Важнейшие выводы о строении и функциях клеточных мембран
История исследования клеточной мембраны
В 1925 году двое немецких ученых, Гортер и Грендель, смогли провести сложнейший эксперимент над красными кровяными тельцами человеческой крови, эритроцитами. С помощью осмотического удара исследователи получили так называемые «тени»– пустые оболочки эритроцитов, затем сложили их в одну стопку и измерили площадь поверхности. Следующим шагом стало вычисление количества липидов в клеточной мембране. С помощью ацетона ученые выделили липиды из «теней» и определили, что их как раз хватает на двойной сплошной слой.
Однако в ходе эксперимента было допущено две грубейших ошибки:
Использование ацетона не позволяет выделить из мембран абсолютно все липиды;
Площадь поверхности «теней» была высчитана по сухому весу, что тоже неправильно.
Поскольку первая ошибка давала минус в расчетах, а вторая – плюс, общий результат оказался на удивление точным, и немецкие ученые принесли в научный мир важнейшее открытие – липидный бислой клеточной мембраны.
В 1935 году другая пара исследователей, Даниэлли и Доусон, после долгих экспериментов над билипидными пленками пришли к выводу о присутствии в клеточных мембранах белков. Иначе никак нельзя было объяснить, почему эти пленки обладают таким высоким показателем поверхностного натяжения. Ученые представили вниманию общественности схематическую модель клеточной мембраны, похожую на сэндвич, где роль кусочков хлеба играют однородные липидно-белковые слои, а между ними вместо масла – пустота.
В 1950 году с помощью первого электронного микроскопа теорию Даниэлли-Доусона удалось частично подтвердить – на микрофотографиях клеточной мембраны были отчетливо видны два слоя, состоящих из липидных и белковых головок, а между ними прозрачное пространство, заполненное лишь хвостиками липидов и белков.
В 1960 году, руководствуясь этими данными, американский микробиолог Дж. Робертсон разработал теорию о трехслойном строении клеточных мембран, которая долгое время считалась единственно верной. Однако по мере развития науки рождалось все больше сомнений относительно однородности этих слоев. С точки зрения термодинамики такое строение крайне невыгодно – клеткам было бы очень сложно транспортировать вещества внутрь и наружу через весь «бутерброд». Кроме того, было доказано, что клеточные мембраны разных тканей имеют разную толщину и способ крепления, что обусловлено разными функциями органов.
В 1972 году микробиологи С.Д. Сингер и Г.Л. Николсон смогли объяснить все нестыковки теории Робертсона с помощью новой, жидкостно-мозаичной модели клеточной мембраны. Ученые установили, что мембрана неоднородна, ассиметрична, наполнена жидкостью, и её клетки пребывают в постоянном движении. А белки, входящие в её состав, имеют разное строение и назначение, кроме того, они по-разному располагаются относительно билипидного слоя мембраны.
В составе клеточных мембран присутствуют белки трех видов:
Периферические – крепятся на поверхности пленки;
Полуинтегральные – частично проникают внутрь билипидного слоя;
Интегральные – полностью пронизывают мембрану.
Периферические белки связаны с головками мембранных липидов посредством электростатического взаимодействия, и они никогда не образуют сплошной слой, как принято было считать ранее.А полуинтегральные и интегральные белки служат для транспортировки внутрь клетки кислорода и питательных веществ, а также для вывода из нее продуктов распада и ещё для нескольких важных функций, о которых вы узнаете далее.
Подробнее: Биологические функции липидов
Свойства и функции клеточной мембраны
Клеточная мембрана выполняет следующие функции:
Барьерную – проницаемость мембраны для разных типов молекул неодинакова.Чтобы миновать оболочку клетки, молекула должна иметь определенный размер, химические свойства и электрический заряд. Вредные или неподходящие молекулы, благодаря барьерной функции клеточной мембраны, просто не могут проникнуть внутрь клетки. Например, с помощью реакции пероксиса мембрана защищает цитоплазму от опасных для нее пероксидов;
Транспортную – сквозь мембрану проходит пассивный, активный, регулируемый и избирательный обмен. Пассивный обмен подходит для жирорастворимых веществ и газов, состоящих из очень маленьких молекул. Такие вещества проникают внутрь и выходят из клетки без затрат энергии, свободно, методом диффузии. Активная транспортная функция клеточной мембраны задействуется тогда, когда в клетку или из нее нужно провести необходимые, но трудно транспортируемые вещества. Например, обладающие большим размером молекул, или неспособные пересечь билипидный слой из-за гидрофобности. Тогда начинают работать белки-насосы, в том числе АТФаза, которая отвечает за всасывание в клетку ионов калия и выбрасывание из нее ионов натрия. Регулируемый транспортный обмен необходим для осуществления функций секреции и ферментации, например, когда клетки производят и выделяют гормоны или желудочный сок. Все эти вещества выходят из клеток через специальные каналы и в заданном объеме. А избирательная транспортная функция связана с теми самыми интегральными белками, которые пронизывают мембрану и служат каналом для входа и выхода строго определенных типов молекул;
Матричную – клеточная мембрана определяет и фиксирует расположение органоидов относительно друг друга (ядра, митохондрий, хлоропластов) и регулирует взаимодействие между ними;
Механическую – обеспечивает ограничение одной клетки от другой, и, в то же время,— правильное соединение клеток в однородную ткань и устойчивость органов к деформации;
Защитную – как у растений, так и у животных, клеточная мембрана служит основой для построения защитного каркаса. Примером могут служить твердая древесина, плотная кожура, колючие шипы. В животном мире тоже много примеров защитной функции клеточных мембран – черепаший панцирь, хитиновая оболочка, копыта и рога;
Энергетическую — процессы фотосинтеза и клеточного дыхания были бы невозможны без участия белков клеточной мембраны, ведь именно с помощью белковых каналов клетки обмениваются энергией;
Рецепторную— белки, встроенные в клеточную мембрану, могут обладать ещё одной важной функцией. Они служат рецепторами, благодаря которым клетка получает сигнал от гормонов и нейромедиаторов. А это, в свою очередь, необходимо для проведения нервных импульсов и нормального течения гормональных процессов;
Ферментативную — ещё одна важная функция, присущая некоторым белкам клеточных мембран. Например, в эпителии кишечника с помощью таких белков синтезируются пищеварительные ферменты;
Биопотенциальную – концентрация ионов калия внутри клетки значительно выше, чем снаружи, а концентрация ионов натрия, наоборот, снаружи больше, чем внутри. Этим и объясняется разность потенциалов: внутри клетки заряд отрицательный, в снаружи положительный, что способствует движению веществ внутрь клетки и наружу при любом из трех типов обмена – фагоцитозе, пиноцитозе и экзоцитозе;
Маркировочную – на поверхности клеточных мембран имеются так называемые «ярлыки» – антигены, состоящие из гликопротеинов (белков с присоединенными к ним разветвленными олигосахаридными боковыми цепями). Поскольку боковые цепи могут иметь огромное множество конфигураций, каждый тип клеток получает свой уникальный ярлык, который позволяет другим клеткам организма узнавать их «в лицо» и правильно на них реагировать. Вот почему, например, иммунные клетки человека, макрофаги, без труда распознают чужака, проникшего в организм (инфекцию, вирус) и пытаются его уничтожить. То же самое происходит с больными, мутировавшими и старыми клетками – ярлык на их клеточной мембране меняется, и организм избавляется от них.
Клеточный обмен происходит через мембраны, и может осуществляться с помощью трех основных типов реакций:
Фагоцитоз – клеточный процесс, при котором встроенные в мембрану клетки-фагоциты захватывают и переваривают твердые частички питательных веществ. В человеческом организме фагоцитоз осуществляется мембранами двух типов клеток: гранулоцитов (зернистых лейкоцитов) и макрофагов (иммунных клеток-убийц);
Пиноцитоз – процесс захвата поверхностью клеточной мембраны соприкасающихся с нею молекул жидкости. Для питания по типу пиноцитоза клетка выращивает на своей мембране тонкие пушистые выросты в форме усиков, которые как бы окружают капельку жидкости, и получается пузырек. Сначала этот пузырек выпячивается над поверхностью мембраны, а затем «проглатывается» – прячется внутрь клетки, и его стенки сливаются уже с внутренней поверхностью клеточной мембраны. Пиноцитоз проходит почти во всех живых клетках;
Экзоцитоз – обратный процесс, при котором внутри клетки образуются пузырьки с секреторной функциональной жидкостью (ферментом, гормоном), и её необходимо как-то вывести из клетки в окружающую среду. Для этого пузырек сначала сливается с внутренней поверхностью клеточной мембраны, затем выпячивается наружу, лопается, исторгает содержимое и снова сливается с поверхностью мембраны, на этот раз уже с внешней стороны. Экзоцитоз проходит, например, в клетках кишечного эпителия и коры надпочечников.
Строение клеточной мембраны
Клеточные мембраны содержат липиды трех классов:
Фосфолипиды;
Гликолипиды;
Холестерол.
Фосфолипиды (комбинация жиров и фосфора) и гликолипиды (комбинация жиров и углеводов), в свою очередь, состоят из гидрофильной головки, от которой отходят два длинных гидрофобных хвостика. А вот холестерол иногда занимает пространство между этими двумя хвостиками и не даёт им изгибаться, что делает мембраны некоторых клеток жесткими. Кроме того, молекулы холестерола упорядочивают структуру клеточных мембран и препятствуют переходу полярных молекул из одной клетки в другую.
Но самой важной составляющей, как видно из предыдущего раздела о функциях клеточных мембран, являются белки. Их состав, назначение и расположение весьма разнообразны, но есть нечто общее, что всех их объединяет: вокруг белков клеточных мембран всегда расположены аннулярные липиды. Это особые жиры, которые четко структурированы, устойчивы, имеют в своем составе больше насыщенных жирных кислот, и выделяются из мембран вместе с «подшефными» белками. Это своего рода персональная защитная оболочка для белков, без которой они бы просто не работали.
Структура клеточной мембраны трехслойна. Посередине пролегает относительно однородный жидкий билипидный слой, а белки покрывают его с обеих сторон подобием мозаики, частично проникая в толщу. То есть, неправильно было бы думать, что внешние белковые слои клеточных мембран непрерывны. Белки, помимо своих сложных функций, нужны в мембране для того, чтобы пропускать внутрь клеток и транспортировать из них наружу те вещества, которые не способны проникнуть сквозь жировой слой. К примеру, ионы калия и натрия. Для них предусмотрены специальные белковые структуры – ионные каналы, подробнее о которых мы расскажем далее.
Если взглянуть на клеточную мембрану через микроскоп, то можно увидеть слой липидов, образованный мельчайшими шарообразными молекулами, по которому, как по морю, плавают большие белковые клетки разной формы. Точно такие же мембраны делят внутреннее пространство каждой клетки на отсеки, в которых уютно располагаются ядро, хлоропласты и митохондрии. Не будь внутри клетки отдельных «комнат», органоиды бы слиплись друг с другом и не смогли бы выполнять свои функции правильно.
Клетка – это структурированная и отграниченная с помощью мембран совокупность органоидов, которая участвует в комплексе энергетических, метаболических, информационных и репродуктивных процессов, обеспечивающих жизнедеятельность организма.
Как видно из этого определения, мембрана является важнейшей функциональной составляющей любой клетки. Её значение так же велико, как значение ядра, митохондрий и прочих клеточных органелл. А уникальные свойства мембраны обусловлены её строением: она состоит из двух плёночек, слепленных друг с другом особым образом. Молекулы фосфолипидов в мембране расположены гидрофильными головками наружу, а гидрофобными хвостами внутрь. Поэтому одна сторона плёночки смачивается водой, а другая – нет. Так вот, эти плёночки соединяются друг с другом несмачиваемыми сторонами внутрь, образуя билипидный слой, окруженный молекулами белков. Это и есть то самое «бутербродное» строение клеточной мембраны.
Ионные каналы клеточных мембран
Рассмотрим более подробно принцип работы ионных каналов. Для чего они нужны? Дело в том, что сквозь липидную мембрану беспрепятственно могут проникать только жирорастворимые вещества – это газы, спирты и сами жиры. Так, например, в красных кровяных тельцах постоянно происходит обмен кислорода и углекислого газа, и для этого нашему организму не приходится прибегать ни к каким дополнительным ухищрениям. Но как же быть, когда возникает необходимость в транспортировке сквозь клеточную мембрану водных растворов, таких, как соли натрия и калия?
Проложить в билипидном слое путь для таких веществ было бы невозможно, поскольку отверстия бы тут же затянулись и слиплись обратно, такова уж структура любой жировой ткани. Но природа, как всегда, нашла выход из ситуации, и создала специальные белковые транспортные структуры.
Существует два типа проводящих белков:
Транспортеры – полуинтегральные белки-насосы;
Каналоформеры – интегральные белки.
Белки первого типа частично погружены в билипидный слой клеточной мембраны, а головкой выглядывают наружу, и в присутствии нужного вещества они начинают вести себя, как насос: притягивают молекулу и всасывают её внутрь клетки. А белки второго типа, интегральные, имеют вытянутую форму и располагаются перпендикулярно билипидному слою клеточной мембраны, пронизывая её насквозь. По ним, как по тоннелям, в клетку и из клетки движутся вещества, неспособные проходить сквозь жир. Именно через ионные каналы внутрь клетки проникают ионы калия и накапливаются в ней, а ионы натрия, наоборот, выводятся наружу. Возникает разность электрических потенциалов, так необходимая для правильной работы всех клеток нашего организма.
Важнейшие выводы о строении и функциях клеточных мембран
Теория всегда выглядит интересной и перспективной, если её можно с пользой применить на практике. Открытие строения и функций клеточных мембран человеческого организма позволило ученымсовершить настоящий прорыв в науке в целом, и в медицине в частности. Мы не случайно так подробно остановились на ионных каналах, ведь именно здесь кроется ответ на один из важнейших вопросов современности: почему люди все чаще заболевают онкологией?
Рак ежегодно уносит около 17 миллионов жизней во всем мире, и является четвертой по частоте причиной всех смертей. По данным ВОЗ, заболеваемость онкологией неуклонно увеличивается, и к концу 2020 года может достигнуть 25 миллионов в год.
Чем объясняется настоящая эпидемия рака, и причем тут функции клеточных мембран? Вы скажете: причина в плохой экологической обстановке, неправильном питании, вредных привычках и тяжелой наследственности. И, конечно, будете правы, но если говорить о проблеме более предметно, то причина в закисленности человеческого организма. Перечисленные выше негативные факторы приводят к нарушению работы клеточных мембран, угнетают дыхание и питание.
Там, где должен быть плюс, образуется минус, и клетка не может нормально функционировать. А вот раковым клеткам не нужны ни кислород, ни щелочная среда – они способны использовать анаэробный тип питания. Поэтому в условиях кислородного голодания и зашкаливающего уровня pH здоровые клетки мутируют, желая приспособиться к окружающей среде, и становятся раковыми клетками. Так человек и заболевает онкологией. Чтобы этого избежать, нужно всего лишь употреблять достаточное количество чистой воды ежедневно, и отказаться от канцерогенов в пище. Но, как правило, люди прекрасно знают о вредных продуктах и потребности в качественной воде, и ничего не предпринимают – надеются, что беда обойдет их стороной.
Зная особенности строения и функций клеточных мембран разных клеток, врачи могут использовать эти сведения для оказания направленного, адресноготерапевтического воздействия на организм. Многие современные лекарственные препараты, попадая в наше тело, ищут нужную «мишень», в качестве которой могут выступать ионные каналы, ферменты, рецепторы и биомаркеры клеточных мембран. Такой способ лечения позволяет добиться более высоких результатов при минимальных побочных эффектах.
Антибиотики последнего поколения при попадании в кровь не убивают все клетки подряд, а ищут именно клетки возбудителя, ориентируясь на маркеры в его клеточных оболочках. Новейшие препараты против мигрени, триптаны, сужают только воспаленные сосуды головного мозга, при этом почти никак не влияя на сердце и периферическую кровеносную систему. И узнают они нужные сосуды именно по белкам их клеточных мембран. Таких примеров множество, поэтому можно с уверенностью сказать, что знания о строении и функциях клеточных оболочек лежит в основе развития современной медицинской науки, и спасает миллионы жизней каждый год.
<