Каким свойством обладает импульс тел составляющих замкнутую систему
Подробности
Просмотров: 82
1. Что называют импульсом тела?
Импульсом тела называется величина, равная произведению массы тела на его скорость.
Иногда вместо термина «импульс» используется термин «количество движения».
2. Что можно сказать о направлениях векторов импульса и скорости движущегося тела?
Импульс – векторная величина.
Направление вектора импульса тела всегда совпадает с направлением вектора скорости движения тела.
3. Что принимают за единицу импульса?
За единицу импульса в СИ принимают импульс тела массой 1 кг, движущегося со скоростью 1 м/с.
Единицей импульса тела в СИ является 1 кг • м/с.
4. Как рассчитать импульс тела?
При расчетах величины импульса тела пользуются уравнением для проекций векторов:
В зависимости от направления вектора скорости по отношению к выбранной оси X и, соответственно, от знака его проекции,
проекция вектора импульса может быть как положительной, так и отрицательной.
5. Можно ли сказать, что тело обладает импульсом потому, что на него действует сила?
Нет, сила, действующая на тело, является причиной изменения импульса тела.
6. Может ли импульс тела равняться нулю?
Если скорость тела равна нулю, т.е. тело находится в состоянии покоя, то и импульс тела равен нулю.
7. О чём свидетельствует опыт?
При взаимодействии тел их импульсы могут изменяться.
Два шарика одинаковой массы подвешивают на нитяных петлях к укрепленной на кольце штатива деревянной линейке.
Шарик 2 отклоняют от вертикали на угол а и отпускают.
Вернувшись в прежнее положение, он ударяет по шарику I и останавливается.
При этом шарик 1 приходит в движение и отклоняется на тот же угол а.
В результате взаимодействия шаров импульс каждого из них изменился:
на сколько уменьшился импульс правого шара, на, столько же увеличился импульс левого шара. |
Импульс каждого из тел, входящих в замкнутую систему, может меняться в результате их взаимодействия друг с другом.
8. Что такое замкнутая система тел?
Если два или несколько тел взаимодействуют только между собой, т. е. не подвергаются воздействию внешних сил, то эти тела образуют замкнутую систему.
Импульс каждого из тел, входящих в замкнутую систему, может меняться в результате их взаимодействия друг с другом.
9. Что такое незамкнутая система тел?
Незамкнутая система тел — это система тел, взаимодействующих между собой, на которую, кроме того, действуют и какие-то внешние силы.
В таком случае общий импульс системы не будет сохраняться.
Он изменяется.
А изменение импульса равно импульсу той силы, которая приложена к системе.
Например:
Стоящего на льду конькобежца может заставить сдвинуться с места (изменить импульс) толчок его товарища, то есть сила извне системы.
Но если конькобежец будет тянуть одной своей рукой другую, то это не изменит его импульс.
10. В чем состоит закон сохранения импульса?
Закон сохранения импульса:
Векторная сумма импульсов тел, составляющих замкнутую систему, не меняется с течением времени при любых движениях и взаимодействиях этих тел.
Формула закона сохранения импульса в векторном виде:
где
слева – сумма импульсов тел до взаимодействия
справа – сумма импульсов тел после взаимодействия
11. В каких случаях выполняется закон сохранения импульса?
а) Закон сохранения импульса выполняется для замкнутых систем, т.е. когда на систему не действуют внешние силы.
б) Закон сохранения импульса выполняется
и в том случае, если на тела системы действуют внешние силы, но векторная сумма их равна нулю.
12. Какова формула закона сохранения импульса в виде уравнения, в которое входили бы массы и скорости этих тел, для замкнутой системы?
Формула закона сохранения импульса в векторном виде:
или
Расчетная формула закона сохранения импульса в проекциях векторов для решения задач:
где
m1 и m2 – массы взаимодействующих тел (кг),
v1x и v2x – проекции векторов скорости тел (м/с)
(со штрихом – до взаимодействия, без штриха – после взаимодействия).
Следующая страница – смотреть
Назад в “Оглавление” – смотреть
Источник
Рассмотрим изменение импульсов тел при их взаимодействии друг с другом.
Если два или несколько тел взаимодействуют только между собой (то есть не подвергаются воздействию внешних сил), то эти тела образуют замкнутую систему.
Импульс, равный векторной сумме импульсов тел, входящих в замкнутую систему, называется суммарным импульсом этой системы.
Таким образом, чтобы найти суммарный импульс замкнутой системы (n) тел, необходимо найти векторную сумму импульсов всех тел, входящих в данную систему:
pсум→=p1→+p2→+…+pn→.
Импульс каждого из тел, входящих в замкнутую систему, может меняться в результате их взаимодействия друг с другом.
Векторная сумма импульсов тел, составляющих замкнутую систему, не меняется с течением времени при любых движениях и взаимодействиях этих тел.
В этом заключается закон сохранения импульса, который называют также законом сохранения количества движения.
Закон сохранения импульса впервые был сформулирован Р. Декартом. В одном из своих писем он написал:
«Я принимаю, что во Вселенной, во всей созданной материи есть известное количество движения, которое никогда не увеличивается, не уменьшается, и, таким образом, если одно тело приводит в движение другое, то теряет столько своего движения, сколько его сообщает».
Рассмотрим систему, состоящую только из двух тел — шаров массами m1 и m2, которые движутся прямолинейно навстречу друг другу со скоростями v1 и v2. Шары обладают импульсами p1→=m1v1→ и p2→=m2v2→ соответственно.
Через некоторое время шары столкнутся. Во время столкновения, длящегося в течение очень короткого промежутка времени (t), возникнут силы взаимодействия F1→ и F2→, приложенные соответственно к первому и второму шару. В результате действия этих сил скорости шаров изменятся. Обозначим скорости шаров после соударения v1′ и v2′. И импульсы шаров станут p1→′=m1v1→′ и p2→′=m2v2→′ соответственно.
Тогда, согласно закону сохранения импульса, имеют место равенства:
или
m1v1→+m2v2→=m1v1→′+m2v2→′.
Данные равенства являются математической записью закона сохранения импульса.
Закон сохранения импульса выполняется и в том случае, если на тела системы действуют внешние силы, векторная сумма которых равна нулю.
Таким образом, более точно закон сохранения импульса формулируется так:
векторная сумма импульсов всех тел замкнутой системы — величина постоянная, если внешние силы, действующие на неё, отсутствуют, или же их векторная сумма равна нулю.
Импульс системы тел может измениться только в результате действия на систему внешних сил. И тогда закон сохранения импульса действовать не будет.
Пример:
при стрельбе из пушки возникает отдача: снаряд летит вперёд, а само орудие откатывается назад. Почему?
Снаряд и пушка — замкнутая система, в которой действует закон сохранения импульса. В результате выстрела из пушки импульс самой пушки и импульс снаряда изменятся. Но сумма импульсов пушки и находящегося в ней снаряда до выстрела останется равной сумме импульсов откатывающейся пушки и летящего снаряда после выстрела.
Обрати внимание!
В природе замкнутых систем не существует. Но если время действия внешних сил очень мало, например, во время взрыва, выстрела и т. п., то в этом случае воздействием внешних сил на систему пренебрегают, а саму систему рассматривают как замкнутую.
Кроме того, если на систему действуют внешние силы, но сумма их проекций на одну из координатных осей равна нулю (то есть силы уравновешены в направлении этой оси), то в этом направлении закон сохранения импульса выполняется.
Великий учёный Исаак Ньютон изобрёл наглядную демонстрацию закона сохранения импульса — маятник, или её ещё называют «колыбель». Это устройство представляет собой конструкцию из пяти одинаковых металлических шаров, каждый из которых крепится с помощью двух тросов к каркасу, а тот в свою очередь — к прочному основанию П-образной формы.
Маятник Ньютона устроен так, что начальный шар передаёт импульс второму шарику, а затем замирает. Нашему глазу на первый взгляд не заметно, как следующий шарик принимает импульс от предыдущего, мы не можем проследить его скорость. Но, если взглянуть пристальнее, можно заметить, как шарик немножко «вздрагивает». Это объясняется тем, что он совершает движения с посланной ему скоростью, но поскольку расстояние очень маленькое, ему некуда разогнаться, то он может на своём коротком пути передать импульс третьему шарику и в итоге остановиться.
Такое же действие совершает и следующий шарик и т. д. Последнему шарику некуда передавать свой импульс, поэтому он свободно колеблется, поднимаясь на определённую высоту, а затем возвращается, и весь процесс передачи импульсов повторяется в обратном порядке.
Самый яркий пример применения закона сохранения импульса — реактивное движение.
Источники:
Пёрышкин А. В., Гутник Е. М. Физика, 9 кл.: учебник. — М.: Дрофа, 2014. — 319 с.
www.klassnoedelo.ru, сайт «Классное дело — новые технологии в образовании»
www.barvinok80.narod.ru, сайт дошкольного учреждения образования «Барвинок»
www.hottabich.com.ua, сайт «Hottabich»
www.thegreenhead.com, сайт «Green Head»
www.askskb.net, сайт «Интерактивная физика»
Источник
Физика
Учебник для 9 класса
Законы Ньютона позволяют решать различные практически важные задачи, касающиеся взаимодействия и движения тел. Большое число таких задач связано, например, с нахождением ускорения движущегося тела, если известны все действующие на это тело силы. А затем по ускорению определяют и другие величины (мгновенную скорость, перемещение и др.).
Но часто бывает очень сложно определить действующие на тело силы. Поэтому для решения многих задач используют ещё одну важнейшую физическую величину — импульс тела.
- Импульсом тела р называется векторная физическая величина, равная произведению массы тела на его скорость
p = mv.
Импульс — векторная величина. Направление вектора импульса тела всегда совпадает с направлением вектора скорости движения.
За единицу импульса в СИ принимают импульс тела массой 1 кг, движущегося со скоростью 1 м/с. Значит, единицей импульса тела в СИ является 1 кг • м/с.
При расчётах пользуются уравнением для проекций векторов:
рх = mvx.
В зависимости от направления вектора скорости по отношению к выбранной оси X проекция вектора импульса может быть как положительной, так и отрицательной.
Слово «импульс» (impulsus) в переводе с латинского означает «толчок». В некоторых книгах вместо термина «импульс» используется термин «количество движения».
Эта величина была введена в науку примерно в тот же период времени, когда Ньютоном были открыты законы, названные впоследствии его именем (т. е. в конце XVII в.).
При взаимодействии тел их импульсы могут изменяться. В этом можно убедиться на простом опыте.
Два шарика одинаковой массы подвешивают на нитяных петлях к укреплённой на кольце штатива деревянной линейке, как показано на рисунке 44, а.
Рис. 44. Демонстрация закона сохранения импульса
Шарик 2 отклоняют от вертикали на угол а (рис. 44, б) и отпускают. Вернувшись в прежнее положение, он ударяет по шарику 1 и останавливается. При этом шарик 1 приходит в движение и отклоняется на тот же угол а (рис. 44, в).
В данном случае очевидно, что в результате взаимодействия шаров импульс каждого из них изменился: на сколько уменьшился импульс шара 2, на столько же увеличился импульс шара 1.
Если два или несколько тел взаимодействуют только между собой (т. е. не подвергаются воздействию внешних сил), то эти тела образуют замкнутую систему.
Импульс каждого из тел, входящих в замкнутую систему, может меняться в результате их взаимодействия друг с другом. Но
- векторная сумма импульсов тел, составляющих замкнутую систему, не меняется с течением времени при любых движениях и взаимодействиях этих тел
В этом заключается закон сохранения импульса.
Закон сохранения импульса выполняется и в том случае, если на тела системы действуют внешние силы, векторная сумма которых равна нулю. Покажем это, воспользовавшись для вывода закона сохранения импульса вторым и третьим законами Ньютона. Для простоты рассмотрим систему, состоящую только из двух тел — шаров массами m1 и m2, которые движутся прямолинейно навстречу друг другу со скоростями v1 и v2 (рис. 45).
Рис. 45. Система из двух тел — шаров, движущихся прямолинейно навстречу друг другу
Силы тяжести, действующие на каждый из шаров, уравновешиваются силами упругости поверхности, по которой они катятся. Значит, действие этих сил можно не учитывать. Силы сопротивления движению в данном случае малы, поэтому их влияние мы тоже не будем учитывать. Таким образом, можно считать, что шары взаимодействуют только друг с другом.
Из рисунка 45 видно, что через некоторое время шары столкнутся. Во время столкновения, длящегося в течение очень короткого промежутка времени t, возникнут силы взаимодействия F1 и F2, приложенные соответственно к первому и второму шару. В результате действия сил скорости шаров изменятся. Обозначим скорости шаров после соударения буквами v1 и v2.
В соответствии с третьим законом Ньютона силы взаимодействия шаров равны по модулю и направлены в противоположные стороны:
По второму закону Ньютона каждую из этих сил можно заменить произведением массы и ускорения, полученного каждым из шаров при взаимодействии:
m1а1 = -m2а2.
Ускорения, как вы знаете, определяются из равенств:
Заменив в уравнении для сил ускорения соответствующими выражениями, получим:
В результате сокращения обеих частей равенства на t получим:
m1(v’1 – v1) = -m2(v’2 – v2).
Сгруппируем члены этого уравнения следующим образом:
m1v1′ + m2v2′ = m1v1 = m2v2. (1)
Учитывая, что mv = p, запишем уравнение (1) в таком виде:
P’1 + Р’2 = P1 + Р2.(2)
Левые части уравнений (1) и (2) представляют собой суммарный импульс шаров после их взаимодействия, а правые — суммарный импульс до взаимодействия.
Значит, несмотря на то, что импульс каждого из шаров при взаимодействии изменился, векторная сумма их импульсов после взаимодействия осталась такой же, как и до взаимодействия.
Уравнения (1) и (2) являются математической записью закона сохранения импульса.
Поскольку в данном курсе рассматриваются только взаимодействия тел, движущихся вдоль одной прямой, то для записи закона сохранения импульса в скалярной форме достаточно одного уравнения, в которое входят проекции векторных величин на ось X:
m1v’1x + m2v’2х= m1v1x + m2v2x.
Вопросы
- Что называют импульсом тела?
- Что можно сказать о направлениях векторов импульса и скорости движущегося тела?
- Расскажите о ходе опыта, изображённого на рисунке 44. О чём он свидетельствует?
- Что означает утверждение о том, что несколько тел образуют замкнутую систему?
- Сформулируйте закон сохранения импульса.
- Для замкнутой системы, состоящей из двух тел, запишите закон сохранения импульса в виде уравнения, в которое входили бы массы и скорости этих тел. Поясните, что означает каждый символ в этом уравнении.
Упражнение 20
- Две игрушечные заводные машины, массой по 0,2 кг каждая, движутся прямолинейно навстречу друг другу. Скорость каждой машины относительно земли равна 0,1 м/с. Равны ли векторы импульсов машин; модули векторов импульсов? Определите проекцию импульса каждой из машин на ось X, параллельную их траектории.
- На сколько изменится (по модулю) импульс автомобиля массой 1 т при изменении его скорости от 54 до 72 км/ч?
- Человек сидит в лодке, покоящейся на поверхности озера. В какой-то момент он встаёт и идёт с кормы на нос. Что произойдёт при этом с лодкой? Объясните явление на основе закона сохранения импульса.
- Железнодорожный вагон массой 35 т подъезжает к стоящему на том же пути неподвижному вагону массой 28 т и автоматически сцепляется с ним. После сцепки вагоны движутся прямолинейно со скоростью 0,5 м/с. Какова была скорость вагона массой 35 т перед сцепкой?
Источник
Урок № 22 Дата:26.11.15
Тема урока: «Импульс тела. Изменение импульса материальной точки.
Система тел. Закон сохранения импульса»
Цель урока: ввести новую физическую характеристику – импульс тела;
Задачи:
Образовательные:
найти взаимосвязь между действующей силой, временем ее действия и изменением скорости тела;
изучить закон сохранения импульса.
Воспитательная:
показать, что знание основ физики необходимо каждому;
показать, что явления физики происходят повсюду вокруг нас;
формирование познавательного интереса к физике.
Развивающая:
Развитие политехнических знаний и умений, умения пользоваться языком физики и применять знания в новой обстановке.
Демонстрации: взаимодействие стального шарика и магнита; взаимодействие легкоподвижной тележки, скатывающейся по наклонной плоскости, с неподвижным телом.
Ход урока
Организационный момент
Повторение. Актуализация
– Что называют ускорением?
– Перемещение при равноускоренном движении
– Сформулируйте второй закон Ньютона
– Сформулируйте третий закон Ньютона
Учитель: Тему урока вы узнаете, разгадав небольшой кроссворд, ключевым словом, которого и будет тема нашего урока. (Разгадываем слева на право, слова записываем по очереди вертикально).
Явление сохранения скорости постоянной при отсутствии внешних воздействий или при их компенсации.
Явление изменения объема или формы тела.
Сила, возникающая при деформации, стремящая вернуть тело в первоначальное положение.
Английский ученый, современник Ньютона, установил зависимость силы упругости от деформации.
Единица массы.
Английский ученый, открывший основные законы механики.
Векторная физическая величина, численно равная изменению скорости за единицу времени.
Сила, с которой Земля притягивает к себе все тела.
Сила, возникающая благодаря существованию сил взаимодействия между молекулами и атомами соприкасающихся тел.
Мера взаимодействия тел.
Раздел механики, в которой изучают закономерности механического движения материальных тел под действием приложенных к ним сил.
III. Изучение нового материала
Ребята тема нашего урока “Импульс тела. Закон сохранения импульса”
Сегодня на уроке мы с вами не только будем ставить опыты, но и доказывать их математически.
Зная основные законы механики, в первую очередь три закона Ньютона, казалось бы, можно решить любую задачу о движении тел. Ребята, я вам продемонстрирую опыты, а вы подумайте, можно ли в этих случаях используя только законы Ньютона решить задачи?
Проблемный эксперимент.
Опыт №1.Скатывание легкоподвижной тележки с наклонной плоскости. Она сдвигает тело, находящееся на ее пути.
Можно ли найти силу взаимодействия тележки и тела? (нет, так как столкновение тележки и тела кратковременное и силу их взаимодействия определить трудно).
Опыт №2. Скатывание нагруженной тележки. Сдвигает тело дальше.
Можно ли в данном случае найти силу взаимодействия тележки и тела?
Сделайте вывод: с помощью каких физических величин можно охарактеризовать движение тела?
Вывод: Законы Ньютона позволяют решать задачи связанные с нахождением ускорения движущегося тела, если известны все действующие на тело силы, т.е. равнодействующая всех сил. Но часто бывает очень сложно определить равнодействующую силу, как это было в наших случаях.
Если на вас катится игрушечная тележка, вы можете остановить ее носком ноги, а если на вас катится грузовик?
Вывод: для характеристики движения надо знать массу тела и его скорость.
Поэтому для решения задач используют еще одну важнейшую физическую величину – импульс тела.
Историческая справка
Понятие импульса было введено в физику французским ученым Рене Декартом (1596 – 1650 гг), который назвал эту величину «количеством движения»: « Я принимаю, что во вселенной…. Есть известное количество движения, которое никогда не увеличивается, не уменьшается, и, таким образом, если одно тело приводит в движение другое, то теряет столько своего движения, сколько его сообщает».
Рене Декарт родился в дворянской семье, в школьные годы проявил интерес к математике. Получив образование, Декарт служил в армии, много путешествовал, затем поселился в Нидерландах, посвятив себя науке. Развивая идеи Галилея, сформулировал закон сохранения количества движения.
Найдем взаимосвязь между действующей на тело силой, временем ее действия, и изменением скорости тела.
Пусть на тело массой m, которое покоится, начинает действовать сила F. Тогда из второго закона Ньютона ускорение этого тела будет а. Причем:
F = ma
С другой стороны:
а = (V – V0 ) / t
Значит, подставив в первое выражение значение ускорения, получаем:
F = m (V0 – V) / t
или:
Ft = mV – mV0
Рассмотрим правую часть, мы видим, что произведение массы на скорость есть импульс тела.В тетради записываем определение, что называем импульсом тела.
p = mV
Произведение массы тела на его скорость называется импульсом тела.
Импульс р – векторная величина. Он всегда совпадает по направлению с вектором скорости тела. Любое тело, которое движется, обладает импульсом.
Выясним, в каких единицах измеряется импульс тела.
Т.к. масса измеряется в кг, а скорость – в м/с, то импульс тела измеряется в кг·м/с.
Но в правой части есть еще произведение массы на начальную скорость. Получаем, что все то, что стоит в правой части мы называем изменением импульса тела и обозначаем ∆p
∆p = mV – mV0 – изменение импульса тела
Задача (устно): Найдите импульс тела массой 5 кг, движущегося со скоростью 2 м/с.
Слева у нас произведение силы на время есть импульс силы
Ft – импульс силы
В каких единицах будет выражаться импульс силы? (Н с)
Оказывается, что
Ft = ∆p
В векторном виде мы задачи не решаем.
Далеко не все задачи в механике можно решить, используя законы Ньютона. К таким задачам можно отнести расчет скорости тел после соударения и расчет текущей скорости тела, у которого меняется масса.
Рассмотрим опыт с мячами.
Импульс обладает интересным свойством, которое есть лишь у немногих физических величин. Это свойство сохранения. Но закон сохранения импульса выполняется только в замкнутой системе.
Запишем определение в тетрадь.
Замкнутая система тел – это совокупность тел, взаимодействующих между собой, но не взаимодействующих с другими телами.
Импульс каждого из тел, составляющих замкнутую систему, может меняться в результате их взаимодействия друг с другом.
Векторная сумма импульсов тел, составляющих замкнутую систему, не меняется с течением времени при любых движениях и взаимодействиях этих тел.
В этом заключается закон сохранения импульса.
Примеры: ружье и пуля в его стволе, пушка и снаряд, оболочка ракеты и топливо в ней.
IV Решение задач
Рассмотрим применение закона сохранения импульса на примере решения двух задач.
Задача 1
Два шара массами 100 г и 200 г движутся на встречу друг другу. С какой скоростью будут двигаться эти шары и в какую сторону, если после удара они движутся как единое целое? Скорости шаров до удара соответственно равны 4 м/c и 3 м/c.
Работа в группах
Задача №1
На неподвижную тележку массой 100 кг прыгает человек массой 50 кг со скоростью 6 м/с. С какой скоростью начнет двигаться тележка с человеком?
Задача №2
Снаряд массой 100 кг, летящий горизонтально вдоль железнодорожного пути со скоростью 500 м/с, попадает в вагон с песком массой 10 т и застревает в нем. Найти скорость вагона, если он движется со скоростью 36 км/ч навстречу снаряду.
Критериальная шкала самооценки (взаимооценки):
• Догадался сам, понял метод, примененный при решении задачи, легко решу подобную- «5».
• Все понял, но без подсказки не догадался бы –«4».
• В основном все понятно, но отдельные моменты не представляю четко-«3».
• Ничего непонятно – «!». Внимание ! Опасность! Пробелы в знаниях, пора задуматься о ликвидации их.
V. Подведение итогов
Ребята, что нового вы узнали сегодня?
VI. Домашнее задание § 19-20, упр 17 (2,3)
Синквейн – это не обычное стихотворение, а стихотворение, написанное в соответствии с
1 строка — название синквейна, выраженное в форме существительного.
2 строка – два прилагательных.
3 строка – три глагола.
4 строка – фраза, несущая определенный смысл на тему синквейна.
5 строка – вывод, одно слово, существительное.( ассоциация с первым словом).
например
импульс силы
произведение силы на время
ударяет, сообщает
это сильный толчок
мы сделали выше скачок!
Источник