Каким свойствами обладают жидкости

Каким свойствами обладают жидкости thumbnail

Жидкостью называют вещество, которое находится в агрегатном состоянии, являющимся промежуточным между твердым и газообразным. При этом ее состояние, как и в случае с твердыми телами, является конденсируемым, то есть предполагает связь между частицами (атомами, молекулами, ионами). Жидкость обладает свойствами, кардинально отличающими ее от веществ, которые находятся в других агрегатных состояниях. Главное из них – способность к многократному изменению формы под воздействием механических напряжений без потери объема. Сегодня мы с вами выясним, какими свойствами обладают жидкости, и что они вообще собой представляют.

Общая характеристика

Газ не сохраняет объем и форму, твердое тело сохраняет и то, и другое, а жидкость – только объем. Именно поэтому жидкое агрегатное состояние считается промежуточным. Поверхность жидкости представляет подобие упругой мембраны и определяет ее форму. Молекулы таких тел, с одной стороны, не имеют определенного положения, а с другой – не могут получить полную свободу перемещения. Они могут собираться в капли и течь под собственной поверхностью. Между молекулами жидкости существует притяжение, которого достаточно, чтобы удерживать их на близком расстоянии.

Свойства жидкостей

Вещество пребывает в жидком состоянии в определенном температурном интервале. Если температура опускается ниже него, происходит переход в твердую форму (кристаллизация), а если поднимается выше – в газообразную (испарение). Границы данного интервала для одной и той же жидкости могут колебаться в зависимости от давления. К примеру, в горах, где давление существенно ниже, чем на равнинах, вода закипает при более низкой температуре.

Обычно жидкость имеет только одну модификацию, поэтому является одновременно и агрегатным состоянием, и термодинамической фазой. Все жидкости делятся на чистые вещества и смеси. Некоторые из таких смесей имеют определяющее значение в жизни человека: кровь, морская вода и прочие.

Рассмотрим основные свойства жидкостей.

Текучесть

От других веществ жидкость отличается, в первую очередь, текучестью. Если к ней приложить внешнюю силу, в направлении ее приложения возникает поток частиц. Таким образом, при воздействии внешних неуравновешенных сил, жидкость не способна к сохранению формы и относительного расположения частиц. По этой же причине, она принимает форму сосуда, в который попадает. В отличие от твердых пластичных тел, жидкости не имеют предела текучести, то есть текут при малейшем выходе из равновесного состояния.

Физические свойства жидкостей

Сохранение объема

Одним из характерных физических свойств жидкостей является способность к сохранению объема при механическом воздействии. Их чрезвычайно трудно сжать из-за высокой плотности молекул. Согласно закону Паскаля, давление, которое производится на жидкость, заключенную в сосуд, без изменения передается в каждую точку ее объема. Наряду с минимальной сжимаемостью, эта особенность широко используется в гидравлике. Большинство жидкостей при нагревании увеличивается в объеме, а при охлаждении – уменьшается.

Вязкость

Среди главных свойств жидкостей, как и в случае с газами, стоит отметить вязкость. Вязкостью называют способность частиц сопротивляться движению друг относительно друга, то есть внутреннее трение. При движении соседних слоев жидкости относительно друг друга, происходит неизбежное столкновение молекул, и возникают силы, которые затормаживают упорядоченное перемещение. Кинетическая энергия упорядоченного движения преобразуется в тепловую энергию хаотического движения. Если жидкость, помещенную в сосуд, переместить, а затем оставить в покое, то она постепенно остановится, но ее температура возрастет.

Свободная поверхность и поверхностное натяжение

Если взглянуть на каплю воды, которая лежит на ровной поверхности, то можно увидеть, что она закруглена. Обусловлено это такими свойствами жидкостей, как образование свободной поверхности и поверхностное натяжение. Способность жидкостей к сохранению объема обуславливает образование свободной поверхности, которая является не иначе как поверхностью раздела фаз: жидкой и газообразной. При соприкосновении этих фаз одного и того же вещества возникают силы, направленные на уменьшение площади плоскости раздела. Их называют поверхностным натяжением. Граница раздела фаз представляет собой упругую мембрану, стремящуюся к стягиванию.

Общие свойства жидкостей

Поверхностное натяжение объясняется также притяжением молекул жидкости друг к другу. Каждая молекула стремится «окружить» себя другими молекулами и уйти с границы раздела. Из-за этого поверхность стремительно уменьшается. Этим объясняется тот факт, что мыльные пузыри и пузыри, образующиеся при кипении, стремятся принять сферическую форму. Если на жидкость будет действовать только сила поверхностного натяжения, она непременно примет такую форму.

Небольшие объекты, плотность которых превышает плотность жидкости, способны оставаться на ее поверхности за счет того, что сила, препятствующая увеличению площади поверхности, больше силы тяготения.

Испарение и конденсация

Испарением называют постепенный переход вещества из жидкого состояния в газообразное. В процессе теплового движения часть молекул покидают жидкость, проходя через ее поверхность, и преобразуются в пар. Параллельно с этим другая часть молекул, наоборот, переходит из пара в жидкость. Когда количество соединений, покинувшее жидкость, превышает количество соединений, пришедших в нее, имеет место процесс испарения.

Химические свойства жидкостей

Конденсацией называют процесс, обратный испарению. Во время конденсации жидкость получает из пара больше молекул, чем отдает.

Оба описанных процесса являются неравновесными и могут продолжаться до тех пор, пока не установится локальное равновесие. При этом жидкость может полностью испариться или же вступить со своим паром в равновесие.

Кипение

Кипением называют процесс внутренних преобразований жидкости. При повышении температуры до определенного показателя, давление пара превышает давление внутри вещества, и в нем начинают образовываться пузырьки. В условиях земного притяжения они всплывают вверх.

Смачивание

Смачиванием называют явление, которое возникает при контакте жидкости с твердым веществом в присутствии пара. Таким образом, оно происходит на границе раздела трех фаз. Это явление характеризует «прилипание» жидкого вещества к твердому, и его растекание по поверхности твердого вещества. Бывает три вида смачивания: ограниченное, полное и несмачивание.

Смешиваемость

Основные физические свойства жидкостей

Характеризует способность жидкостей растворяться друг в друге. Примером смешиваемых жидкостей могут выступить вода и спирт, а несмешиваемых – вода и масло.

Диффузия

Когда две смешиваемых жидкости пребывают в одном сосуде, благодаря тепловому движению молекулы начинают преодолевать границу раздела, и жидкости постепенно смешиваются. Данный процесс называется диффузией. Он может происходить и в веществах, которые находятся в иных агрегатных состояниях.

Перегрев и переохлаждение

Среди увлекательных свойств жидкостей стоит отметить перегрев и переохлаждение. Эти процессы нередко ложатся в основу химических фокусов. При равномерном нагреве, без сильных перепадов температур и механических воздействий, жидкость может нагреться выше точки кипения, не вскипев при этом. Этот процесс получил название перегрев. Если в перегретую жидкость бросить какой-либо предмет, она мгновенно вскипит.

Аналогичным образом происходит и переохлаждение жидкости, то есть ее охлаждение до температуры ниже точки замерзания, минуя само замерзание. При легком ударе переохлажденная жидкость мгновенно кристаллизуется и превращается в лед.

Жидкость обладает свойствами

Волны на поверхности

Если нарушить равновесие участка поверхности жидкости, то тогда она, под действием возвращающих сил, будет двигаться обратно к равновесию. Это движение не ограничивается одним циклом, а превращается в колебания и распространяется на другие участки. Так получаются волны, которые можно наблюдать на поверхности любой жидкости.

Когда в качестве возвращающей силы выступает преимущественно сила тяжести, волны называют гравитационными. Их можно видеть на воде повсеместно. Если же возвращающая сила формируется преимущественно из силы поверхностного натяжения, то волны называют капиллярными. Теперь вы знаете, какое свойство жидкостей обуславливает знакомое всем волнение воды.

Волны плотности

Жидкость чрезвычайно тяжело сжимается, тем не менее, с изменением температуры, ее объем и плотность все-таки меняются. Происходит это не мгновенно: при сжатии одного участка, другие сжимаются с запаздыванием. Таким образом, внутри жидкости распространяются упругие волны, которые получили название волны плотности. Если по мере распространения волны плотность меняется слабо, то ее называю звуковой, а если достаточно сильно – ударной.

Мы с вами познакомились с общими свойствами жидкостей. Все основные характеристики зависят уже от типа и состава жидкостей.

Классификация

Рассмотрев основные физические свойства жидкостей, давайте узнаем, как они классифицируются. Структура и свойства жидких веществ зависят от индивидуальности частиц, входящих в их состав, а также характера и глубины взаимодействия между ними. Исходя из этого, выделяют:

  1. Атомарные жидкости. Состоят из атомов или сферических молекул, которые связаны между собой центральными ван-дер-ваальсовыми силами. Ярким примером являются жидкий аргон и жидкий метан.
  2. Жидкости, состоящие из двухатомных молекул с одинаковыми атомами, ионы которых связаны кулоновскими силами. В качестве примера можно назвать: жидкий водород, жидкий натрий и жидкую ртуть.
  3. Жидкости, которые состоят из полярных молекул, связанных путем диполь-дипольного взаимодействия, например, жидкий бромоводород.
  4. Ассоциированные жидкости. Имеют водородные связи (вода, глицерин).
  5. Жидкости, которые состоят из больших молекул. Для последних, важную роль играют внутренние степени свободы.

Вещества первых двух (реже трех) групп называют простыми. Они изучены лучше, чем все остальные. Среди непростых жидкостей, больше всего изучена вода. В данную классификацию не входят жидкие кристаллы и квантовые жидкости, так как они представляют собой особые случаи и рассматриваются отдельно.

С точки зрения гидродинамических свойств, жидкости подразделяют на ньютоновские и неньютоновские. Течение первых подчиняется закону Ньютона. Это значит, что их касательное напряжение линейно зависит от градиента скорости. Коэффициент пропорциональности между указанными величинами называется вязкостью. У неньютоновских жидкостей, вязкость колеблется в зависимости от градиента скорости.

Какое свойство жидкостей

Изучение

Изучением движения и механического равновесия жидкостей и газов, а также их взаимодействия, в том числе с твердыми телами, занимается такой раздел механики как гидроаэромеханика. Его также называют гидродинамикой.

Несжимаемые жидкости изучают в подразделе гидроаэромеханики, который называется просто гидромеханикой. Так как сжимаемость жидкостей очень мала, во многих случаях ею попросту пренебрегают. Сжимаемые жидкости изучает газовая динамика.

Гидромеханику дополнительно подразделяют на гидростатику и гидродинамику (в узком смысле). В первом случае изучается равновесие несжимаемых жидкостей, а во втором – их движение.

Магнитная гидродинамика занимается изучением магнитных и электропроводных жидкостей, а прикладными задачами занимается гидравлика.

Основным законом гидростатики является закон Паскаля. Движение идеальных несжимаемых жидкостей описывается уравнением Эйлера. Для их стационарного потока выполняется закон Бернулли. А формула Торричелли описывает вытекание жидких веществ из отверстий. Движение вязких жидкостей подчиняется уравнению Навье-Стокса, которое, кроме всего прочего, может учитывать и сжимаемость.

Упругие волны и колебания в жидкости (как, впрочем, и в других средах) изучается такая наука как акустика. Гидроакустика – подраздел, который посвящен изучению звука в водной среде для решения задач подводной связи, локации и прочего.

В заключение

Сегодня мы с вами познакомились с общими физическими свойствами жидкостей. Также мы узнали, что вообще представляют собой такие вещества, и как они классифицируются. Что касается химических свойств жидкости, то они напрямую зависят от ее состава. Поэтому рассматривать их стоит отдельно для каждого вещества. Какое свойство жидкости важно, а какое нет – ответить сложно. Здесь все зависит от задачи, в контексте которой эта жидкость рассматривается.

Источник

Свойства жидкостей

Подробности

Категория: Молекулярно-кинетическая теория

Опубликовано 05.11.2014 12:37

Просмотров: 14309

Жидкость – агрегатное состояние вещества, занимающее промежуточное положение между его твёрдым и газообразным состояниями.

Самая распространённая жидкость на Земле – вода. Её твёрдое состояние – лёд, а газообразное – пар.

В жидкостях молекулы расположены почти вплотную друг к другу. Они обладают большей свободой, чем молекулы твёрдого вещества, хотя полностью свободно перемещаться не могут. Притяжение между ними хоть и слабее, чем в твёрдых телах, но всё-таки его достаточно, чтобы молекулы удерживались на близком расстоянии друг от друга. Каждая молекула жидкости может колебаться около какого-то центра равновесия. Но под действием внешней силы молекулы могут перескакивать на свободное место в направлении приложенной силы. Этим объясняется текучесть жидкости.

Текучесть

Свойства жидкостей 

Основное физическое свойство жидкости – текучесть. Когда к жидкости прикладывается внешняя сила, в ней возникает поток частиц, направление которого совпадает с направлением этой силы. Наклонив чайник с водой, мы увидим, как вода потечёт из его носика вниз под действием силы тяжести. Точно так же вытекает вода из лейки, когда мы поливаем растения в саду. Подобное явление мы наблюдаем в водопадах.

Вследствие текучести жидкость способна менять форму за малое время под действием даже небольшой силы. Все жидкости могут литься струёй, разбрызгиваться каплями. Их легко перелить из одного сосуда в другой. При этом они не сохраняют форму, а принимают форму того сосуда, в котором находятся. Это свойство жидкости используют, например, при литье металлических деталей. Расплавленный жидкий металл разливают в формы определённой конфигурации. Остывая, он превращается в твёрдое тело, сохраняющее эту конфигурацию.

Текучесть увеличивается с ростом температуры жидкости и уменьшается при её снижении. Это объясняется тем, что с повышением температуры расстояние между частицами жидкости также увеличивается, и они становятся более подвижными. Зависит текучесть и от структуры молекул. Чем сложнее их форма, тем меньшей текучестью обладает жидкость.

Вязкость

Свойства жидкостей

Различные жидкости имеют разную текучесть. Так, вода из бутылки вытекает быстрее, чем растительное масло. Мёд из стакана выливается медленнее, чем молоко. На эти жидкости действуют одинаковые силы тяжести. Так почему же их текучесть отличаются? Всё дело в том, что они обладают различной вязкостью. Чем выше вязкость жидкости, тем меньше её текучесть.

Что же такое вязкость, и какова её природа? Вязкость также называют внутренним трением. Это способность жидкости сопротивляться перемещению различных слоёв жидкости относительно друг друга. Молекулы, находящиеся в одном из слоёв и сталкивающиеся между собой во время теплового движения, сталкиваются ещё и с молекулами соседних слоёв. Возникают силы, тормозящие их движение. Они направлены в сторону, противоположную движению рассматриваемого слоя.

Вязкость – важная характеристика жидкостей. Её учитывают в различных технологических процессах, например, когда по трубопроводам необходимо перекачивать жидкость.

Вязкость жидкости измеряют с помощью прибора, называемого вискозиметром. Самым простым считается капиллярный вискозиметр. Принцип его действия не сложен. Подсчитывается время, за которое заданный объём жидкости протекает через тонкую трубочку (капилляр) под воздействием разности давлений на его концах. Так как известны диаметр и длина капилляра, разность давлений, то можно произвести расчёты на основании закона Пуазёйля, согласно которому проходящий в секунду объём жидкости (секундный объёмный расход) прямо пропорционален перепаду давления на единицу длины трубы и четвертой степени её радиуса и обратно пропорционален коэффициенту вязкости жидкости.

 

где Q – секундный расход жидкости, м3/с;

р1 – р2 = ∆р – перепад давлений на концах капилляра, Па;

R – радиус капилляра, м;

d – диаметр капилляра, м;

ƞ – коэффициент динамической вязкости, Па/с;

l – длина капилляра, м.

Объём

Расстояние между молекулами внутри жидкости очень мало. Оно меньше размеров самих молекул. Поэтому жидкость очень трудно сжать механически. Давление, производимое на жидкость, заключённую в сосуд, передается в любую точку без изменений во всех направлениях. Так формулируется закон Паскаля. На этой особенности жидкостей основана работа тормозных систем, гидравлических прессов и других гидравлических устройств.

Жидкость сохраняет свой объём, если не изменяются внешние условия (давление, температура). Но при нагревании объём жидкости увеличивается, а при охлаждении уменьшается. Впрочем, здесь есть исключение. При нормальном давлении и повышении температуры от 0 до 4о объём воды не увеличивается, а уменьшается.

Волны плотности

Сжать жидкость очень трудно. Но при изменении давления всё же возможно. И в этом случае меняется её плотность и объём. Если сжатие произойдёт в одном участке жидкости, то на другие участки оно будут передаваться постепенно. Это означает, что в жидкости будут распространяться упругие волны. Если плотность меняется слабо, то получаем звуковую волну. А если достаточно сильно, то возникает ударная волна.

Поверхностное натяжение жидкости

Свойства жидкостей 

Явление поверхностного натяжения мы наблюдаем каждый раз, когда вода медленно капает из водопроводного крана. Сначала мы видим тонкую прозрачную плёнку, которая растягивается под тяжестью воды. Но она не рвётся, а охватывает небольшое количество воды и образует капельку, падающую из крана. Её создают силы поверхностного натяжения, которые стягивают воду в маленькое подобие шара.

Как возникают эти силы? В отличие от газа жидкость заполняет только часть объёма сосуда, в котором находится. Её поверхность – это граница раздела между самой жидкостью и газом (воздухом или паром). Со всех сторон молекулу, находящуюся внутри жидкости окружают другие молекулы той же жидкости. На неё действуют силы межмолекулярного воздействия. Они взаимно уравновешены. Равнодействующая этих сил равна нулю.

А на молекулы, находящиеся в поверхностном слое жидкости, силы притяжения со стороны молекул этой же жидкости могут действовать только с одной стороны. С другой стороны на них действуют силы притяжения молекул воздуха. Но так как они очень малы, ими пренебрегают.

Свойства жидкостей

Равнодействующая всех сил, действующих на молекулу, находящуюся на поверхности, направлена внутрь жидкости. И чтобы не оказаться втянутой в жидкость и остаться на поверхности, молекула совершает работу против этой силы. В результате молекулы верхнего слоя получают дополнительный запас потенциальной энергии. Чем больше поверхность жидкости, тем большее количество молекул находится там, и тем больше потенциальная энергия. Но в природе всё устроено так, что любая система старается свести свою потенциальную энергию до минимума. Следователь, существует сила, которая будет стремиться сократить свободную поверхность жидкости. Эта сила называется силой поверхностного натяжения.

Натяжение поверхности жидкости очень велико. И чтобы его разорвать требуется довольно значительная сила. Ненарушенная поверхность воды может легко удерживать монету, лезвие бритвы или стальную иголку, хотя эти предметы значительно тяжелее воды. Сила тяжести, действующая на них, оказывается меньше силы поверхностного натяжения воды.

Наименьшую поверхность из всех геометрических объёмных тел имеет шар. Поэтому если на жидкость действуют только силы поверхностного натяжения, то она принимает форму сферы. Такую форму имеют капли воды в невесомости. Мыльные пузыри или пузыри кипящей жидкости также стараются принять сферическую форму.

Смешиваемость

Свойства жидкостей

Жидкости могут растворяться друг в друге. Эта их способность называется смешиваемостью. Если поместить в один сосуд две смешиваемые жидкости, то в результате теплового движения их молекулы постепенно будут переходить через границу раздела. В результате произойдёт смешивание. Но не все жидкости могу смешиваться. Например, вода и растительное масло не смешиваются никогда. А воду и спирт смешать очень легко.

Адгезия

Свойства жидкостей

Все мы знаем, что гуси и утки выходят из воды сухими. Почему же их перья не намокают? Оказывается, у них есть специальная железа, которая выделяет жир, которым водоплавающие птицы при помощи клюва смазывают свои перья. И они остаются сухими, потому что вода стекает с них капельками.

Поместим каплю воды на пластинку из полистирола. Она принимает форму сплющенного шарика. Такую же каплю попробуем поместить на стеклянную пластинку. Мы увидим, что на стекле она растекается. Что же происходит с водой? Всё дело в том, что силы притяжения действуют не только между молекулами самой жидкости, но и между молекулами разных веществ в поверхностном слое. Эти силы называются силами адгезии (от латинского adhaesio – прилипание).

Взаимодействие жидкости с твёрдым телом называют смачиванием. Но поверхность твёрдого тела смачивается не всегда. Если окажется, что молекулы самой жидкости притягиваются друг к другу сильнее, чем к твёрдой поверхности, то жидкость соберётся в капельку. Именно так ведёт себя вода на пластинке из полистирола. Она не смачивает эту пластинку. Точно так же не растекаются капельки утренней росы на листиках растений. И по этой же причине вода стекает с покрытых жиром перьев водоплавающих птиц.

А если притяжение молекул жидкости к твёрдой поверхности сильнее сил притяжения между самими молекулами, то жидкость расплывается на поверхности. Поэтому наша капелька на стекле также растеклась. В этом случае вода смачивает поверхность стекла.

Нальём воду в сосуд из полистирола. Посмотрев на поверхность воды, мы увидим, что она не горизонтальная. У краёв сосуда она искривляется вниз. Так происходит, потому что силы притяжения между молекулами воды больше, чем силы адгезии (прилипания). А в стеклянном сосуде поверхность воды у краёв искривляется вверх. В этом случае силы прилипания больше внутримолекулярных сил воды. В широких сосудах это искривление наблюдается только у стенок сосудов. А если сосуд узкий, то это искривление заметно по всей поверхности воды.

Явление адгезии широко используется в различных отраслях промышленности – лакокрасочной, фармацевтической, косметической и др. Смачивание необходимо при склеивании, крашении тканей, нанесении на поверхность красок, лаков. А при строительстве бассейнов их стенки, наоборот, покрывают материалом, который не смачивается водой. Такие же материалы используют для зонтов, плащей, непромокаемой обуви, тентов.

Капиллярность

Свойства жидкостей

Ещё одна интересная особенность жидкости – капиллярный эффект. Так называют её способность изменять свой уровень в трубках, узких сосудах, пористых телах.

Если опустить узкую стеклянную трубку (капилляр) в воду, то можно увидеть, как поднимается в ней водяной столбик. Чем уже трубка, тем выше столбик воды. Если опустить такую же трубку в жидкую ртуть, то высота столбика ртути окажется ниже уровня жидкости в сосуде.

Жидкость в капиллярах способна подниматься по узкому каналу (капилляру) только в том случае, если она смачивает его стенки. Так происходит в грунте, песке, стеклянных трубках, по которым легко поднимается влага. По этой же причине пропитывается керосином фитиль в керосиновой лампе, полотенце впитывает влагу от мокрых рук, происходят различные химические процессы. В растениях по капиллярам поступают к листьям питательные вещества и влага. Благодаря капиллярному эффекту возможна жизнедеятельность живых организмов.

Источник