Каких свойств среды зависит скорость света

Каких свойств среды зависит скорость света thumbnail

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 15 ноября 2018;
проверки требуют 8 правок.

Разложение света в спектр вследствие дисперсии при прохождении через призму (опыт Ньютона).

У этого термина существуют и другие значения, см. Дисперсия.

Диспе́рсия све́та (разложение света) — это совокупность явлений, обусловленных зависимостью абсолютного показателя преломления вещества от частоты (или длины волны) света (частотная дисперсия), или, то же самое, зависимостью фазовой скорости света в веществе от частоты (или длины волны). Экспериментально открыта Ньютоном около 1672 года, хотя теоретически достаточно хорошо объяснена значительно позднее.

Пространственной дисперсией называется зависимость тензора диэлектрической проницаемости среды от волнового вектора. Такая зависимость вызывает ряд явлений, называемых эффектами пространственной поляризации.

Свойства и проявления[править | править код]

Один из самых наглядных примеров дисперсии — разложение белого света при прохождении его через призму (опыт Ньютона). Сущностью явления дисперсии является различие фазовых скоростей распространения лучей света c различной длиной волны в прозрачном веществе — оптической среде (тогда как в вакууме скорость света всегда одинакова, независимо от длины волны и, следовательно, цвета). Обычно, чем меньше длина световой волны, тем больше показатель преломления среды для неё и тем меньше фазовая скорость волны в среде:

  • у света красного цвета фазовая скорость распространения в среде максимальна, а степень преломления — минимальна,
  • у света фиолетового цвета фазовая скорость распространения в среде минимальна, а степень преломления — максимальна.

Однако в некоторых веществах (например, в парах иода) наблюдается эффект аномальной дисперсии, при котором синие лучи преломляются меньше, чем красные, а другие лучи поглощаются веществом и от наблюдения ускользают. Говоря строже, аномальная дисперсия широко распространена, например, она наблюдается практически у всех газов на частотах вблизи линий поглощения, однако у паров иода она достаточно удобна для наблюдения в оптическом диапазоне, где они очень сильно поглощают свет.

Дисперсия света позволила впервые вполне убедительно показать составную природу белого света.

Белый свет разлагается в спектр и в результате прохождения через дифракционную решётку или отражения от неё (это не связано с явлением дисперсии, а объясняется природой дифракции). Дифракционный и призматический спектры несколько отличаются: призматический спектр сжат в красной части и растянут в фиолетовой и располагается в порядке убывания длины волны: от красного к фиолетовому; нормальный (дифракционный) спектр — равномерный во всех областях и располагается в порядке возрастания длин волн: от фиолетового к красному.

По аналогии с дисперсией света, также дисперсией называются и сходные явления зависимости распространения волн любой другой природы от длины волны (или частоты). По этой причине, например, термин закон дисперсии, применяемый как название количественного соотношения, связывающего частоту и волновое число, применяется не только к электромагнитной волне, но к любому волновому процессу.

Дисперсией объясняется факт появления радуги после дождя (точнее тот факт, что радуга разноцветная, а не белая).

Дисперсия является причиной хроматических аберраций — одних из аберраций оптических систем, в том числе фотографических и видеообъективов.

Огюстен Коши предложил эмпирическую формулу для аппроксимации зависимости показателя преломления среды от длины волны:

,

где  — длина волны в вакууме; a, b, c — постоянные, значения которых для каждого материала должны быть определены в опыте. В большинстве случаев можно ограничиться двумя первыми членами формулы Коши. Впоследствии были предложены другие более точные, но и одновременно более сложные, формулы аппроксимации.

Дисперсия света в природе и искусстве[править | править код]

Из-за дисперсии можно наблюдать разные цвета.

  • Радуга, чьи цвета обусловлены дисперсией, — один из ключевых образов культуры и искусства.
  • Благодаря дисперсии света, можно наблюдать цветную «игру света» на гранях бриллианта и других прозрачных гранёных предметах или материалах.
  • В той или иной степени радужные эффекты обнаруживаются достаточно часто при прохождении света через почти любые прозрачные предметы. В искусстве они могут специально усиливаться и/или подчеркиваться.
  • Разложение света в спектр (вследствие дисперсии) при преломлении в призме — довольно распространенная тема в изобразительном искусстве. Например, на обложке альбома The Dark Side of the Moon группы Pink Floyd изображено преломление света в призме с разложением в спектр.

См. также[править | править код]

  • Закон дисперсии
  • Интерференция света
  • Дифракция света
  • Атмосферная дисперсия
  • Число Аббе

Примечания[править | править код]

Литература[править | править код]

  • Яштолд-Говорко В. А. Фотосъёмка и обработка. Съёмка, формулы, термины, рецепты. — Изд. 4-е, сокр. — М.: Искусство, 1977.

Ссылки[править | править код]

  • Дисперсия света — статья из Большой советской энциклопедии. 
  • К. И. Тарасов. Спектральные приборы.
  • Выслоух В. А. Дисперсия света // Физическая энциклопедия : [в 5 т.] / Гл. ред. А. М. Прохоров. — М.: Советская энциклопедия, 1988. — Т. 1: Ааронова — Бома эффект — Длинные линии. — С. 650—652. — 707 с. — 100 000 экз.

Источник

Вне зависимости от цвета, длины волны или энергии, скорость, с которой свет перемещается в вакууме, остаётся постоянной. Она не зависит от местоположения или направлений в пространстве и времени

Ничто во Вселенной не способно двигаться быстрее света в вакууме. 299 792 458 метров в секунду. Если это массивная частица, она может лишь приблизиться к этой скорости, но не достичь её; если это безмассовая частица, она всегда должна двигаться именно с этой скоростью, если дело происходит в пустом пространстве. Но откуда нам это известно и что тому причиной? На этой неделе наш читатель задаёт нам три связанных со скоростью света вопроса:

Почему скорость света конечна? Почему она именно такая, какая есть? Почему не быстрее и не медленнее?

Вплоть до XIX века у нас даже не было подтверждений этим данным.

Иллюстрация света, проходящего через призму и разделяющегося на чёткие цвета.

Если свет проходит через воду, призму или любую другую среду, он разделяется на разные цвета. Красный цвет преломляется не под тем углом, под которым это делает синий, из-за чего и возникает что-то типа радуги. Это можно наблюдать и вне видимого спектра; инфракрасный и ультрафиолетовый свет ведут себя так же. Это было бы возможно, только если скорость света в среде отличается для света разных длин волн/энергий. Но в вакууме, вне всякой среды, всякий свет перемещается с одной и той же конечной скоростью.

Разделение света на цвета происходит из-за разных скоростей движения света, зависящих от длины волны, через среду

До этого додумались только в середине XIX века, когда физик Джеймс Клерк Максвелл показал, что на самом деле представляет собой свет: электромагнитную волну. Максвелл впервые поставил независимые явления электростатики (статичные заряды), электродинамики (движущиеся заряды и токи), магнитостатики (постоянные магнитные поля) и магнитодинамики (наведённые токи и переменные магнитные поля) на единую, объединённую платформу. Управляющие ею уравнения – уравнения Максвелла – позволяют вычислять ответ на простой вроде бы вопрос: какие типы электрических и магнитных полей могут существовать в пустом пространстве вне электрических или магнитных источников? Без зарядов и без токов можно было бы решить, что никакие – но уравнения Максвелла удивительным образом доказывают обратное.

Табличка с уравнениями Максвелла с обратной стороны его памятника

Ничто – одно из возможных решений; но возможно и другое – колеблющиеся в одной фазе взаимно перпендикулярные электрическое и магнитное поля. У них есть определённые амплитуды. Их энергия определяется частотой колебаний полей. Они передвигаются с определённой скоростью, определяемой двумя константами: ε0 и µ0. Эти константы определяют величину электрического и магнитного взаимодействий в нашей Вселенной. Получаемое уравнение описывает волну. И, как у всякой волны, у неё есть скорость, 1/√ε0 µ0, которая оказывается равной c, скорости света в вакууме.

Колеблющиеся в одной фазе взаимно перпендикулярные электрическое и магнитное поля, распространяющиеся со скоростью света, определяют электромагнитное излучение

С теоретической точки зрения, свет – безмассовое электромагнитное излучение. По законам электромагнетизма он обязан двигаться со скоростью 1/√ε0 µ0, равной c – вне зависимости от остальных его свойств (энергии, импульса, длины волны). ε0 можно измерить, сделав и измерив конденсатор; µ0 точно определяется из ампера, единицы электрического тока, что и даёт нам c. Та же фундаментальная константа, впервые выведенная Максвеллом в 1865 году, с тех пор появлялась во многих других местах:

• Это скорость любой безмассовой частицы или волны, включая гравитационные.
• Это фундаментальная константа, соотносящая ваше движение в пространстве с вашим движением во времени в теории относительности.
• И это фундаментальная константа, связывающая энергию с массой покоя, E = mc2

Наблюдения Рёмера снабдили нас первыми измерениями скорости света, полученными при помощи геометрии и измерения времени, необходимого на то, чтобы свет прошёл расстояние, равное диаметру орбиты Земли.

Первые измерения этой величины были сделаны во время астрономических наблюдений. Когда луны Юпитера входят и выходят в положение затмения, они кажутся видимыми или невидимыми с Земли в определённой последовательности, зависящей от скорости света. Это привело к первому количественному измерению с в XVII веке, которое определили в 2,2 × 108 м/с. Отклонение звёздного света – из-за движения звезды и Земли, на которой установлен телескоп – тоже можно оценить численно. В 1729 году этот метод измерения с показал значение, отличающееся от современного всего на 1,4%. К 1970-м с определили равным 299 792 458 м/с с погрешностью всего в 0,0000002%, большая часть которой проистекала из невозможности точного определения метра или секунды. К 1983 году секунду и метр переопределили через с и универсальные свойства излучения атома. Теперь скорость света равна точно 299 792 458 м/с.

Атомный переход с орбитали 6S, δf1, определяет метр, секунду и скорость света

Так почему же скорость света не больше и не меньше? Объяснение такое же простое, как указанный на рис. Выше атом. Атомные переходы происходят так, как происходят, из-за фундаментальных квантовых свойств строительных блоков природы. Взаимодействия атомного ядра с электрическим и магнитными полями, создаваемыми электронами и другими частями атома приводят к тому, что разные энергетические уровни оказываются чрезвычайно близко друг к другу, но всё же немного отличаются: это называется сверхтонким расщеплением. В частности, частота перехода сверхтонкой структуры цезия-133 испускает свет совершенно определённой частоты. Время, за которое проходит 9 192 631 770 таких циклов, определяет секунду; расстояние, которое свет проходит за это время, равняется 299 792 458 метрам; скорость, с которой распространяется этот свет, определяет с.

Пурпурный фотон переносит в миллион раз больше энергии, чем жёлтый. Космический гамма-телескоп Ферми не показывает никаких задержек какого-либо из фотонов, пришедших к нам от гамма-всплеска, что подтверждает постоянство скорости света для всяких энергий

Чтобы поменять это определение, нужно, чтобы с этим атомным переходом или с идущим от него светом произошло что-то фундаментально отличное от его текущей природы. Этот пример также даёт нам ценный урок: если бы атомная физика и атомные переходы работали бы в прошлом или на дальних расстояниях по-другому, это было бы свидетельством изменения скорости света со временем. Пока что все проводимые нами измерения лишь накладывают дополнительные ограничения на постоянство скорости света, и эти ограничения весьма строги: изменение не превосходит 7% от текущего значения за последние 13,7 млрд лет. Если бы по какой-то из этих метрик скорость света оказалась не постоянной, или же она отличалась бы у разных типов света, это привело бы к крупнейшей научной революции со времён Эйнштейна. Вместо этого все свидетельства говорят в пользу Вселенной, в которой все законы физики всегда, везде, во всех направлениях, во все времена остаются одинаковыми, включая и физику самого света. В каком-то смысле это тоже достаточно революционные сведения.

Итан Сигель – астрофизик, популяризатор науки, автор блога Starts With A Bang! Написал книги «За пределами галактики» [Beyond The Galaxy], и «Трекнология: наука Звёздного пути» [Treknology].

Источник

Ско́рость све́та — абсолютная величина скорости распространения электромагнитных волн в вакууме. В физике традиционно обозначается латинской буквой «c» (произносится как [цэ]). Скорость света относится к фундаментальным физическим постоянным, которые характеризуют не просто отдельные тела, а свойства мира в целом. По современным представлениям скорость света в вакууме — предельная скорость движения частиц и распространения взаимодействий.

Значимость скорости света Править

Скорость света в вакууме – фундаментальная постоянная, не зависящая от выбора инерциальной системы отсчёта (ИСО). Это постоянная, по размерности и по величине совпадающая со скоростью света.

Также важен тот факт, что эта величина абсолютна. Это один из постулатов СТО.

В вакууме (пустоте) Править

Скорость света в вакууме — фундаментальная физическая постоянная, по определению, точно равная 299 792 458 м/с, или же 1 079 252 848.8 км/ч. Точное значение связано с тем, что с 1983 года за эталон метра принято расстояние, которое проходит свет в вакууме за промежуток времени, равный 1 / 299 792 458 секунды.

Основополагающий для СТО опыт Майкельсона показал, что скорость света в вакууме не зависит ни от скорости движения источника света, ни от скорости движения наблюдателя.

В природе со скоростью света распространяются:

  • собственно видимый свет
  • другие виды электромагнитного излучения (радиоволны, рентгеновские лучи и др.)
  • возможно, гравитация

Из специальной теории относительности следует, что движение любых материальных объектов быстрее скорости света невозможно, поскольку наличие частиц, обладающих подобным свойством (называемых тахионами), привело бы к противоречию с принципом причинности.

Действительно, если начало и конец пути тахиона отстоят друг от друга на расстояние большее, чем мог пройти за время пути свет, то согласно преобразованиям Лоренца получается, что в некоторой системе отсчёта, процесс будет выглядеть так, что конец пути предшествует во времени его началу. Иными словами, наблюдатель этой системы отсчёта придёт к заключению, что источник тахионов влияет на прошлое, что является нарушением принципа причинности. Принцип причинности является несомненным опытным фактом, хотя и не является логически обязательным (ни одна теория не использует его в качестве постулата).

Частицы, движущиеся медленнее света, называются тардионами. Тардионы не могут достичь скорости света, а только лишь сколь угодно близко подойти к ней, так как при этом их энергия становится неограниченно большой. Все тардионы обладают массой покоя, в отличие от безмассовых фотонов и гравитонов, которые всегда движутся со скоростью света.

В планковских единицах скорость света в вакууме равна 1, то есть свет проходит 1 единицу планковской длины за единицу планковского времени.

В прозрачной среде Править

Скорость света в прозрачной среде — скорость, с которой свет распространяется в среде, отличной от вакуума. В среде, обладающей дисперсией, различают фазовую и групповую скорость.

Фазовая скорость связывает частоту и длину волны монохроматического света в среде (λ=c/ν). Эта скорость обычно (но не обязательно) меньше c. Отношение фазовой скорости света в вакууме к скорости света в среде называется показателем преломления среды.

Арман Ипполит Луи Физо на опыте доказал, что скорость света в среде зависит от скорости и направления движения самой среды.

Отрицание постулата о максимальности скорости света Править

В последние годы нередко появляются сообщения о том, что в так называемой квантовой телепортации взаимодействие распространяется быстрее скорости света. Например, 15 августа 2008 г. исследовательская группа доктора Николаса Гизена (Nicolas Gisin) из университета Женевы, исследуя разнесенные на 18 км в пространстве связанные фотонные состояния, якобы показала, что «взаимодействие между частицами осуществляется со скоростью, примерно в сто тысяч раз большей скорости света» Опровергнут фундаментальный принцип современной физики.. Ранее также обсуждался так называемый парадокс Хартмана – сверхсветовая скорость при туннельном эффекте.

Научный анализ значимости этих и подобных результатов показывает, что они принципиально не могут быть использованы для сверхсветовой передачи какого-либо сигнала или перемещения вещества Иванов Игорь. Проведены новые эксперименты по проверке механизма квантовой запутанности.

Исторический очерк Править

Античные учёные, за редким исключением, считали скорость света бесконечной. В Новое время этот вопрос стал предметом дискуссий. Галилей и Гук допускали, что она конечна, хотя и очень велика, в то время как Кеплер, Декарт и Ферма по-прежнему отстаивали бесконечность скорости света.

Первую оценку скорости света дал Олаф Рёмер (1676). Он заметил, что когда Земля и Юпитер находятся по разные стороны от Солнца, затмения спутника Юпитера Ио запаздывают по сравнению с расчётами на 22 минуты. Отсюда он получил значение для скорости света около 220000 км/сек — неточное, но по порядку величины близкое к истинному. Спустя полвека открытие аберрации позволило подтвердить конечность скорости света и уточнить её оценку.

См. также Править

  • Сверхсветовое движение

Литература Править

  1. Физические величины: Справочник./А. П. Бабичев,Н. А. Бабушкина,А. М. Братковский и др.;под ред. И. С. Григорьева,Е. З. Мейлихова М.: Энергоатомиздат, 1991, — 1232 с — ISBN 5-28304013-5

Ссылки Править

Материалы сообщества доступны в соответствии с условиями лицензии CC-BY-SA
, если не указано иное.

Источник

Автор вопроса считает этот ответ лучшим

Копирайтер для B2B. Пишу яркие продающие тексты на сложные темы.

Начнем с того, что свет – это электромагнитная волна, т.е. синуосоидальные колебания электрической и магнитной составляющих (осцилляции). Когда свет попадает в среду, эти электромагнитные колебания вызывают осцилляции заряженных частиц в среде – электронов и протонов. Осцилляции протонов существенно меньше в силу того, что протон в 1836 раз массивнее… Читать далее

Если скорость света — абсолютный предел, то почему Вселенная после Большого взрыва расширялась быстрее скорости света?

N+1 — научно-популярное издание о том, что происходит в науке, технике и технологиях.   · nplus1.ru

На самом деле, общая теория относительности утверждает, что скорость света является пределом только для физических объектов — элементарных частиц и состоящих из них тел, — а на движение самого пространства-времени никаких ограничений не накладывает. По крайней мере, до тех пор, пока это движение не используется для передачи информации и не нарушает принцип причинности, а расширение этот принцип не нарушает. Поэтому Вселенная вполне может расширяться со сверхсветовой скоростью — и, вообще говоря, до сих пор расширяется. Собственно, Наблюдаемая Вселенная — это область, из которой свет может за конечное время достичь нынешнего положения наблюдателя. При этом радиус Наблюдаемой Вселенной составляет примерно 46 миллиардов световых лет, хотя с момента Большого Взрыва прошло всего 13,8 миллиардов лет.

Более того, в общей теории относительности вообще нельзя каноническим образом определить скорость удаленного объекта — не понятно, какой линейкой мерить расстояние между двумя заданными точками и по каким часам засекать отрезок времени, в течение которого путешествовал объект. А если пространство-время успело расшириться, пока мы измеряли расстояние? Поэтому скорость можно ввести только в том случае, если существует некоторая выделенная ось времени. В модели Фридмана — Леметра — Робертсона — Уокера, которая хорошо описывает Наблюдаемую Вселенную, такая ось существует. Например, для измерения времени можно использовать собственное время галактики, отсчитываемое от момента Большого Взрыва, а расстояние между галактиками измерять в фиксированный момент времени гипотетической линейкой, соединяющей наблюдателей с синхронизированными часами. Это так называемое собственное расстояние. Именно это расстояние входит в закон Хаббла, описывающий расширение Вселенной. Однако фотоны реликтового излучения двигались в постоянно расширяющемся пространстве-времени, и в момент их испускания расстояние между начальной и конечной точкой траектории было меньше. Поэтому скорость, которая получится, если поделить текущее расстояние между концами траектории на время полета фотонов, будет превышать скорость света примерно в 3,3 раза. Правда, особого физического смысла эта величина не имеет — физики описывают расширение Вселенной постоянной Хаббла, которая имеет размерность обратного времени, а не скорости.

Прочитать ещё 44 ответа

Сможет ли человечество в будущем достичь скорости света и летать на сверхсветовых?

Если человечество будет продолжать жить и деградировать в том же духе, то и ходить разучится. А вот достичь, и даже превысить скорость эфирной среды которая передаёт информацию от источника света (солнца, лампы, огня) что и назвали скоростью света, вполне возможно, и такие аппараты в бесчисленном количестве бороздят просторы вселенной много миллионов лет.( жизнь на земле из других созвездий зародилась, если что. На чём они прилетели? ) Скорость распространения информации (радио сигнал, световой, звуковой) зависит от среды, в которой происходит распространение сего. Чем меньше плотность среды, тем меньше скорость распространения. Физика,n-класс школьной программы. Вывод. Эфир самая плотная среда во вселенной, а всё материальное(планеты, звезды, мы, вода, железо) имеет меньшую плотность, в связи с чем, становится сложнее воздействовать на эти тела. Эйнштейн – наёмник, его задача была стереть настоящую физику с лица земли, чтоб люд людской не догадывался даже, что мы живём в энергетическом мире, купаемся в электричестве, но нам его продают. А молнии сверкают. Вот вышла нелепая теория относительности- ни чего не открывающая., и не доказывающая. Северное сияние – электрический процесс, доказывает энергитичность эфира.

Прочитать ещё 6 ответов

Почему черные дыры не выпускают свет, если фотоны не имеют массы?

д. ф.-м. н., астроном-наблюдатель Специальной астрофизической обсерватории РАН

Гравитация связана с массой. Но  не просто влияет на другие массы (как в законе тяготения Ньютона), а искривляет пространство-время вокруг себя. Из-за того, что относительно своей массы черные дыры – очень компактные объекты, они  искривляют пространство столь сильно, что ничто оттуда выбраться не может, включая и луч света. Своим вопросом Вы точно нащупали разницу между классической теорией тяготения и Общей  Теорией относительности. Действительно, само представление о черной дыре появилось еще в конце 18 века, как об объекте, где скорость убегания столь высока, что “свет улететь не сможет”. Но корректно описать это удается только в Теории Относительности.

Прочитать ещё 50 ответов

Физики утверждают, что скорость света — это максимальная скорость, а космологи — что нет. Кто-то врет, или есть более общая теория, которая их примиряет?

Это результат исключительной гениальности Альберта Эйнштейна, который находясь в компании таких колоссов, как физик Гендрик Лоренц и математик Анри Пуанкаре, единственный имел репутационную смелость, провозгласив миру константу скорости света в вакууме предельной!!! Интрига сохранялась по выяснение скорости распространения гравитационных волн, но и она не нарушила это фундаментальное установление!!! Сейчас много говорят о “запутанных частицах”, якобы, информация об изменении квантовых характеристик одной из них, вмиг доходит до другой, пускай даже если они были бы разнесены на противоположные стороны Вселенной, но парадокс заключается в том, что и здесь, наблюдатель не сможет получить информацию быстрее скорости света!!! Ну а космологи (они же и физики!!!) вынуждены были допустить единственное исключение для “инфляционной теории” зарождения Вселенной, которая единственно, более или менее, наукообразно объясняла её нынешние свойства (изотропность на больших масштабах, плоскую геометрию пространства и отсутствие магнитных монополей, вытекающих из решения уравнения Шрёдингера Полем Дираком), причём, по вычислениям, превышение скорости света должно было быть, поистине, фантастическим: в степенях, варьирующихся от 26 – ой до 80 – ой!!! Естественно, науку не удовлетворяет такое положение дел, но лучшей теории пока не предложено, вот для этого и нужны человечеству умные и светлые головы учёных!!!

Прочитать ещё 16 ответов

Источник