Какие закономерности наблюдаются в изменении свойства

Какие закономерности наблюдаются в изменении свойства thumbnail

Элементы главных и побочных подгрупп

Свойства элементов главной и побочной подгрупп существенно различаются. В то же время благодаря периодической системе мы находим много общего в свойствах всех элементов, образующих данную группу. 

Так, в VII группе имеются два элемента — хлор (VIIA группа) и марганец (VIIB группа). Хлор образует простое вещество — неметалл, газообразный при обычных условиях, очень ядовитый. Марганец — типичный металл со всеми свойствами металлов (твердый, пластичный, электропроводный). Что же объединяет эти несхожие элементы? Почему они находятся в одной группе периодической системы? Все дело в том, что и атомы хлора, и атомы марганца содержат по 7 валентных электронов:

Cl $1s^22s^22p^6 underline{3s^23p^5}$;

Mn 1s$^2$2s$^2$2p$^6$3s$^2$3p$^6$ $underline{4s^2 3d^5}$.

Поэтому высшая степень окисления для этих элементов одна и та же, а именно +7. 

Хлор и марганец образуют высшие оксиды одного состава: $Cl_2O_7$ и $Mn_2O_7$. Оба эти оксида кислотные, энергично взаимодействуют с водой с образованием кислот одного и того же состава:

Cl$_2$O$_7$ + Н$_2$О → 2HClO$_4$    хлорная кислота,

Mn$_2$O$_7$  + Н$_2$О → 2HMnO$_4$    марганцевая кислота.

Оба оксида (и отвечающие им кислоты) очень неустойчивы и являются сильнейшими окислителями. 

И хлорная, и марганцевая кислота относятся к наиболее сильным кислотам. При нейтрализации кислот получаются однотипные соли — перхлораты и перманганаты, например KClO$_4$ и KMnO$_4$. При небольшом нагревании обе соли легко разлагаются с выделением кислорода. Все это и позволяет рассматривать элементы хлор и марганец в одной группе периодической системы элементов Д. И. Менделеева.

Следует подчеркнуть, что закономерности изменения свойств по группам, описанные ниже, относятся только к элементам главных подгрупп.

Атомный радиус

Атомный радиус увеличивается с увеличением количества энергетических уровней, то есть сверху вниз по группе. У элементов, стоящих в одном периоде и обладающих равным количеством энергетических уровней, атомный радиус, на первый взгляд, меняться не должен. Однако вследствие взаимодействие ядра и электронов усиливается при движении по периоду слева направо, что приводит к незначительному сжатию атома — уменьшению его радиуса.

Какие закономерности наблюдаются в изменении свойства

Электроотрицательность

Определение

Способность атома элемента притягивать к себе электроны химической связи называют электроотрицательностью (ЭО).

Элементы-металлы легче отдают электроны, чем притягивают их, иными словами, они имеют низкую электроотрицательность — меньше 1,8. Элементы-неметаллы, наоборот, легче притягивают электроны и имеют высокие значения ЭО.

Какие закономерности наблюдаются в изменении свойства

Окислительно-восстановительные свойства соединений элементов. Металличность и неметалличность

Слова «металл» и «неметалл» применимы не только к химическим элементам, но и к простым веществам. Например, говоря, что простое вещество является металлом, мы подразумеваем не только что оно состоит из атомов элемента-металла, но и определенную общность физических (металлический блеск, пластичность) и химических (восстановитель) свойств. 

Напомним, что из известных на данный момент 116 химических элементов 98 являются металлами. Металлы расположены в главных подгруппах в левом нижем углу (относительно диагонали бор-астат) таблицы Менделеева и в побочных подгруппах. 

Атомы металлов на внешнем уровне содержат не более четырех электронов, как правило, от одного до трех. Отдавая эти электроны, они приобретают устойчивую оболочку ближайшего инертного газа.

Какие закономерности наблюдаются в изменении свойства

Таки образом, металлы в химических реакциях являются восстановителями — они легко отдают электроны и приобретают положительную степень окисления. В этом заключается их принципиальное отличие от элементов-неметаллов.

Поэтому очень часто говорят о металлических свойствах как синониме восстановительных свойств.

В наибольшей степени металлические свойства выражены у элементов главной подгруппы I группы периодической системы — щелочных металлов. Их атомы настолько легко отдают валентный электрон, что в природе эти элементы встречаются исключительно в виде соединений.

Поскольку сверху вниз возрастают атомные радиусы элементов, сила притяжения валентных электронов к ядру ослабевает и увеличивается легкость отдачи внешних электронов, то есть восстановительные (или металлические) свойства. 

Металлические (восстановительные) свойства элементов при движении по периоду убывают слева направо; а по группе убывают снизу вверх.

Элементы-металлы образуют генетический ряд химических соединений, в которых проявляются их металлические химические свойства: металлоксид металла ($Me_xO_y$) — гидроксид (основание $Me^{+n}(OH)_n$. В сложных веществах проявление металлических свойств характеризуется понятием основность,  и говорят, что оксиды и гидроксиды проявляют основные свойства. Соответственно, основные свойства оксидов и гидроксидов металлов сверху вниз по подгруппе увеличиваются, а кислотные — уменьшаются. 

Элементы-неметаллы имеют на внешнем энергетическом уровне от четырех до семи электронов, при этом элементы восьмой группы образуют семейство инертных газов. Такие элементы имеют восемь электронов на внешнем энергетическом уровне, то есть такой уровень является завершенным, а сами элементы не вступают в химические реакции с другими элементами, то есть являются химически инертными.

Неметаллы в химических реакциях являются окислителями — они легко присоединяют электроны, отнимая их от атомов других элементов,  и приобретают отрицательный заряд.

Легче всего  принимают электроны те элементы, у которых число электронов на внешнем уровне больше четырех — до завершения внешнего уровня им более энергетически выгодно принять несколько электронов, чем отдать свои. В наибольшей степени свойства неметаллов проявляют галогены — элементы главной подгруппы VII группы.

Проследим закономерность изменения окислительных свойств по периоду на примере элементов второго периода:

3Li − 4Be − 5B − 6C − 7N − 😯 − 9F − 10Ne.

Литий и бериллий (типичные металлы) — окислительными свойствами не обладают. Неметаллы бор и углерода — очень слабые окислители. Например, они реагируют с углеродом только в электрической печи, где температура превышает 1500$^o$С.  С неметаллом азотом алюминий вступает в реакцию уже при 1000$^o$С, а с кислородом порошок алюминия реагирует при внесении в пламя горелки. Фтор окисляет порошкообразный алюминий уже при комнатной температуре. А вот завершающий второй период инертный газ неон вообще не вступает в химические реакции.

Таким образом, неметаллические (окислительные) свойства простых веществ при движении по периоду слева направо возрастают.

Элементы-неметаллы образуют генетический ряд химических соединений, в которых проявляются их неметаллические химические свойства: неметаллоксид неметалла ($HMe_xO_y$) — гидроксид неметалла (кислородсодержащая кислота $H_n(HMeO)^{n-}$). В сложных веществах проявление неметаллических свойств характеризуется понятием кислотность,  и говорят, что оксиды и гидроксиды проявляют кислотные свойства. Соответственно, кислотные свойства оксидов и гидроксидов неметаллов в высших степенях окисления сверху вниз по подгруппе уменьшаются, а основные — увеличиваются. 

Кислотные свойства оксидов и гидроксидов по периоду слева направо также возрастают. 

Но изменение окислительно-восстановительных свойств происходит постепенно. Так, металл бериллий, в отличие от типичного металла лития, взаимодействует не только с кислотами, но и со щелочами (что характерно для ряда неметаллов), а простое вещество графит, образованное элементом-неметаллом углеродом, подобно металлам, обладает металлическим блеском и проводит электрический ток. 

Энергия ионизации

Определение

Энергия ионизации — это наименьшая энергия, которая должна быть  затрачена на отрыв электрона от нейтрального атома. 

Какие закономерности наблюдаются в изменении свойства

Ионный радиус

Какие закономерности наблюдаются в изменении свойства

Диагональная периодичность

В заключение укажем, что химические элементы, расположенные в диагональном направлении периодической системы, также иногда могут проявлять близость многих физических и химических свойств. Это явление носит название диагонального сходства. Так, химические свойства лития и его соединений иногда оказываются гораздо ближе к свойствам магния, чем к свойствам остальных щелочных металлов. Аналогично свойства бериллия гораздо ближе к свойствам алюминия, чем к свойствам щелочноземельных металлов, а свойства бора ближе к свойствам кремния.

Какие закономерности наблюдаются в изменении свойства

Диагональное сходство можно объяснить, если принять во внимание характер изменения атомных радиусов по группам и периодам: уменьшение радиусов в периодах (слева направо) приблизительно компенсируется увеличением радиусов в группах (сверху вниз). Тем самым оказываются весьма близки атомные радиусы лития и магния, бериллия и алюминия и др.

Все вышеупомянутые закономерности изменения свойств условно отражены в схеме ниже:

Какие закономерности наблюдаются в изменении свойства

Какие закономерности наблюдаются в изменении свойства

Сравнение строения и свойств элементов VIIА и VIIB групп

Чтобы увидеть, как изменяются свойства элементов по периоду рассмотрим строение и свойства типичных металлов  и неметаллов –  представителей IA и VIIA -группы. Кроме того, рассмотрим также свойства элементов побочных IB и  VIIB -групп и сравним их между собой.

Какие закономерности наблюдаются в изменении свойства

К седьмой группе главной подгруппы Периодической системы относятся элементы семейства галогенов. В длиннопериодном варианте ПС эта группа 17. Элементы этой группы обладают строением и свойствами типичных неметаллов, то есть имеют небольшой радиус и 7 электронов на внешнем уровне, поэтому относятся к p-элементам.

Типичным представителем галогенов является хлор. Электронная конфигурация этого элемента отвечает электронной формуле $1s^22s^22p^63s^23p^5$ или $[Ne]3s^23p^5$.  Это означает, что валентными являются 7 внешних электронов – 2 s-электрона и 5р-электронов, которые образуют 3 пары и имеют один неспаренный электрон. Поэтому, образуя связь с менее электроотрицательными элементами (водородом или металлами), хлор отнимает у них 1 электрон и достраивает тем самым свой незавершенный уровень. При этом хлор проявляет свойства окислителя и имеет в соединениях степень окисление -1.

Нужно помнить, что хлор расположен в третьем периоде, поэтому имеет три энергетических уровня, а, значит на третьем, внешнем уровне у него имеются вакантные (незанятые) d-орбитали. При переходе в возбужденное состояние электроны с s- и р-подуровней могут перескакивать на более высокий d-энергетический подуровень:

Какие закономерности наблюдаются в изменении свойства Какие закономерности наблюдаются в изменении свойства

В этом случае “распаренными” получаются 3, 5 или 7 электронов. Поэтому в соединениях с более электроотрицательными элементами, а именно с кислородом, хлор может проявлять степени окисления  +1; +3; +5 или +7. В этих степенях окисления он образует оксиды и соответствующие им кислородсодержащие кислоты:

HCL- хлороводородная, соли – хлориды

HCLO – хлорноватистая (кислотный оксид $Cl_2O$, соли — гипохлориты), очень слабая кислота, неустойчивая, окислитель:

$2HClO +  H_2S longrightarrow S + Cl_2 + H_2O$

$HCLO_2$ – хлористая (кислотный оксид $Cl_2O_3$, соли — хлориты), неустойчивая; 

$HClO_3$ – хлорноватая (кислотный оксид — $Cl_2O_5$, соли – хлораты, $KClO_3$ – бертоллетова соль), в свободном виде не получена, «живет» только в растворах, сильный окислитель:

$HClO_3 + S + H_2O  longrightarrow H_2SO_4 +  HCl$

$HClO_4$– хлорная (кислотный оксид — $Cl_2O_7$, соли  –  перхлораты

Все кислородсодержащие кислоты хлора являются сильными окислителями. Их свойства изменяются следующим образом:

с увеличением степени окисления хлора увеличивается сила кислородсодержащих кислот и их окислительные свойства

 В то же время, в минимальной степени окисления (-1) хлор образует сильную кислоту HCl, но не является в ней окислителем.

Рассмотрим теперь особенности строения и свойств элементов  IA группы (в длиннопериодном варианте ПС это тоже группа I) на примере натрия. Элементы этой группы являются типичными металлами, то есть обладают большим радиусом, имеют всего 1 валентный электрон, то есть относятся к s-элементам, и в химических реакциях являются типичными восстановителями. Элементы этой группы называются щелочными металлами.

Какие закономерности наблюдаются в изменении свойства

Натрий находится с хлором в одном периоде, имеет электронную конфигурацию $1s^22s^22p^63s^1$ или $[Ne]3s^1$. то есть различия с атомом натрия заключается только в числе внешних валентных электронов. Имея один неспаренный электрон на внешнем уровне, натрий обладает свойствами восстановителя, то есть легко отдает валентный электрон на образование связи, а хлор, обладая свойствами окислителя, легко присоединяет этот электрон. Поэтому при образовании молекулы хлорида натрия валентный электрон натрия полностью переходит к хлору и образуется соединение с ионным типом связи:

Какие закономерности наблюдаются в изменении свойства

Теперь рассмотрим и сравним свойства элементов побочных подгрупп  IB и  VIIB -групп. К IB-группе, или в длиннопериодном варианте XI группы, относятся металлы подгруппы меди: Cu, Ag, Au. Особенностью строения этих элементов является наличие заполненного предвнешнего  (n-1)d-подуровня, которое происходит за счёт перескока электрона с ns-подуровня. Причина возможности такого “перескока” электрона объясняется высокой энергетической устойчивостью полностью заполненного d-подуровня  и более высокой, по сравнению с 4s, энергией 3d-подуровня (вспомните порядок заполнения подуровней).  

Какие закономерности наблюдаются в изменении свойства

Строением энергетических уровней объясняется химическая инертность простых веществ, образованных этими элементами, которые называют “благородными металлами”. Если медь и серебро при обычных условиях медленно окисляются на воздухе, а также могут вступать во взаимодействие с соединениями серы, например сероводородом, то золото при нормальных условиях не реагирует с химическими веществами. Исключение составляет “царская водка” – смесь концентрированной соляной и азотной кислот.

Для сравнения осталось рассмотреть строение и свойства элементов VIIB-подгруппы, или VII группы в длиннопериодном варианте ПС. Эта подгруппа называется подгруппой марганца и включает три элемента: Mn-магранец, Tc – технеций, Re – рений Рассмотри особенности строения этих элементов на примере марганца. Электронная конфигурация марганца отображается электронной формулой $1s^22s^22p^63s^23p^63d^54s^2$ или $[Ar]3d^54s^2$. Как видно из формулы, у марганца не заполнен предвнешний уровень, на котором находится 5 электронов из 10-ти возможных. Для марганца характерны степени окисления +2, +4 и +7, что связано с более устойчивой конфигурацией $d^5$ и $d^3$. 

Простое вещество- марганец, металл серебристо-белого цвета, широко использующийся в металлургии. Марганец образует следующие оксиды: MnO, $Mn_2O_3$, $MnO_2$, $MnO_3$ (не выделен в свободном состоянии) и марганцевый ангидрид $Mn_2O_7$. Оксиды низших валентностей (II, III) носят основной характер, высших – кислотный. Кислотным оксидам соответствуют кислоты и образованные ими соли:

Манганаты — соли нестойких, несуществующих в свободном состоянии кислородных кислот марганца в степенях окисления V, VI и VII:

  • $MnO_4^{3−}$  – гипоманганаты, 

  • $MnO_4^{2−}$ – манганаты,

  • $MnO_4^−$ – перманганаты 

Все соли марганца, особенно перманганаты, являются сильными окислителями. Например, перманганат калия в зависимости от pH раствора окисляет различные вещества, восстанавливаясь до соединений марганца разной степени окисления. Необходимо запомнить:

Степени окисления марганца:

В кислой среде — до соединений марганца (II), в нейтральной — до соединений марганца (IV), в сильно щелочной — до соединений марганца (VI).

Источник

В современной науке таблицу Д. И. Менделеева называют периодической системой химических элементов, т. к. общие закономерности в изменении свойств атомов, простых и сложных веществ, образованных химическими элементами, повторяются в этой системе через определенные интервалы — периоды. Таким образом, все существующие в мире химические элементы подчиняются единому, объективно действующему в природе периодическому закону, графическим отображением которого является периодическая система элементов. Этот закон и система носят имя великого русского химика Д. И. Менделеева.

Периоды — это ряды элементов, расположенные горизонтально, с одинаковым максимальным значением главного квантового числа валентных электронов. Номер периода соответствует числу энергетических уровней в атоме элемента. Периоды состоят из определенного количества элементов: первый — из 2 , второй и третий — из 8 , четвертый и пятый — из 18, шестой период включает 32 элемента. Это зависит от количества электронов на внешнем энергетическом уровне. Седьмой период является незавершенным. Все периоды (исключение составляет первый) начинаются щелочным металлом (s-элементом), а заканчиваются благородным газом. Когда начинает заполняться новый энергетический уровень, начинается новый период. В периоде с увеличением порядкового номера химического элемента слева направо металлические свойства простых веществ уменьшаются, а неметаллические возрастают.

Металлические свойства — это способность атомов элемента при образовании химической связи отдавать свои электроны, а неметаллические свойства — это способность атомов элемента при образовании химической связи присоединять электроны других атомов. У металлов электронами заполняется внешний s-подуровень, что подтверждает металлические свойства атома. Неметаллические свойства простых веществ проявляются при формировании и заполнении электронами внешнего р-подуровня. Неметаллические свойства атома усиливаются в процессе заполнения электронами р-подуровня (от 1 до 5). Атомы с полностью заполненным внешним электронным слоем (ns2np6) образуют группу благородных газов, которые являются химически инертными.

В малых периодах с ростом положительного заряда ядер атомов возрастает число электронов на внешнем уровне (от 1 до 2 — в первом периоде и от 1 до 8 — во втором и третьем периодах), что объясняет изменение свойств элементов: в начале периода (кроме первого периода) находится щелочной металл, затем металлические свойства постепенно ослабевают и усиливаются неметаллические. В больших периодах с ростом заряда ядер заполнение уровней электронами происходит сложнее, что объясняет и более сложное изменение свойств элементов по сравнению с элементами малых периодов. Так, в четных рядах больших периодов с ростом заряда число электронов на внешнем уровне остается постоянным и равно 2 или 1. Поэтому, пока идет заполнение электронами следующего за внешним (второго снаружи) уровня, свойства элементов в четных рядах изменяются крайне медленно. Лишь в нечетных рядах, когда с ростом заряда ядра увеличивается число электронов на внешнем уровне (от 1 до 8), свойства элементов начинают изменяться так же, как у типических.

Группы — это вертикальные столбцы элементов с одинаковым числом валентных электронов, равных номеру группы. Существует деление на главные и побочные подгруппы. Главные подгруппы состоят из элементов малых и больших периодов. Валентные электроны этих элементов расположены на внешних ns- и nр-подуровнях. Побочные подгруппы состоят из элементов больших периодов. Их валентные электроны находятся на внешнем ns-подуровне и внутреннем (n — 1) d -подуровне (или (n — 2) f-подуровне). В зависимости от того, какой подуровень (s-, p-, d- или f-) заполняется валентными электронами, элементы разделяются на:

1) s-элементы — элементы главной подгруппы I и II групп;

2) р-элементы — элементы главных подгрупп Ш—VII групп;

3) d -элементы — элементы побочных подгрупп;

4) f-элементы — лантаноиды, актиноиды.

Сверху вниз в главных подгруппах металлические свойства усиливаются, а неметаллические ослабевают. Элементы главных и побочных групп отличаются по свойствам. Номер группы показывает высшую валентность элемента. Исключение составляют кислород, фтор, элементы подгруппы меди и восьмой группы. Общими для элементов главных и побочных подгрупп являются формулы высших оксидов (и их гидратов). У высших оксидов и их гидратов элементов I—III групп (исключение составляет бор) преобладают основные свойства, с IV по VIII — кислотные. Для элементов главных подгрупп формулы водородных соединений общие. Элементы I—III групп образуют твердые вещества — гидриды, так как степень окисления водорода -1 . Элементы IV-VII групп — газообразные. Водородные соединения элементов главных подгрупп IV группы (ЭН4) — нейтральны, V группы (ЭН3) являются основаниями, VI и VII групп (Н2Э и НЭ) — кислотами.

Радиусы атомов, их периодические изменения в системе химических элементов

Радиус атома с увеличением зарядов ядер атомов в периоде уменьшается, т. к. притяжение ядром электронных оболочек усиливается. Происходит своеобразное их «сжатие». От лития к неону заряд ядра постепенно увели-чивается (от 3 до 10), что обуславливает возрастание сил притяжения электронов к ядру, размеры атомов уменьшаются. Поэтому в начале периода расположены элементы с небольшим числом электронов на внешнем электронном слое и большим радиусом атома. Электроны, находящиеся дальше от ядра, легко от него отрываются, что характерно для элементов-металлов.

В одной и той же группе с увеличением номера периода атомные радиусы возрастают, т. к. увеличение заряда атома оказывает противоположный эффект. С точки зрения теории строения атомов принадлежность элементов к металлам или неметаллам определяется способностью их атомов отдавать или присоединять электроны. Атомы металлов сравнительно легко отдают электроны и не могут их присоединять для достраивания своего внешнего электронного слоя.

Радиусы атомов

Закономерности изменения химических свойств элементов и их соединений по периодам и группам

Д. И. Менделеев в 1869 г. сформулировал периодический закон, который звучит так: свойства химических элементов и образованных ими веществ находятся в периодической зависимости от относительных атомных масс элементов. Систематизируя химические элементы на основе их относительных атомных масс, Менделеев уделял большое внимание также свойствам элементов и образованных ими веществ, распределяя элементы со сходными свойствами в вертикальные столбцы — группы. В соответствии с современными представлениями о строении атома, основой классификации химических элементов являются заряды их атомных ядер, и современная формулировка периодического закона такова: свойства химических элементов и образованных ими веществ находятся в периодической зависимости от зарядов их атомных ядер. Периодичность в изменении свойств элементов объясняется периодической повторяемостью в строении внешних энергетических уровней их атомов. Именно число энергетических уровней, общее число расположенных на них электронов и число электронов на внешнем уровне отражают принятую в периодической системе символику.

Периодическая система химических элементов

a) Закономерности, связанные с металлическими и неметаллическими свойствами элементов.

  • При перемещении СПРАВА НАЛЕВО вдоль ПЕРИОДА МЕТАЛЛИЧЕСКИЕ свойства р-элементов УСИЛИВАЮТСЯ. В обратном направлении — возрастают неметаллические. Это объясняется тем, что правее находятся элементы, электронные оболочки которых ближе к октету. Элементы в правой части периода менее склонны отдавать свои электроны для образования металлической связи и вообще в химических реакциях.
  • Например, углерод — более выраженный неметалл, чем его сосед по периоду бор, а азот обладает еще более яркими неметаллическими свойствами, чем углерод. Слева направо в периоде также увеличивается и заряд ядра. Следовательно, увеличивается притяжение к ядру валентных электронов и затрудняется их отдача. Наоборот, s-элементы в левой части таблицы имеют мало электронов на внешней оболочке и меньший заряд ядра, что способствует образованию именно металлической связи. За понятным исключением водорода и гелия (их оболочки близки к завершению или завершены!), все s-элементы являются металлами; p-элементы могут быть как металлами, так и неметаллами, в зависимости от того — в левой или правой части таблицы они находятся.
  • У d- и f-элементов, как мы знаем, есть «резервные» электроны из «предпоследних» оболочек, которые усложняют простую картину, характерную для s- и p-элементов. В целом d- и f-элементы гораздо охотнее проявляют металлические свойства.
  • Подавляющее число элементов является металлами и только 22 элемента относят к неметаллам: H, B, C, Si, N, P, As, O, S, Se, Te, а также все галогены и инертные газы. Некоторые элементы в связи с тем, что они могут проявлять лишь слабые металлические свойства, относят к полуметаллам. Что такое полуметаллы? Если выбрать из Периодической таблицы p-элементы и записать их в отдельный «блок» (это сделано в “длинной” форме таблицы), то обнаружится закономерность, показанная на Левая нижняя часть блока содержит типичные металлы, правая верхняя — типичные неметаллы. Элементы, занимающие места на границе между металлами и неметаллами, называются полуметаллами.
  • Полуметаллы расположены примерно вдоль диагонали, проходящей по p-элементам от левого верхнего к правому нижнему углу Периодической таблицы
  • Полуметаллы имеют ковалентную кристаллическую решетку при наличии металлической проводимости (электропроводности). Валентных электронов у них либо недостаточно для образования полноценной «октетной» ковалентной связи (как в боре), либо они не удерживаются достаточно прочно (как в тeллуре или полонии) из-за больших размеров атома. Поэтому связь в ковалентных кристаллах этих элементов имеет частично металлический характер. Некоторые полуметаллы (кремний, германий) являются полупроводниками. Полупроводниковые свойства этих элементов объясняются многими сложными причинами, но одна из них — существенно меньшая (хотя и не нулевая) электропроводность, объясняемая слабой металлической связью. Роль полупроводников в электронной технике чрезвычайно важна.
  • При перемещении СВЕРХУ ВНИЗ вдоль групп УСИЛИВАЮТСЯ МЕТАЛЛИЧЕСКИЕ свойства элементов. Это связано с тем, что ниже в группах расположены элементы, имеющие уже довольно много заполненных электронных оболочек. Их внешние оболочки находятся дальше от ядра. Они отделены от ядра более толстой «шубой» из нижних электронных оболочек и электроны внешних уровней удерживаются слабее.

б) Закономерности, связанные с окислительно-восстановительными свойствами. Изменения электроотрицательности элементов.

  • Перечисленные выше причины объясняют, почему СЛЕВА НАПРАВО УСИЛИВАЮТСЯ ОКИСЛИТЕЛЬНЫЕ свойства, а при движении СВЕРХУ ВНИЗ — ВОССТАНОВИТЕЛЬНЫЕ свойства элементов.
  • Последняя закономерность распространяется даже на такие необычные элементы, как инертные газы. У «тяжелых» благородных газов криптона и ксенона, которые находятся в нижней части группы, удается «отобрать» электроны и получить их соединения с сильными окислителями (фтором и кислородом), а для «легких» гелия, неона и аргона это осуществить не удается.
  • В правом верхнем углу таблицы находится самый активный неметалл-окислитель фтор (F), а в левом нижнем углу — самый активный металл-восстановитель цезий (Cs). Элемент франций (Fr) должен быть еще более активным восстановителем, но его химические свойства изучать крайне трудно из-за быстрого радиоактивного распада.
  • По той же причине, что и окислительные свойства элементов, их ЭЛЕКТРООТРИЦАТЕЛЬНОСТЬ ВОЗРАСТАЕТ тоже СЛЕВА НАПРАВО, достигая максимума у галогенов. Не последнюю роль в этом играет степень завершенности валентной оболочки, ее близость к октету.
  • При перемещении СВЕРХУ ВНИЗ по группам ЭЛЕКТРООТРИЦАТЕЛЬНОСТЬ УМЕНЬШАЕТСЯ. Это связано с возрастанием числа электронных оболочек, на последней из которых электроны притягиваются к ядру все слабее и слабее.
  • в) Закономерности, связанные с размерами атомов.
  • Размеры атомов (АТОМНЫЕ РАДИУСЫ) при перемещении СЛЕВА НАПРАВО вдоль периода УМЕНЬШАЮТСЯ. Электроны все сильнее притягиваются к ядру по мере возрастания заряда ядра. Даже увеличение числа электронов на внешней оболочке (например, у фтора по сравнению с кислородом) не приводит к увеличению размеров атома. Наоборот, размеры атома фтора меньше, чем атома кислорода.
  • При перемещении СВЕРХУ ВНИЗ АТОМНЫЕ РАДИУСЫ элементов РАСТУТ, потому что заполнено больше электронных оболочек.

г) Закономерности, связанные с валентностью элементов.

  • Элементы одной и той же ПОДГРУППЫ имеют аналогичную конфигурацию внешних электронных оболочек и, следовательно, одинаковую валентность в соединениях с другими элементами.
  • s-Элементы имеют валентности, совпадающие с номером их группы.
  • p-Элементы имеют наибольшую возможную для них валентность, равную номеру группы. Кроме того, они могут иметь валентность, равную разности между числом 8 (октет) и номером их группы (число электронов на внешней оболочке).
  • d-Элементы обнаруживают много разных валентностей, которые нельзя точно предсказать по номеру группы.
  • Не только элементы, но и многие их соединения — оксиды, гидриды, соединения с галогенами — обнаруживают периодичность. Для каждой ГРУППЫ элементов можно записать формулы соединений, которые периодически «повторяются» (то есть могут быть записаны в виде обобщенной формулы).

Итак, подытожим закономерности изменения свойств, проявляемые в пределах периодов:

Изменение некоторых характеристик элементов в периодах слева направо:

  • заряд ядер атомов увеличивается;
  • радиус атомов уменьшается;
  • электроотрицательность элементов увеличивается;
  • количество валентных электронов увеличивается от 1 до 8 (равно номеру группы);
  • высшая степень окисления увеличивается (равна номеру группы);
  • число электронных слоев атомов не изменяется;
  • металлические свойства уменьшается;
  • неметаллические свойства элементов увеличивается.

Изменение некоторых характеристик элементов в группе сверху вниз:

  • заряд ядер атомов увеличивается;
  • радиус атомов увеличивается;
  • число энергетических уровней (электронных слоев) атомов увеличивается (равно номеру периода);
  • число электронов на внешнем слое атомов одинаково (равно номеру группы);
  • прочность связи электронов внешнего слоя с ядром уменьшается;
  • электроотрицательность уменьшается;
  • металличность элементов увеличивается;
  • неметалличность элементов уменьшается.

Z — порядковый номер, равен числу протонов; R — радиус атома; ЭО — электроотрицательность; Вал е- —количество валентных электронов; Ок. св. — окислительные свойства; Вос. св. — востановительные свойства; Эн. ур. — энергитические уровни; Ме — металические свойства; НеМе — неметаллические свойства; ВСО — высшая степень окисления

Шпаргалки

Справочный материал для прохождения тестирования:

Источник