Какие водные свойства пород
Наличие в горных породах той или иной природы действующих сил определяет и их водные свойства: влагоемкость, естественную влажность, водоотдачу, недостаток насыщения и водопроницаемость.
Влагоемкость — способность горных пород вмещать и удерживать определенное количество воды. По степени влагоемкости все породы можно подразделить на весьма влагоемкие (торф, ил, суглинок, глина), слабо влагоемкие (мергели, мел, рыхлые песчаники, лёсс, мелкие пески) и невлагоемкие (массивные изверженные и осадочные породы, галечник, гравий, песок и т.д.).
Количество воды, соответствующее полному насыщению породы, определяет ее полную влагоемкость.
Все виды влагоемкости выражаются обычно в % массы соответствующего вида воды к массе сухой породы.
Различают также естественную влажность We, которая характеризует горные породы в естественном их залегании, и дефицит насыщения породы Dп — разность между полной влагоемкостью и естественной влажностью породы.
Определение естественной влажности имеет большое практическое значение, особенно при оценке физико-химических свойств горных пород.
Водоотдача — способность водонасыщенных пород отдавать гравитационную воду путем ее свободного вытекания.
Водопроницаемость — способность горных пород пропускать через себя воду при наличии перепада давления. Водопроницаемость не зависит от пористости, а зависит от размера пор..
2.2.5. Понятие о водоносных пластах и горизонтах, комплексах и бассейнах подземных вод
Различные пористость и трещиноватость горных пород приводят к неравномерному распределению воды не только в зоне аэрации, но и в зоне насыщения. Поры и трещины небольшого размера хотя и позволяют породе содержать значительные количества воды, но затрудняют ее движение, что делает породу слабо проницаемой, и, наоборот, большие поры и трещины способствуют свободному перемещению подземных вод. Поэтому в гидрогеологическом отношении все породы делятся на три группы:
1) водопроницаемые — галечники, гравий, песок, рыхлые песчаники и все сильно трещиноватые породы;
2) полупроницаемые — глинистые пески, лёсс, известняки, песчаники и слабо трещиноватые метаморфические и магматические породы;
3) практически непроницаемые — глины, суглинки и все массивные кристаллические и осадочные породы, если они не трещиноватые.
2.2.5.1. Водопроницаемые и полупроницаемые породы образуют в земной коре систему водоносных горизонтов. Водоносным горизонтом называется водопроницаемый пласт, насыщенный водой, находящейся в постоянном движении благодаря гидравлической связи и перепаду давления, существующих во всем пласте, и ограниченный водонепроницаемыми породами снизу и сверху или только снизу. Пласт, подстилающий водоносный горизонт, называется подошвой, а пласт, перекрывающий его, — почвой водоносного горизонта. Поверхность, образованная подземными водами, носит название зеркала подземных вод. Для первого от поверхности водоносного горизонта, воды которого называются грунтовыми, зеркало является границей, разделяющей зону аэрации и зону полного насыщения.
Различают напорные и безнапорные водоносные горизонты.
Безнапорные водоносные горизонты не имеют перекрывающих проницаемых горных пород, вследствие чего питание атмосферными осадками происходит по всей площади их распространения и подземные воды испытывают только атмосферное давление.
Напорные водоносные горизонты, наоборот, перекрыты трудно проницаемыми горными породами и поэтому характеризуются давлениями, превышающими атмосферное. Питание этих горизонтов атмосферными осадками может осуществляться только на отдельных участках, где отсутствуют перекрывающие слабо проницаемые породы. Часто напорные водоносные горизонты могут переходить в безнапорные и наоборот.
Для напорных водоносных горизонтов, кроме реально существующей поверхности подземных вод, различают еще пьезометрическую поверхность.
На картах зеркало подземных вод изображается с помощью гидроизогипс, а пьезометрическая поверхность — гидроизопьез.Следовательно, первые представляют собой линии равных отметок реально существующей поверхности, водоносного горизонта, а вторые — линии равных напоров или отметок пьезометрической поверхности.
Основными элементами водоносного горизонта являются область питания, область распространения и область разгрузки, которые представляют собой участки поверхности или части геологических структур, определяющие гидродинамику водоносного горизонта (скорость, направление движения, напор и т.д.).
1. Область питания — это зона, в пределах которой атмосферные осадки могут проникать в гидравлическую систему. Преобладающими направлениями движения подземных вод в этой части водоносного горизонта могут быть нисходящее вертикальное и частично горизонтальное. Водоносный горизонт в этой зоне непосредственно связан с зоной аэрации, обеспечивающей его питание. Вместе с тем питание водоносных горизонтов происходит не только атмосферными осадками или поверхностными водами, но и за счет других водоносных горизонтов. В этом случае говорят о закрытой или внутренней области питания.
2. Область распространения (напора) подземных вод — промежуточная зона между областями питания и разгрузки, которая является основной по площади развития. В пределах этой области преобладающим направлением движения подземных вод является горизонтальное. Для безнапорных водоносных горизонтов эти две первые области, как правило, совпадают.
3. Область разгрузки — зона, в пределах которой подземные воды выходят на поверхность земли или переливаются в другой водоносный горизонт (скрытая разгрузка). Направления движения подземных вод могут быть вертикальными восходящими или нисходящими.
В местах выхода подземных вод на поверхность образуются источники или родники, представляющие собой по существу своеобразные природные сооружения, из которых непрерывно ведется откачка воды и около которых всегда наблюдается депрессия в водоносном горизонте.
А.М. Овчинников предлагает различать стоки разгрузку подземных вод. Первое характерно для вод, имеющих свободную поверхность, а второе — для напорных вод.
Расход, или дебит, любого родника зависит от четырех основных переменных:
1) проницаемости пород;
2) площади области питания;
3) объема питания
4) геологического строения места выхода воды.
2.2.5.2. Более крупной единицей гидрогеологической стратификации является водоносный комплекс, который представляет собой группу гидравлически связанных между собой водоносных горизонтов, одинаковых или разных по литологическому составу, разделенных слабо водопроницаемыми породами относительно небольшой мощности и имеющих близкие условия питания и разгрузки. В отличие от водоносных горизонтов в водоносном комплексе напоры подземных вод могут, хотя и незначительно, изменяться в вертикальном разрезе, что определяется степенью проницаемости пород отдельных горизонтов.
2.2.5.3. Система водоносных комплексов, связанная единой областью питания и разгрузки, образует бассейн подземных вод. Последние широко развиты в пределах различных геологических структур: синеклиз, мульд, краевых и предгорных прогибов, межгорных впадин, грабенах, зонах тектонических разломов и т.д. Бассейны, заполненные напорными водами, называются артезианскими.
Самым крупным подразделением геологической стратификации является гидрогеологический этаж или водоносная формация(мнение исследователей в этом вопросе расходятся). В нее объединяются водосодержащие литологически и генетически однородные, хотя часто и разновозрастные бассейны, характеризующиеся близкими условиями залегания, распространения, питания и разгрузки подземных вод.
Водоносные формации часто разделяются регионально выдержанными водоупорами и включают несколько водоносных комплексов. Каждая такая формация отличается от другой историей палеогидрогеологического развития, гидродинамическими и гидрогеологическими особенностями.
2.2.6. Геологический круговорот воды
Геологический круговорот воды в земной коре в отличие от климатического обусловлен непрерывным движением отдельных ее участков в вертикальном и горизонтальном направлениях в связи с общей тектонической жизнью Земли. Начало этого круговорота связано с бассейнами осадконакопления.
Свежесформированный осадок в бассейнах седиментации представляет собой в подавляющем большинстве случаев рыхлое или текучее тело, резко обводненное, богатое микроорганизмами и состоящее из весьма разнородного химико-минералогического материала. Важнейшей чертой этого осадка является наличие большого количества воды. По мере того, как происходит погружение зоны осадконакопления в результате давления перекрывающих слоев и уплотнения илов, ведущего к превращению их в породы, содержание воды в илах начинает уменьшаться. Уплотнению подвергаются и образующиеся из илов глины вплоть до превращения их в сланцы. При этом идет снижение пористости и выжимание воды. Последнее особенно характерно для глинистых осадков.
Несмотря на то, что пористость горных пород с глубиной неуклонно уменьшается, но даже на значительных глубинах (6-10 км) встречаются зоны с высокой пористостью и проницаемостью.
Отжимаемая из иловых осадков вода сначала возвращается в водоем, где происходит осадконакопление. В дальнейшем она отжимается в коллекторские пласты, преимущественно песчаные, залегающие между уплотняемыми слоями глин. В песчаных пластах с самого начала их образования тоже находится седиментационная вода, но она постепенно уступает место водам, выдавливаемым из глин, так как геостатическое давление, господствующее в уплотняющихся слоях глин, в 2 раза и более превышает гидростатическое давление, господствующее в практически несжимаемых песчаниках. Геостатическое давление в глинах, передаваясь на заключенные в них воды, создает в них давление, превышающее давление в коллекторах. В дальнейшем движение вод в водоносных горизонтах происходит в соответствии с гидравлическим уклоном, направленным от мест наибольшего прогибания и выжимания к местам относительно меньшего тектонического движения.
Основная часть свободных вод отжимается уже на первых сотнях метров погружения осадка, но на этом отжатие вод не прекращается, поскольку в дальнейшем в этот процесс включаются связанные воды вплоть до адсорбированных и кристаллизационных.
Следовательно, первый этап геологического круговорота воды, связанный с захоронением осадков на большие глубины, может быть назван седиментационным. Его формирование происходит в условиях отжатая воды из захороняющихся горных пород, т.е. в условиях элизионного режима.
Геологический круговорот воды седиментационным этапом не заканчивается, так как продолжающееся прогибание территории приводит к дальнейшему погружению осадочных пород и связанных с ними подземных вод.
После уплотнения и полной литификации осадков оставшиеся в них поровые воды составляют еще 2-5% от их объема. Эти воды в виде свободных выделяются при попадании осадочных толщ в зону прогрессивного метаморфизма, который, сопровождаясь перекристаллизацией пород, приводит к выделению в свободную фазу не только поровых, но и всех их кристаллизационных и конституционных разностей, входящих в состав глинистых минералов. При этом происходит не просто освобождение воды или дегидратация горных пород, но и их дегидроксилирование, т.е. выделение гидроксильной группы ОН”, а также ионов водорода и кислорода, которые, соединяясь, синтезируют молекулу воды. В этих условиях формируются вновь синтезированные, или возрожденные воды. Синтез воды делает зону метаморфизма качественно новым этапом геологического круговорота, который предлагается называть метаморфогенным.
Выделение воды при метаморфизме происходит медленно по мере перекристаллизации минералов, но этот процесс характерен практически для всех его этапов. Тем самым захороненная первоначально в осадочных отложениях вода в процессе метаморфизма постепенно полностью освобождается и занимает трещины и межгранулярные пространства горных пород, а также образует восходящие потоки к поверхности земли. Таким путем свободные воды по системе сообщающихся сосудов из зоны метаморфизма оказываются выведенными снова к дневной поверхности, тем самым замыкая геологический круговорот воды и создавая флюидные потоки из коровых (15-30 км) и мантийных недр земли.
Третий этап геологического круговорота – магматический связан с тем, что расширяющиеся и углубляющиеся разломы земной коры, процессы магматической деятельности способствуют активной миграции захороненных вод среди различных пород и вовлечению их в сферу действия климатического круговорота. В этих условиях формируются разнообразные минеральные, газоносные, гидротермальные и другие воды. Подымающиеся и раскрывающиеся структуры подвергаются воздействию метеорных факторов, что еще усложняет гидрогеологические условия и способствует вовлечению глубинных вод в общий круговорот.
Геологический круговорот воды, в отличие от климатического, совершается в различных термодинамических оболочках земной коры.
С развиваемых позиций полный геологический круговорот воды складывается из трех этапов: седиментационного, метаморфогенного и магматического, каждый из которых в определенном смысле носит самостоятельный характер. В то же время все они являются частью более общего круговорота, играющего важнейшую роль в земной коре.
Геологический круговорот воды не изолирован от других источников воды – экзогенных (вадозных) и эндогенных (ювенильных). Так, по представлениям многих исследователей, в земную кору поступают воды из мантии, количество которых в настоящее время точно не известно.
2.2.7. Отличие геологического круговорота воды от климатического
Источник
В гидрогеологическом отношении горные породы подразделяются на водопроницаемые и водонепроницаемые, на рыхлые и скальные.
К рыхлым относятся раздельнозернистые породы, сложенные частицами, между которыми отсутствуют структурные связи (гравий, песок разной крупности), и глинистые породы с агрегатной структурой, мельчайшие частицы которых образуют более крупные и сложные агрегаты, связанные между собой.
К скальным относятся изверженные, метаморфические и сцементированные осадочные породы (известняки, песчаники, глинистые сланцы и т. п.), имеющие жесткие связи между частицами.
Физические и водные свойства рыхлых и скальных пород зависят от их литологического и химико-минерального состава, пористости, трещиноватости и структуры.
Скважность и пористость
Горные породы по условиям происхождения и вследствие вторичных процессов (выветривание, растворение и выщелачивание, тектонические движения и др.) не являются абсолютно монолитными и содержат пустоты самых разных размеров и формы. В зависимости от вида и размера пустот различают скважность, обусловленную крупными порами (более 1 мм), ноздреватостью, крупной трещиноватостью и закарстованностью, и пористость, когда в горных породах имеются поры диаметров менее 1 мм и трещины шириной менее 0,25 мм.
Скважность и пористость определяют гидрогеологические свойства горных пород. В горных породах, которым присуща скважность, подземная вода передвигается только под действием силы тяжести, а в пористых породах — под действием силы тяжести, поверхностного натяжения и других факторов.
Величину пористости необходимо учитывать при решении ряда практических задач в строительстве, водоснабжении, горном деле и т. п.
Количественно пористость n выражается отношением объема пустот Vп ко всему объему породы V:
В породах осадочного происхождения (гравий, песок, щебень и т. п.) величина пористости зависит от размера, формы и взаимного расположения слагающих их частиц. Пористость гипотетической породы, состоящей из частиц шаровидной формы одинакового диаметра, в зависимости от их расположения, изменяется от 25,95 до 47,64%.
Водоотдача и водопроницаемость пород, обладающих различной пористостью, зависят не только от общей пористости и размера отдельных пор, но и от их расположения в породе и взаимной связи. Если рыхлые породы сложены неоднородным плохо отсортированным материалом, то пустоты между крупными обломками заполнены более мелкими частицами, что уменьшает объем пустот, а, следовательно, и пористость.
Среди скальных пород наименьшую пористость имеют изверженные, у которых она обычно не превышает долей процента. Исключением является артикский туф Армении, пористость которого достигает 60%.
Пористость глинистых пород, несмотря на очень малую величину отдельных пор, в большинстве случаев превосходит пористость песков и нередко достигает 60% и более; поры в этих породах обычно имеют щелевидную форму. Пористость глинистых пород непостоянна и изменяется в зависимости от степени их увлажнения и величины внешнего давления.
К водным (гидрогеологическим) свойствам горных пород относят те, которые проявляются в них при взаимодействии с водой:
- водопроницаемость;
- капиллярное поднятие;
- влагоемкость;
- водоотдачу;
- растворимость;
- набухание;
- усадку;
- пластичность;
- консистенцию.
Водопроницаемость — это свойство пород пропускать воду под действием силы тяжести, которое обусловливается их скважностью и пористостью. Не все породы водопроницаемы. Глинистые породы, пористость которых почти всегда выше пористости раздельнозернистых пород (пески и др.), практически не пропускают воду вследствие того, что поры в них очень мелкие и находящаяся в них физически связанная вода не подвержена действию сил гравитации.
Пески, гравий, щебенка, известняки и другие породы, свободно пропускающие воду, называют водопроницаемыми, а глинистые породы — водонепроницаемыми, или водоупорными. Водоупорными бывают также монолитные невыветрелые скальные нетрещиноватые породы.
Водопроницаемость пород характеризуется коэффициентом фильтрации k, который представляет собой скорость движения воды при гидравлическом градиенте, равном единице; k измеряется в метрах в секунду или сутки. Примерные величины коэффициентов фильтрации (м/сут) различных осадочных пород приведены ниже:
- Глины <0.001
- Суглинки 0,001–0,1
- Супеси 0,1–1
- Пески: мелкозернистые 1–6, средне- и крупнозернистые 6–60
- Галечники: с песком 20–100, отсортированные >100
- Бурые угли: Днепровского бассейна 0,0001–0,46, других бассейнов 0,5–14
Гидравлическим, или напорным, градиентом называется отношение разности напоров в двух точках гидростатической поверхности к расстоянию между ними, считая по горизонтали.
При гидрогеологических расчетах наряду с коэффициентом фильтрации используют коэффициент водопроводимости T, измеряемый в квадратных метрах в сутки:
где h — мощность водоносного горизонта, м.
Коэффициент водопроводимости выражает способность водоносного горизонта мощностью h и шириной 1 м фильтровать воду в единицу времени при напорном градиенте, равном единице. Коэффициенты фильтрации и водопроводимости количественно выражают водопроводимость горной породы.
Рыхлые горные породы имеют большое число мелких пустот и канальцев, обладающих свойствами капилляров, которые разветвляются в разных направлениях, образуя тончайшую капиллярную сетку. Поднятие или опускание жидкости в капиллярах называется капиллярным явлением.
Капиллярные явления объясняются действием сил поверхностного натяжения между молекулами воды и стенками капилляра на границе раздела воды и воздуха.
Результаты лабораторных и полевых исследований дают следующие величины предельной высоты капиллярного поднятия (см):
- Пески: крупнозернистые 12–15, среднезернистые 40–50, мелкозернистые 90–110
- Супеси 175–200
- Суглинки: легкие 225–250, средние и тяжелые 350–650
- Глины до 1200
Показатели капиллярного поднятия воды в породах используются для различных целей:
- Оценки возможности увлажнения нижней части фундаментов зданий, бортов карьеров и отвалов, насыпей железных дорог и автострад, силосных ям и др. Это увлажнение создает излишнюю сырость в помещениях, а также снижает прочность грунтов оснований фундаментов, склонов, откосов карьеров, дорожных насыпей и пр.;
- Выяснения возможности заболачивания территорий, а в засушливых районах — засоления грунтов;
- Расчета необходимой глубины понижения уровня грунтовых вод при строительстве карьеров и других инженерных сооружений, осушении заболоченных территорий и борьбе с засолением почв на орошаемых массивах.
Влагоемкость — это способность горных пород вмещать в своих пустотах и удерживать определенное количество воды. Различают следующие виды влагоемкости: полную — максимальное количество воды, удерживаемое породой при полном насыщении всех пустот водой; капиллярную — максимальное количество воды, удерживаемое в капиллярных порах; пленочную, или максимальную молекулярную, — максимальное количество физически связанной воды, удерживаемое частицами породы; гигроскопическую, которая соответствует количеству прочносвязанной (адсорбционной) воды. По степени влагоемкости горные породы подразделяются на очень влагоемкие (торф, ил, глина, суглинки); слабо влагоемкие (мел, мергель, лёссовые породы, супеси, мелкозернистые пески); невлагоемкие (скальные породы, галечники, гравий, крупнозернистые пески).
Водоотдачей называется свойство пород, насыщенных водой, свободно отдавать гравитационную воду. Количественно она характеризуется отношением объема свободно вытекающей из породы воды (при полном заполнении пор или трещин) к объему всей породы. Для крупнозернистых песков, гравия и других подобных пород водоотдача равна их полной влагоемкости. Водоотдача мелкозернистых песков, супесей и суглинков значительно меньше водоотдачи перечисленных выше пород и равна разности между полной и максимальной молекулярной влаго-емкостью. Величина водоотдачи используется при решении вопросов осушения заболоченных территорий, дренирования выемок, определении притоков воды в котлованы и горные выработки и т. д.
Растворимость — это способность некоторых пород (известняки, доломиты, мел, гипс, соли и др.) при соприкосновении с подземной водой полностью или частично растворяться. Растворяющей способностью подземная вода обладает только в том случае, если она не насыщена соответствующей солью. Например, подземные воды, насыщенные карбонатом кальция, не растворяют, известняки, а насыщенные сульфатом кальция не растворяют гипс и ангидрит. Растворяющая способность агрессивных подземных вод зависит также от скорости их движения в породе: чем больше скорость движения воды, тем выше ее растворяющая способность.
Источник