Какие вещества обусловливают буферные свойства

Какие вещества обусловливают буферные свойства thumbnail

Каким химические элементы входят в состав клетки?

В состав клетки входит около 70 элементов периодической
системы Д. И. Менделеева.

Из них основная часть (98’%) приходится на макроэлементы –
углерод, водород, кислород, азот, которые вместе с серой и фосфором образуют
группу биоэлементов.

На долю таких элементов, как сера, фосфор, калий, натрий,
железо, кальций и магний, приходится только 1,8% веществ, входящих в состав
Клетки.

Помимо этого и состав клетки входят микроэлементы йод (I), фтор (F), цинк (Zn), медь (Cu), составляющие 0,18% от общей массы,
и ультрамикроэлементы – золото (Аи), серебро (Ан), платина (Р) входящие в
состав клетки в количестве до 0,02%.

Приведите примеры биологической роли химических элементов.

Биоэлементы – кислород, водород, углерод, азот, фосфор и
сера – являются необходимыми составными частями молекул биологических полимеров
– белков, полисахаридов и нуклеиновых кислот.

Натрий, калий и хлор обеспечивают проницаемость клеточных
мембран, работу калий – натриевого (К/На-) насоса, проведение нервного
импульса.

Кальций и фосфор являются структурными компонентами
межклеточного вещества костной ткани. Помимо этого кальций является одним из
факторов свертываемости крови.

Железо входит в состав белка эритроцитов – гемоглобина, а
медь – в состав сходного с ним белка, тоже являющегося переносчиком кислорода,
– гемоцианина (например, в эритроцитах моллюсков).

Магний является обязательной частью хлорофилла клеток
растений. А мод и цинк входят в состав гормонов щитовидной и поджелудочной желез
соответственно.

Что такое микроэлементы? Приведите примеры и охарактеризуйте
их биологическое 
значение.

Микроэлементы – вещества, входящие в состав клетки в малых
количествах (от 0,18 до 0,02%). К микроэлементам относятся цинк, медь, йод,
фтор, кобальт.

Находясь в составе клетки в виде ионов и иных соединений,
они активно участвуют в построении и функционировании живого организма. Так,
цинк входит в состав молекулы инсулина – гормона поджелудочной железы. Йод –
необходимый компонент тироксина – гормона щитовидной железы. Фтор участвует в
образовании костей и эмали зубов. Медь входит в состав молекул некоторых
белков, например гемоцианина. Кобальт является компонентом молекулы витамина
В12, необходимого организму для кроветворения.

Какие неорганические вещества входят в состав клетки?

Из неорганических веществ, входящих в состав клетки,
наиболее распространенным является вода. В среднем в многоклеточном организме
вода составляет до 80% массы тела. Помимо этого, в клетке находятся различные
неорганические соли, диссоциированные на ионы. В основном это соли натрия,
калия, кальция, фосфаты, карбонаты, хлориды.

В чем заключается биологическая роль воды? Минеральных
солей?

Вода является самым распространенным неорганическим
соединением в живых организмах. Ее функции во многом определяются дипольным
характером строения ее молекул.

1. Вода — универсальный полярный растворитель: многие
химические вещества в присутствии воды диссоциируют на ионы — катионы и анионы.

2. Вода является средой, где протекают различные химические
реакции между веществами, находящимися в клетке.

3. Вода выполняет транспортную функцию. Большинство веществ
способно проникнуть через клеточную мембрану только в растворенном и воде виде.

4. Вода является важным реагентом реакций гидратации и
конечным продуктом многих биохимических реакций, в том числе окисления.

5. Вода выступает как терморегулятор, что обеспечивается ее
хорошей теплопроводностью И теплоемкостью и позволяет поддерживать температуру
внутри клетки при колебаниях температуры и окружающей среде.

6. Вода является средой для жизни многих живых организмов.

Жизнь без воды невозможна.

Минеральные вещества также имеют важное значение для
процессов, происходящих в живых организмах. От концентрации солей в клетке
зависят ее буферные свойства — способность клетки поддерживать слабощелочную
реакцию своего содержимого на постоянном уровне.

Какие вещества обусловливают буферные свойства
клетки?

Внутри клетки буферность обеспечивается главным образом
анионами Н2РО, НРО1-. Во внеклеточной жидкости и крови роль буфера играют
карбонат-ион СО и гидрокарбонат-ион НСО. Анионы слабых кислот и щелочей
связывают ионы водорода Н и гидроксид-ионы ОН благодаря чему реакция среды
почти не меняется, несмотря на поступление извне или образование в процессе
метаболизма кислых и щелочных продуктов.

Какие органические вещества входят в состав клетки?

Органические вещества составляют и среднем 20-30’%, от массы
клетка живого организма. К ним относятся биологическиеполимеры  белки, нуклеиновые кислоты, углеводы,
жиры, я также ряд других молекул — гормоны, пигменты, АТФ, витамины.

Из каких простых органических соединений состоят белки?

Белки — линейные нерегулярные биополимеры, мономерами
которых являются аминокислоты. В состав белков животного организма входит 20
основных аминокислот.

Аминокислоты — амфотерные органические соединения, имеющие
карбоксильную группу (кислотную) и аминогруппу (основную) и отличающиеся друг
от друга по строению радикала.

Что такое пептиды?

Молекулы, состоящие из аминокислот, соединенных пептидными
связями, называются пептидами.

Пептидная связь образуется между углеродом кислотной группы
одной и азотом основной группы последующей аминокислоты. Соединение двух
аминокислот называется дипепепидом, трех — трипептидом, более 20 аминокислот —
полипептидом.

Что такое первичная структура белка?

Конкретная последовательность аминокислот в полипептидной
цепи является первичной структурой белка; она определяется последовательностью
нуклеотидов в молекуле ДНК.

Как образуются вторичная, третичная структуры белка?

Вторичная структура белка образуется за счет водородных
связей между остатками карбоксильных и аминогрупп различных аминокислот и имеет
вид правозакрученной спирали.

Третичная структура белка образуется за счет соединения
аминокислот, находящихся в полипептидной цепи на некотором расстоянии друг от
друга, водородными, ионными, дисульфидными (S-S) связями и гидрофобными
взаимодействиями.

Благодаря этому белковая молекула принимает шарообразную
форму и называется глобулой..

Четвертичная структура белка – объединение нескольких
белковых молекул, имеющих третичную организацию. В состав четвертичной
структуры некоторых белков, входят небелковые компоненты. Например, гемоглобин
содержит железо.

Разноуровневая структурная организация белковых молекул
необходима для выполнения ими их специфических функций.

Что такое денатyрация белка?

Утрата белковой молекулой своей структурной организации
называется денатурацией. Денатурация может быть обратима, если не разрушена
первичная структура белка. В этом случае при восстановлении нормальных условий
(температуры, кислотности и др.) происходит ренатурация.

Какие функции белков вам известны ?

1. Каталитическая. Все биологические катализаторы – ферменты
– имеют белковую природу.

2. Пластическая (строительная). Белки входят в состав
клеточной мембраны и образуют немембранные Структуры клетки (например,
цитоскелет) и часть межклеточного вещества.

3. Транспортная. Например, гемоглобин переносит кислород в
крови, в мембранах клеток имеются специальные транспортные белки, активно
переносящие определенные вещества в клетку.

Читайте также:  Какими свойствами обладает сплав мельхиор

4. Регуляторная. Некоторые гормоны имеют белковую природу –
инсулин, гормоны гипофиза.

5. Сигнальная. На наружной поверхности клеточной мембраны
имеется множество специфических рецепторов гликопротеидной природы,
воспринимающих внешние воздействия (гормоны) или определяющих характер
взаимодействия клетки с вирусом.

6. Двигательная. Все виды движения обеспечиваются
специфическими сократительными белками (актин, миозин; белки микротрубочек
веретена деления).

7. Защитная. В ответ на внедрение инородных веществ
(антигенов) клетками крови (лейкоцитами) синтезируются специальные белки –
антитела.

8. Энергетическая. При расщеплении 1 г белка выделяется 17,6
кдж энергии (4,2 икал).

Какие химические соединения называют углеводами?

Углеводы – органические соединения с общей формулой Сn(Н20)m.

Какие клетки наиболее богаты углеводами?

Наиболее богаты углеводами растительные клетки, где их
содержание иногда достигает 90% сухой массы (клетки клубней картофеля, семена).
В животных клетках содержание углеводов не превышает 2-5″/о.

Что такое моносахариды? Приведите примеры.

Простые углеводы называют моносахаридами. В зависимости от
количества атомов углерода в молекуле их называют триозами – 3 атома, тетрозами
– 4 атома, пентозами – 5 атомов и гексозами б атомов углерода в молекуле.

Из шестиуглеродных моносахаридов наиболее важны глюкоза,
фруктоза и галактоза, принимающие активное участие и процессах метаболизма. Из
пятиуглеро1аых моносахаридов – дезоксирибоза и рибоза, входящие в состав
соответственно ДНК и РНК.

Что такое дисахариды? Приведите примеры.

Дисахаридами называют химические соединения, образованные
двумя молекулами моносахаридов. Например, пищевой сахар – сахароза состоит из
одной молекулы глюкозы и одной молекулы фруктозы.

Какой простой углевод служит мономером крахмала, гликогена,
целлюлозы?

Мономером данных полисахаридов служит глюкоза. При этом
крахмал и гликоген представляют собой разветвленные полимеры, а целлюлоза –
линейный.

Укажите Функции углеводов.

1. Энергетическая. Глюкоза – основной источник энергии в
организме. При сгорании 1 г глюкозы образуется 17,6 кДж (4,2 ккал)энергии.

2. Сигнальная. Углеводы входят в состав гликопротеидных
рецепторов, расширенных на поверхности клеточной мембраны.

З. Резервная. Углеводы обеспечивают запас питательных
веществ в клетке в виде зерен крахмала или глыбок гликогена.

4. Пластическая. Углеводы образуют клеточную стенку растений
(целлюлоза), грибов (хитин); формируют наружный хитиновый скелет членистоногих.

Что такое жиры? Опишите их химический состав.

Жиры – это эфиры высокомолекулярных жирных кислот и
трехатомного спирта глицерина. Характерной особенностью жиров является их
гидрофобность – нерастворимость в воде.

Какие функции выполняют жиры?

1. Пластическая. Фосфолипиды образуют клеточные мембраны.

2. Энергетическая. При окислении 1 г жиров выделяется 38,9
кДж (9,3 ккал) энергии.

3. Жиры являются растворителями для гидрофобных веществ,
например витаминов (А, D, Е).

4. Резервная. Жировые включения капли жира в цитоплазме
клетки.

5. Терморегуляция. За счет плохой теплопроводности жировая
ткань может служить теплоизолятором.

6. Защитная. Рыхлая жировая ткань при механическом
повреждении предохраняет подлежащие органы от травмы.

В каких клетках и тканях наиболее велико количество жиров?

Содержание жиров в клетках колеблется от 5 до 15%. Однако в
клетках жировой ткани их количество может достигать 90% сухого веса. Много
жиров в семенах и плодах растений.

Что такое нуклеиновые кислоты?

Нуклеиновые кислоты – линейные нерегулярные биополимеры,
мономерами которых являются нуклеотиды. Нуклеотид – органическое соединение,
состоящее из азотистого основания (аденин, тимин, урацил, гуанин, цитозин),
пятиуглеродного сахара (пентозы) — рибозы или дезоксирибозы и остатка фосфорной
кислоты. В Состав нуклеиновых кислот входит 8 видов нуклеотидов — 4 вида
рибозосодержащих (в РНК) и 4 вида дезоксирибозосодержащих (в ДНК). Отдельные
нуклеотиды объединяются в полинуклеотидную цепь за счет образования
фосфоэфирных связей между сахаром предыдущего и остатком фосфорной кислоты
последующeгo нуклеотида.

Какие простые органические соединения служат элементарной
составной частью нуклеиновых кислот?

Мономерами нуклеиновых кислот служат нуклеотиды. Нуклеотид —
органическое соединение, состоящее из азотистого основания (аденин, тимин,
урацил, гуанин, цитозин), пятиуглеродного сахара (пентозы) — рибозы или
дезоксирибозы и остатка фосфорной кислоты

Какие типы нуклеиновых кислот вы знаете?

Существует два типа нуклеиновых кислот — дезоксирибонуклеиновая
и рибонуклеиновая.

Чем различается строение молекул ДНК и РНК?

Молекула ДНК представляет собой двухцепочечный линейный
нерегулярный биополимер, мономерами которого являются нуклеотиды, содержащие
дезоксирибозу, аденин, гуанин, цитозин, тимин и остаток фосфорной кислоты. Цепи
в молекуле ДНК антипараллельны – разнонаправлены. Цепи связаны друг с другом
водородными связями, возникающими между азотистыми основаниями противоположных
цепей по принципу комплементарности, т. е. взаимодополнения. При этом
образуются пары: аденин – тимин, гуанин – цитозин. Двухцепочечная молекула ДНК
образует спираль, которая, взаимодействуя с белками гистонами, формирует
нуклеосомную нить – спираль более высокого порядка. Нуклеосомная нить, в свою
очередь, образует суперспираль, при атом молекула так значительно укорачивается
и утолщается, что становится видна в световой микроскоп как вытянутое тельце –
хромосома.

Молекула РНК – одноцепочечный, линейный, нерегулярный
биополимер, мономерами которого являются нуклеотиды, содержащие рибозу, аденин.
урацил, гуанин. цитозин и остаток фосфорной кислоты. Многие виды РНК формируют
участки комплементарного соединения в пределах одной цепи, что придает им
определенную пространственную конфигурацию. Встречаются и двуцепочечные РНК,
которые являются хранителями генетической информации у ряда вирусов, т. е.
выполняют у них функции хромосом.

Назовите функции ДНК.

1. Хранение наследственной информации. Наследственная
информация в молекуле ДНК заключается в последовательности нуклеотидов одной из
ее цепей. Наименьшей единицей генетической информации является триплет – три
последовательна расположенных в попинукле0тидной цепи нуклеотида.

Последовательность триплетов в полинуклеотидной цепи
молекулы ДНК несет информацию о последовательности аминокислот в молекуле
белка.

Группа последовательно расположенных триплетов, несущая
информацию 0 структуре одной белковой молекулы, называется геном.

2. передача наследственной информации из поколения в
поколение осуществляется в результате редупликации (удвоения молекулы ДНК) с
последующим распределением дочерних молекул между дочерними клетками.

3. Передача наследственной информации на информационную РНК.
При этом ДНК является матрицей. На одной из цепей молекулы ДНК по принципу
комплементарности синтезируется молекула информационной РНК, которая далее
переносит информацию в цитоплазму.

Какие виды РНК имеются в клетке?

1. Информационная РНК. Синтезируется в ядре на одной из
цепей ДНК по принципу комплементарности; в цитоплазме выполняет роль матрицы в
процессе трансляции.

2. Рибосомальная РНК. Синтезируется в ядре, в зоне ядрышка;
входит в состав рибосом, обеспечивающих трансляцию.

Читайте также:  Какие свойства имеет зверобой

З. Транспортная РНК. Доставляет аминокислоты к месту синтеза
белка. Осуществляет по принципу комплементарности распознавание триплета на
информационной РНК, соответствующего переносимой аминокислоте, и точную
ориентацию аминокислоты в активном центре рибосомы.

(Теги: состав, клетки, белка, является, Какие, вещества, кислоты, входят, аминокислот, являются, молекул, например, соединения, молекула, веществ, нуклеиновых, функции, молекуле, информации, клетке, аденин, фосфорной, цитозин, наиболее, гуанин, нуклеотиды, жиров, аминокислоты, комплементарности, принципу, тимин, информацию, структуры, линейный, содержание, кальций, углеводами, калий, кислород, фосфор, нуклеиновые, Пластическая, клеточной, железо, Энергетическая, синтезируется, моносахаридов, Помимо, организма, наследственной, глюкоза, образуются, белковых, полипептидной, процессе, различные, обеспечивают, организмах, щитовидной, полисахаридов, третичная, заключается, последовательность, солей, приходится, благодаря, вторичная, анионы, ткани, соединений, поджелудочной, водород, обеспечивается, межклеточного, друга, внутри, также, значение, часть, соответственно, средой, буферные, водородными, поддерживать, группы, более, связей, биополимеры, метаболизма, относятся, группу, активно, выполняет, реакций, среднем, первичная, гемоцианина, организме, входящих, натрий)

Источник

Огромную роль для нормального функционирования человеческого организма играет кислотно-основное равновесие. Циркулирующая в организме кровь представляет собой смесь живых клеток, которые находятся в жидкой среде обитания. Первой чертой охраны, что контролирует уровень pH в крови, выступает буферная система. Это физиологический механизм, который обеспечивает сохранение параметров кислотно-основного баланса, препятствуя перепадам pH. Что он собой представляет и какие имеет разновидности, узнаем ниже.

буферная система

Описание

Буферная система – это уникальный механизм. В организме человека существует их несколько, и все они состоят из плазмы и клеток крови. Буферы представляют собою основания (белки и неорганические соединения), которые связывают или отдают Н+ и ОН-, уничтожая сдвиг pH в течение тридцати секунд. Способность буфера поддерживать кислотно-основный баланс зависит от количества элементов, из которых он слагается.

Виды буферов крови

Кровь, которая постоянно движется, представляет собой живые клетки, которые существуют в жидкой среде. pH в норме составляет 7,37-7,44. Связка же ионов происходит определенным буфером, классификация буферных систем приведена ниже. Сам же он состоит из плазмы и кровяных клеток и может быть фосфатным, белковым, бикарбонатным или гемоглобиновым. Все эти системы имеют достаточно простой механизм действия. Их деятельность нацелена на урегулирование уровня ионов в крови.

Особенности буфера гемоглобинового

Гемоглобиновая буферная система является самой мощной из всех, она представляет собой щелочь в капиллярах тканей и кислоту в таком внутреннем органе, как легкие. На ее долю приходится около семидесяти пяти процентов всей буферной емкости. Этот механизм участвует во множестве процессах, что происходят в крови человека, и имеет в своем составе глобин. При переходе гемоглобинового буфера в другую форму (оксигемоглобин), наблюдается изменение этой формы, изменяются и кислотные свойства действующего вещества.

Качество восстановленного гемоглобина меньшее, чем у угольной кислоты, но становится намного лучше, когда он окисляется. Когда приобретается кислотность pH, гемоглобин соединяет ионы водорода, получается так, что он уже восстановленный. Когда происходит очищение углекислого газа в легких, pH получается щелочным. В это время гемоглобин, который окислился, выступает донором протонов, при помощи чего происходит уравновешивание кислотно-основного баланса. Так, буфер, что состоит из оксигемоглобина и его калиевой соли, способствует выделению из организма углекислоты.

Эта буферная система выполняет немаловажную роль в дыхательном процессе, так как совершает транспортную функцию по переносу к тканям и внутренним органам кислорода и удалению из них углекислоты. Кислотно-основное равновесие внутри эритроцитов при этом придерживается на постоянном уровне, следовательно, в крови также.

Таким образом, когда кровь насыщается кислородом, гемоглобин превращается в сильную кислоту, а когда кислород он отдает, то превращается в достаточно слабую органическую кислоту. Системы оксигемоглобина и гемоглобина – взаимопревращающиеся, они существуют как одно целое.

классификация буферных систем

Особенности бикарбонатного буфера

Бикарбонатная буферная система выступает также мощной, но и самой управляемой в организме. На ее долю приходится около десяти процентов всей буферной емкости. Она имеет универсальные свойства, которые обеспечивают ее двухстороннюю эффективность. В состав этого буфера входит сопряженная кислотно-щелочная пара, что состоит из таких молекул, как угольная кислота (источник протона) и бикарбонат аниона (акцептор протона).

Так, бикарбонатная буферная система способствует протеканию систематического процесса, где в кровь попадает мощная кислота. Этот механизм связывает кислоту с бикарбонатом анионов, образуя кислоту угольную и ее соль. При попадании щелочи в кровь буфер связывается с угольной кислотой, образуя бикарбонатную соль. Так как гидрокарбоната натрия в крови человека больше, чем угольной кислоты, данная буферная емкость будет иметь высокую кислотность. Другими словами, гидрокарбонатная буферная система (бикарбонатная)очень хорошо проводит компенсацию веществ, которые повышают кислотность крови. К ним относится и молочная кислота, концентрация которой увеличивается при интенсивных физических нагрузках, а данный буфер очень быстро реагирует на изменения кислотно-основного баланса в крови.

Особенности фосфатного буфера

Фосфатная буферная система человека занимает близко двух процентов всей буферной емкости, что связано с содержанием в крови фосфатов. Этот механизм поддерживает показатель pH в моче и жидкости, что находится внутри клеток. Буфер состоит из неорганических фосфатов: одноосновного (выполняет роль кислоты) и двухосновного (выполняет роль щелочи). При нормальном показателе pH соотношение кислоты и основания равняется 1:4. При увеличении количества ионов водорода фосфатная буферная система связывается с ними, образуя кислоту. Этот механизм больше кислотный, чем щелочной, поэтому он отлично нейтрализует поступающие в кровь человека кислые метаболиты, например, молочную кислоту.

бикарбонатная буферная система

Особенности белкового буфера

Белковый буфер играет не такую особую роль в стабилизации кислотно-щелочного баланса, по сравнению с другими системами. На его долю приходится около семи процентов всей буферной емкости. Белки состоят из молекул, которые объединяются в кислотно-щелочные соединения. В кислой среде они выступают щелочами, которые связывают кислоты, в щелочной среде все происходит наоборот.

Это приводит к тому, что образуется белковая буферная система, которая достаточно эффективна при значении pH от 7,2 до 7,4. Большая доля белков представлена альбуминами и глобулинами. Так как белковый заряд нулевой, то при нормальном показателе pH он находится в виде щелочи и соли. Эта буферная емкость зависит от количества белков, их структуры и свободных протонов. Данный буфер может нейтрализовать и кислые, и щелочные продукты. Но емкость она имеет больше кислотную, чем щелочную.

Читайте также:  Какие свойства предметов изучает математика

Особенности эритроцитов

В норме эритроциты имеют постоянный показатель pH – 7,25. Здесь оказывают действие гидрокарбонатный и фосфатный буферы. Но по мощности они отличаются от тех, что находятся в крови. В эритроцитах белковый буфер играет особую роль в обеспечении органов и тканей кислородом, а также удалению из них углекислоты. Кроме этого, он поддерживает постоянное значение внутри эритроцитов pH. Белковый буфер в эритроцитах тесно связан с гидрокарбонатной системой, так как соотношение кислоты и соли здесь меньшее, чем в крови.

буферная система это

Пример буферной системы

Растворы сильных кислот и щелочей, которые обладаю слабыми реакциями, имеют непостоянный показатель pH. Но смесь кислоты уксусной с ее солью сохраняет имеет стабильное значение. Даже если к ним добавить кислоту или щелочь, кислотно-основное равновесие не изменится. В качестве примера можно рассмотреть ацетатный буфер, который состоит из кислоты СН3СООН и ее соли СН3СОО. Если добавить сильную кислоту, то основание соли свяжет ионы Н+ и превратится в кислоту уксусную. Снижение уровня анионов соли уравновешивается увеличением молекул кислоты. В результате этого наблюдается незначительное изменение в соотношении кислоты и ее соли, поэтому pH изменяется совсем незаметно.

фосфатная буферная система

Механизм действия буферных систем

При поступлении в кровь кислых или щелочных продуктов буфер обеспечивает постоянное значение pH до тех пор, пока поступившие продукты не выведутся или не используются в процессах метаболизма. В крови человека представлены четыре буфера, каждый из которых состоит из двух частей: кислоты и ее соли, а также сильной щелочи.

Эффект буфера обуславливается тем, что он связывает и нейтрализует ионы, которые поступают соответствующим ему составом. Поскольку в природе организм больше всего сталкивается с недоокисленными продуктами обмена, свойства буфер имеет антикислотные больше, чем антищелочные.

Каждая буферная система имеет свой принцип работы. При снижении уровня pH ниже отметки 7,0 начинается их активная деятельность. Они начинают связывать излишки свободных ионов водорода, образуя комплексы, которые перемещают кислород. Он, в свою очередь, перемещается к системе пищеварения, легким, коже, почкам и так далее. Такая транспортировка кислых и щелочных продуктов способствует их разгрузке и выведению.

В организме человека только четыре буферные системы играют важные роли в сохранении кислотно-основного равновесия, но существуют и другие буферы, например, ацетатная буферная система, которая имеет слабую кислоту (донор) и ее соль (акцептор). Способность этих механизмов противостоять изменениям pH при попадании кислоты или соли в кровь является ограниченной. Они поддерживают кислотно-щелочное равновесие только в том случае, когда сильная кислота или щелочь поступают в определенном количестве. Если оно будет превышено, pH резко изменится, буферная система прекратит свое действие.

Эффективность буферов

Буферы крови и эритроцитов имеют различную эффективность. У последних она выше, так как здесь присутствует гемоглобиновый буфер. Уменьшение количества ионов происходит по направлению от клетки до межклеточной среды, а затем до крови. Это говорит о том, что самая большая буферная емкость у крови, а меньшую имеет внутриклеточная среда.

При метаболизме в клетках появляются кислоты, которые проходят в межклеточную жидкость. Это происходит тем легче, чем их больше появляется в клетках, поскольку переизбыток ионов водорода увеличивает проницаемость мембраны клетки. Нам уже известна классификация буферных систем. В эритроцитах они имеют более эффективные свойства, так как здесь еще играют роль коллагеновые волокна, которые реагируют набуханием на накопление кислоты, они ее поглощают и освобождают от ионов водорода эритроциты. Такая его способность обуславливается свойством абсорбции.

белковая буферная система

Взаимодействие буферов в организме

Все механизмы, которые находятся в организме, взаимосвязаны между собой. Буферы крови состоят из нескольких систем, вклад которых в поддержание кислотно-щелочного баланса различный. При попадании крови в легкие она получает кислород путем его связывания в эритроцитах гемоглобином, образуя оксигемоглобин (кислоту), что поддерживает уровень pH. При содействии карбоангидразы происходит параллельное очищение крови легких от углекислоты, которая в эритроцитах представлена в виде слабой двухосновной угольной кислотой и карбаминогемоглобином, а в крови – углекислотой и водой.

При уменьшении в эритроцитах количества слабой двухосновной угольной кислоты происходит проникновение ее из крови в эритроцит, и очищение крови от углекислоты. Таким образом, из клеток в кровь постоянно проходит слабая двухосновная угольная кислота, а из крови в эритроциты для соблюдения нейтральности поступают неактивные анионы хлорида. В результате этого в красных клетках крови среда более кислотная, чем в плазме. Все системы буферов обосновываются отношением донор-акцептор протона (4:20), что связано с особенностями метаболизма организма человека, который образует большее число кислотных продуктов, чем щелочных. Очень важным здесь является показатель кислотных буферных емкостей.

механизм действия буферных систем

Обменные процессы в тканях

Кислотно-основной баланс поддерживается буферами и метаболическими превращениями в тканях организма. Этому помогают биохимические и физико-химические процессы. Они способствуют потере кислотно-щелочных свойств продуктов обмена веществ, их связыванию, образованию новых соединений, которые быстро выводятся из организма. Например, большое количество молочной кислоты выводится в гликоген, органические кислоты нейтрализуются солями натрия. Сильные кислоты и щелочи растворяются в липидах, а органические кислоты подвергаются окислению, образуя угольную кислоту.

Таким образом, буферная система – это первый помощник при нормализации кислотно-щелочного баланса в организме человека. Стабильность pH нужна для нормальной работы биологических молекул и структур, органов и тканей. При нормальных условиях буферные процессы поддерживают равновесие между появлением и удалением ионов водорода и углекислого газа, что способствует обеспечению в крови постоянного уровня pH.

Если происходит сбой в работе буферных систем, то у человека появляются такие патологии, как алкалоз или ацидоз. Все буферные системы взаимосвязаны и направлены на поддержание стабильного кислотно-основного равновесия. В организме человека постоянно образуется большое число кислых продуктов, которое эквивалентно тридцати литрам сильной кислоты.

Постоянство реакций внутри организма обеспечивают мощные буферы: фосфатный, белковый, гемоглобиновый и бикарбонатный. Существуют и другие буферные системы, но эти являются основными и самыми нужными для живого организма. Без их помощи у человека начнут развиваться различные патологии, которые могут привести к коме или летальному исходу.

Источник