Какие углы называются вертикальными каким свойством они обладают ответ
Медвед 7 лет назад Вертикальными называются углы, образованные пересекающимися прямыми и не являющиеся прилегающими друг к другу, то есть общей стороны у них нет, но вертикальные углы имеют вершину в одной точке. Вертикальные углы равны между собой. автор вопроса выбрал этот ответ лучшим Lalique 3 года назад Изучая школьный курс геометрии, мы знаем что есть вертикальные и смежные углы. Вертикальные углы довольно просто получить построением. Рисуем два луча, которые имеют точку пересечения. Теперь мы видим, что образовалось четыре угла. Те углы, которые будут симметричны относительно центра – именуют вертикальными. У этих углов есть одно главное свойство: они равны по величине. Знание этого равенства позволяет решить различные геометрические задачи неугомонная 4 года назад Вертикальные углы. Нарисовали две скрещенные прямые. Углы напротив друг друга будут вертикальными. Они касаются в одной точке в вершине. Прямая дает сторону углу одному и сторону углу другому. Получается четрые всего угла. Пара противоположных углов является вертикальными. TextExpert 3 года назад Это два угла, имеющие одну вершину – у двух пересекающихся прямых отрезков это два противоположных угла, где сторона одного есть продолжение стороны другого угла. Естественно, что такие углы будут равны друг с другом. Сashshi 7 лет назад Вертикальные углы — два угла, которые образуются при пересечении двух прямых, эти углы не имеют общих сторон. Другими словами — два угла называют вертикальными, если стороны одного угла являются продолжениями сторон другого. Два вертикальных угла равны. Так же они в сумме дают девяносто градусов. Что мешает вам просто открыть учебник – все еще загадка для меня. Знаете ответ? |
Источник
Вертикальные углы – два угла, у которых стороны одного являются продолжениями сторон другого. Вертикальные углы равны. (Вертикальными называются углы, образованные пересекающимися прямыми и не являющиеся прилегающими друг к другу, то есть общей стороны у них нет, но вертикальные углы имеют вершину в одной точке. Вертикальные углы равны между собой).
22. Какие прямые называются перпендикулярными?Две пересекающиеся прямые называютсяперпендикулярными (или взаимно перпендикулярными), если они образуют четыре прямых угла. Или Перпендикулярные прямыеэто прямые пересекающиеся под углом 90 градусов. Или Две прямые, образующие при пересечении прямые углы, называют перпендикулярными.
23. Объясните, какой отрезок называется перпендикуляром, проведенным из данной точки к данной прямой. Что такое основание перпендикуляра? Перпендикуляром к данной прямой называется отрезок прямой, перпендикулярной к данной, который имеет одним из своих концов их точку пересечения. Этот конец отрезка называется основанием перпендикуляра.Перпендикуляром к данной прямой называется отрезок прямой, перпендикулярной к данной, который имеет одним из своих концов их точку пересечения. Конец отрезка, лежащий на данной прямой, называется основанием перпендикуляра.
24. Что такое теорема и доказательство теоремы? В математике утверждение, справедливость которого устанавливается путем рассуждений, называется теоремой, а само рассуждение – доказательством теоремы.
Теоре́ма — утверждение, для которого в рассматриваемой теории существует доказательство (иначе говоря, вывод) . В отличие от теорем, аксиомаминазываются утверждения, которые, в рамках конкретной теории, принимаются истинными без всяких доказательств или обоснований. Доказательство– это утверждение, объясняющее теорему. Теорема –такая гипотеза, которую требуется доказать;Гипотеза всегда требует доказательства. Доказательство –доводы, подтверждающие действенность, правильность теоремы.
Докажите теорему о существовании перпендикуляра к прямой. (Рис.56 в учебнике)
Теорема. Из точки, не лежащей на прямой, можно провести перпендикуляр к этой прямой.
Доказательство.Пусть A – точка, не лежащая на данной прямой a (рис. 56, а). Докажем, что из точки A можно провести перпендикуляр к прямой a. Мысленно перегнем плоскость по прямой a (рис. 56, б) так, чтобы полуплоскость с границей a, содержащая точку A, наложилась на другую полуплоскость. При этом точка Aналожится на некоторую точку. Обозначим ее буквой B. Разогнем плоскость и проведем через точки A и Bпрямую.
Пусть H – точка пересечения прямых AB и a (рис. 56, в). При повторном перегибании плоскости по прямой aточка H останется на месте. Поэтому луч HA наложится на луч HB, и, следовательно, угол 1 совместится с углом 2. Таким образом, ∠1 = ∠2. Так как углы 1 и 2 – смежные, то их сумма равна 180°, поэтому каждый из них – прямой. Следовательно, отрезок AH – перпендикуляр к прямой a. Теорема доказана.
Докажите теорему о единственности перпендикуляра к прямой. (Рис.57 в учебнике)
Теорема. Из точки, не лежащей на прямой, нельзя провести два перпендикуляра к этой прямой.
Доказательство.Пусть A – точка, не лежащая на данной прямой a (см. рис. 56, а). Докажем, что из точки Aнельзя провести два перпендикуляра к прямой a. Предположим, что из точки A можно провести два перпендикуляра AH и AK к прямой a (рис. 57). Мысленно перегнем плоскость по прямой a так, чтобы полуплоскость с границей a, содержащая точку A, наложилась на другую полуплоскость. При перегибании точки H и K остаются на месте, точка A накладывается на некоторую точку. Обозначим ее буквой B. При этом отрезки AH и AK накладываются на отрезки BH и BK.
Углы AHB и AKB – развернутые, так как каждый из них равен сумме двух прямых углов. Поэтому точки A, Hи B лежат на одной прямой и также точки A, K и B лежат на одной прямой.
Таким образом, мы получили, что через точки A и B проходят две прямые AH и AK. Но этого не может быть. Следовательно, наше предположение неверно, а значит, из точки A нельзя провести два перпендикуляра к прямой a. Теорема доказана.
https://mthm.ru/geometry7/perpendicular
Источник
2
5 ответов:
0
1
Вертикальные углы — два угла, которые образуются при пересечении двух прямых, эти углы не имеют общих сторон. Другими словами — два угла называют вертикальными, если стороны одного угла являются продолжениями сторон другого. Два вертикальных угла равны. Так же они в сумме дают девяносто градусов. Что мешает вам просто открыть учебник – все еще загадка для меня.
1
0
Вертикальными называются углы, образованные пересекающимися прямыми и не являющиеся прилегающими друг к другу, то есть общей стороны у них нет, но вертикальные углы имеют вершину в одной точке. Вертикальные углы равны между собой.
1
0
Вертикальные углы. Нарисовали две скрещенные прямые. Углы напротив друг друга будут вертикальными. Они касаются в одной точке в вершине. Прямая дает сторону углу одному и сторону углу другому. Получается четрые всего угла. Пара противоположных углов является вертикальными.
1
0
Изучая школьный курс геометрии, мы знаем что есть вертикальные и смежные углы.
Вертикальные углы довольно просто получить построением. Рисуем два луча, которые имеют точку пересечения. Теперь мы видим, что образовалось четыре угла. Те углы, которые будут симметричны относительно центра – именуют вертикальными.
У этих углов есть одно главное свойство: они равны по величине.
Знание этого равенства позволяет решить различные геометрические задачи
0
0
Это два угла, имеющие одну вершину – у двух пересекающихся прямых отрезков это два противоположных угла, где сторона одного есть продолжение стороны другого угла. Естественно, что такие углы будут равны друг с другом.
Читайте также
Довольно простенькая задача. Надо найти значения функции sinx, когда углы, выраженные в градусах, имеют целочисленные значения. У синуса sinx угол х выражен в радианах. Пусть А – угол, выраженный в градусах. Например, А=10 градусов. Надо перевести градусы в радианы. х=Api/180. Где pi – число Пи = 3,1415… Например, при А=10 имеем х=10pi/180=pi/18. Значит, при А=10 синус будет равен sinx=sin(pi/18)=0,173648… Итак, ответ: Если угол выражен в градусах, то синус этого угла равен
sinx=sin(А*pi/18) (1)
Причем А не обязательно целое число. Но если вы хотите целое число градусов, подставляйте сюда целое число. Еще пример. Пусть А=90 градусов. Тогда из формулы (1) получим sinx=sin(90*pi/180)=sin(pi/2)=1.
Угол, вершина которого О расположена вне круга с центром Н, а его стороны ОАВ и ОСD пересекают окружность в двух точках, соответственно, в точках А,В и С,D равен полуразности угловых величин дуг ВD и АС: угол О = 1/2(ВD – АС). В частном случае, когда одна из сторон угла, например ОАВ, совпадает с диаметральной прямой, а отрезок ОС равен радиусу окружности, оказывается, что угол О = 1/3 ВНD. Таким образом доказывается трисекция угла по Архимеду.
Соответственные углы образуются при пересечении секущей двух прямых. Также образуются односторонние и накрест лежащие углы.
Соответственные углы при параллельных прямых равны между собой, при непараллельных – не равны. Сумма соответственных углов (при параллельных) равна 360 минус удвоенный односторонний угол к любому из соответственных, взятых для расчета.
Геометрически соответственные углы находятся по одну сторону от секущей, и …если представить секущую в виде вектора, имеющего направление… в одном направлении относительно точек пересечения секущей с параллельными прямыми.
Смежные углы образуются при проведении луча из произвольной точки прямой. Тогда эта произвольная точка оказывается вершиной угла, луч – общей стороной смежных углов, а прямая от которой проведен луч – двумя оставшимися сторонами смежных углов. Смежные углы могут быть как одинаковыми в случае перпендикуляра, так и отличатся при наклонном луче. Легко понять, что сумма смежных углов равна 180 градусов или попросту прямой линии. По другому этот угол можно объяснить простым примером – вы сперва шли в одном направлении по прямой, потом передумали, решили вернуться назад и развернувшись на 180 градусов отправились по той же прямой в обратном направлении.
Углы в геометрии бывают следующие:
Во-первых, это прямой угол, равный 90 градусов.
Во-вторых, это тупой угол, равный более 90 градусов.
В- третьих, это острый угол, равный менее 90 градусов.
В-четвёртых, это развёрнутый угол, равный 180 градусов.
В-пятых, вертикальные углы, скрещивающиеся, смежные, накрестлежащие, односторонние.
Геометрия – наука не самая простая, чтобы ее понять нужен талант и конечно, замечательный учитель.
Источник