Какие свойства воды не меняются с изменением состояния воды

Какие свойства воды не меняются с изменением состояния воды thumbnail

Воде дана таинственная власть
Быть соком жизни на Земле.

Леонардо да Винчи

Рис. 1. Структура воды при температуре 20<sup>о</sup>С, размер по горизонтали — 400 мкм. Белые пятна — это эмулоны.<br><br>

Рис. 2. Структура водных растворов при 20<sup>о</sup>С: А — дистиллированная вода; Б — дегазированная минеральная вода боржоми; В — спиртовая настойка 70%.

Рис. 3. Эмулоны в бидистиллированной воде при температурах 4<sup>о</sup>С (А), 20<sup>о</sup>С (Б), 80<sup>о</sup>С (В). Размеры снимков 1,5 × 1,5 мм.

Рис. 4. Изменение амплитуды сигналов акустической эмиссии и температуры воды в процессе таяния льда.

Рис. 5. Относительное изменение температуры при нагревании воды.

Подробности для любознательных. Схема опыта. За короткое время из стаканчика с положительным электродом (анодом) через «мостик» утекло 0,5 грамма воды.

«Парящий водяной мостик» длиной около 3 сантиметров.

Наэлектризованная стеклянная палочка искажает форму «мостика» и разбивает его на струйки.

Так могут выглядеть эмулоны, образующие нитевидную структуру «мостика».

Воду принято рассматривать и как практически нейтральный растворитель, в котором протекают биохимические реакции, и как субстанцию, разносящую по телу живых организмов различные вещества. Вместе с тем вода — непременный участник всех физико-химических процессов и, в силу своей огромной важности, самое изучаемое вещество. Изучение свойств воды не раз приводило к неожиданным результатам. Казалось бы, какие неожиданности может таить в себе несложная реакция окисления водорода 2H2 + O2 → 2H2O? Но работы академика Н. Н. Семёнова показали, что реакция эта — разветвлённая, цепная. Было это более семидесяти лет назад, и про цепную реакцию деления урана ещё не знали. Вода в стакане, реке или озере не просто огромные количества отдельных молекул, а их объединения, надмолекулярные структуры — кластеры. Для описания структуры воды предложен ряд моделей, которые более или менее правильно объясняют только некоторые её свойства, а в отношении других противоречат эксперименту.

теоретически кластеры рассчитывают обычно только для нескольких сотен молекул или для слоёв вблизи межфазной границы. Однако ряд экспериментальных фактов свидетельствует, что в воде могут существовать гигантские, по молекулярным масштабам, структуры (работы члена-корреспондента РАН Е. Е. Фесенко).

В тщательно очищенной дважды дистиллированной воде и некоторых растворах нам удалось методом акустической эмиссии обнаружить и с помощью лазерной интерферометрии визуализировать структурные образования, состоящие из пяти фракций размерами от 1 до 100 мкм. Эксперименты позволили установить, что каждый раствор имеет свою, присущую только ему структуру (рис. 1, 2).

Надмолекулярные комплексы образованы сотнями тысяч молекул воды, сгруппированных вокруг ионов водорода и гидроксила в виде ионных пар. Для этих надмолекулярных комплексов мы предлагаем название «эмулоны», чтобы подчеркнуть их сходство с частицами, образующими эмульсию. Комплексы состоят из отдельных фракций размерами от 1 до 100 мкм, причём фракций, имеющих размеры 30, 70 и 100 мкм, значительно больше остальных.

Содержание отдельных фракций эмулонов зависит от концентрации ионов водорода, температуры, концентрации раствора и предыстории образца (рис. 3). В бидистиллированной воде при 4оС комплексы плотно упакованы и образуют текстуру, напоминающую паркет. Как известно, вода при этой температуре имеет максимальную плотность. При повышении температуры до 20оС в структуре воды происходят существенные изменения: количество свободных эмулонов становится наибольшим. При дальнейшем нагреве они постепенно разрушаются, число их уменьшается, и этот процесс в основном заканчивается при 75оС, когда скорость звука в воде достигает максимума.

За счёт дальнодействия электростатических сил эмулоны в воде образуют довольно стабильную сверхрешётку, которая, однако, чутко реагирует на электромагнитные, акустические, тепловые и другие внешние воздействия.

Обнаруженные надмолекулярные комплексы непротиворечиво включают в себя все ранее полученные сведения об организации воды в нанообъёмах и позволяют объяснить многие экспериментальные факты, которые не имели стройного, логичного обоснования. К ним относится, например, образование «парящего водяного мостика», описанного в ряде работ.

Суть эксперимента заключается в том, что если поставить рядом два небольших химических стакана с водой, опустить в них платиновые электроды под постоянным напряжением 15—30 кВ, то между сосудами образуется водяная перемычка диаметром 3 мм и длиной до 25 мм. «Мостик» парит длительное время, имеет слоистую структуру, и по нему происходит перенос воды от анода к катоду. Этот феномен и все его свойства — следствие наличия в воде эмулонов, которые, по-видимому, обладают дипольным моментом. Можно предсказать и ещё одно свойство явления: при температуре воды выше 75оС «мостик» не возникнет.

Легко объясняются и аномальные свойства талой воды. Как отмечалось в литературе, многие свойства талой воды — плотность, вязкость, электропроводность, показатель преломления, растворяющая способность и другие — отличаются от равновесных параметров. Сведéние этих эффектов к удалению из воды дейтерия в результате фазового перехода (температура плавления «тяжёлого льда» D2O 3,82оС) несостоятельно, поскольку концентрация дейтерия крайне незначительна — один атом дейтерия на 5—7 тыс. атомов водорода.

Изучение плавления льда методом акустической эмиссии позволило впервые установить, что после полного расплавления льда талая вода, находящаяся в метастабильном состоянии, становится источником акустических импульсов, что служит экспериментальным подтверждением образования в воде надмолекулярных комплексов (рис. 4).

Читайте также:  Какие свойства обладает имбирь при похудении

Эксперименты показывают, что талая вода на протяжении почти 17 часов может находиться в активном метастабильном состоянии (после плавления льда его микрокристаллики сохраняются только доли секунды и совсем не определяют свойства талой воды). Это загадочное явление объясняется тем, что при разрушении гексагональной кристаллической решётки льда резко меняется структура вещества. Кристаллы льда разрушаются быстрее, чем перестраивается в устойчивое равновесное состояние образовавшаяся из него вода.

Уникальность фазового перехода лёд↔вода заключается в том, что в талой воде концентрация ионов водорода H+ и гидроксила OH– непродолжительное время сохраняется неравновесной, какой она была во льду, то есть в тысячу раз меньшей, чем в обычной воде. Через некоторое время концентрация ионов H+ и OH– в воде принимает своё равновесное значение. Поскольку ионы водорода и гидроксила играют решающую роль в формировании надмолекулярных комплексов воды (эмулонов), вода на некоторое время остаётся в метастабильном состоянии. Реакция её диссоциации H2O → H+ + OH– требует значительной затраты энергии и протекает очень медленно. Константа скорости этой реакции составляет всего 2,5∙10–5 c–1 при 20оС. Поэтому время возвращения талой воды в равновесное состояние теоретически должно составлять 10—17 часов, что и наблюдается на практике. Исследования динамики изменения концентрации ионов водорода в талой воде во времени подтверждают это. Необычные свойства талой воды служат причиной разговоров о «памяти» воды. Но под «памятью» воды следует понимать зависимость её свойств от предыстории и ничего больше. Можно разными способами — замораживанием, нагреванием, кипячением, обработкой ультразвуком, воздействием различных полей и др. — перевести воду в метастабильное состояние, но оно будет неустойчивым, недолго сохраняющим свои свойства. Оптическим методом мы обнаружили в талой воде присутствие лишь одной фракции надмолекулярных образований с размерами 1—3 мкм. Возможно, что пониженная вязкость и более редкая пространственная сетка из эмулонов в талой воде увеличивают растворяющую способность и скорость диффузии.

Реальность существования эмулонов подтверждает классический метод термического анализа (рис. 5). На графике наблюдаются чётко выраженные пики, свидетельствующие о структурных перестройках в воде. Наиболее значимые соответствуют 36оC — температуре минимальной теплоёмкости, 63оC — температуре минимальной сжимаемости, и особенно характерен пик при 75оC — температуре максимальной скорости звука в воде. Их можно трактовать как своеобразные фазовые переходы, связанные с разрушением эмулонов. Это позволяет сделать вывод: жидкая вода — очень своеобразная дисперсная система, включающая как минимум пять структурных образований с различными свойствами. Каждая структура существует в определённом, характерном для неё температурном интервале. Превышение температуры над пороговым уровнем, критичным для данной структуры, приводит к её распаду.

Литература

Зацепина Г. Л. Физические свойства и структура воды. — М.: Изд-во Московского университета. — 1998. — 185 с.

Кузнецов Д. М., Гапонов В. Л., Смирнов А. Н. О возможности исследования кинетики фазовых переходов в жидкой среде методом акустической эмиссии // Инженерная физика, 2008, № 1, с. 16—20.

Кузнецов Д. М., Смирнов А. Н., Сыроешкин А. В. Акустическая эмиссия при фазовых превращениях в водной среде // Российский химический журнал — М.: Рос. хим. об-во им. Д. И. Менделеева, 2008, т. 52, № 1, с. 114—121.

Смирнов А. Н. Структура воды: новые экспериментальные данные. // Наука и технологии в промышленности, 2010, № 4, с. 41—45.

Смирнов А. Н. Акустическая эмиссия при протекании химической реакции и физико-химических процессов // Российский химический журнал. — М.: Рос. хим. об-во им. Д. И. Менделеева, 2001, т. 45, с. 29—34.

Смирнов А. Н., Сыроешкин А. В. Супранадмолекулярные комплексы воды // Российский химический журнал. — М.: Рос. хим. об-во им. Д. И. Менделеева, 2004, т. 48, № 2, с. 125—135.

***

Подробности для любознательных

Как возникает «мостик»

Образование «водяного мостика» описано в работах нидерландского физика Элмара Фукса с коллегами[1, 2].

В две стоящие рядом небольшие ёмкости с водой погружают платиновые электроды и подают на них постоянное напряжение 15—20 кВ. На фотографиях из [1] отчётливо видно, что вначале в анодном стакане, а затем и в катодном на поверхности воды возникают возвышения, которые сливаются, образуя между ёмкостями водяную перемычку круглого сечения диаметром 2—4 мм. После этого стаканы можно отодвинуть один от другого на 20—25 мм. Перемычка существует довольно долго, образуя «парящий водяной мостик». Вдоль «мостика» перетекает вода. Концы «мостика» разноимённо заряжены, поэтому вода в ёмкостях приобретает различные значения рН: 9 и 4. «Мостик» состоит из тонких струек; при поднесении к нему заряженной стеклянной палочки он расщепляется на несколько рукавов. Высокая техника эксперимента позволила зарегистрировать движение шаровидных образований по поверхности «водяного мостика» [2].

Объяснить этот эффект доктор Э. Фукс не смог, но ряд наблюдавших его исследователей склонны считать эффект следствием возникновения сверхтекучести, изменения соотношений количеств орто- и парамолекул воды (с параллельными и антипараллельными спинами соответственно) или притяжения дипольных молекул воды. Но ни один из этих вариантов объяснений не представляется убедительным. А обнаруженные гигантские надмолекулярные комплексы размерами до 100 мкм — эмулоны — вполне подходят на роль элементов «мостика». Возникновение на нём сферических образований, например, можно объяснить потерей устойчивости нитями из эмулонов и выталкиванием некоторых из них на поверхность «мостика», по которой они станут перемещаться к одному из электродов.

Читайте также:  Какие у пояса освещенности границы и свойства

Литература

1. Elmar C. Fuchs et al. The floating water bridge, J. Phys. D: Appl. Phis. 40 (2007) 6112 — 4.

2. Elmar C. Fuchs et al. Dynamic of the floating water bridge, J. Phys. D: Appl. Phis. 41 (2008) 185502 (5pp).

Источник

Вода — основа жизни и в природе она может находиться в трех
основных состояниях: твёрдом, жидком и газообразном. Однако, искусственно можно
создать условия, при которых вода переходит в состояние плазмы.

Какие свойства воды не меняются с изменением состояния воды

В этой статье мы разберем, почему вода может быть в жидком,
твердом и газообразном состояниях, и при каких условиях меняются ее агрегатные
состояния.

Жидкое состояние воды в природных условиях планеты Земля
преобладает.

Твердое состояние воды

Вода в твердом состоянии – это лёд и снег. Некоторые не
понимают, к какому агрегатному состоянию воды относится иней. Конечно, к
твёрдому! Это мелкая ледяная крошка, замерзшие капли росы.

Твердая – это замороженная вода. Когда она замерзает, ее
молекулы отодвигаются подальше друг от друга, делая лед менее плотным, чем
жидкость, т.е. вода в твердом состоянии занимает больший объем, чем в жидком.

Большинство веществ при снижении температуры сжимается, а
вода – расширяется, и в этом ее уникальная особенность.

Замерзает – это значит, что при 0 градусов Цельсия вода
кристаллизуется и переходит из жидкого состояния в твердое. Наличие в воде
солей снижает температуру замерзания.

На школьных олимпиадах встречается такой интересный вопрос:
какой металл, находясь в расплавленном состоянии, может заморозить воду? Ответ
– ртуть, которая начинает плавиться при температуре -39 градусов Цельсия.
Понятно, что жидкая ртуть при температуре от -38 до 0 способна заморозить воду,
отбирая у нее тепло.

Несмотря на то, что самое распространенное на нашей планете
— жидкое состояние воды, значительная ее часть (2/3 всех пресноводных запасов)
находится в замороженном виде. Площадь ледников – около 11% всей суши Земли.

Если жидкое состояние пресной воды переходит в твердое при 0
градусов Цельсия, то морская вода средней солености замерзает примерно при -1,8
градусах Цельсия.

Жидкое состояние воды

Вода в жидком состоянии встречается на нашей планете не
только в реках и океанах. Облака состоят из крошечных капелек воды и
кристалликов льда, и дождь – это тоже жидкая вода.

Также вода в жидком состоянии просачивается через почву и
образует подземные водные горизонты, из которых черпается основная масса
питьевой воды.

Какие свойства воды не меняются с изменением состояния воды

Вода в жидком состоянии отличается высокой прилипчивостью к
различным твердым материям. Сама по себе она не является «влажной», но легко
делает влажными большинство твердых материалов.

Жидкая вода легко переходит в твердое и газообразное
состояние. Главным образом, это зависит от температуры. Но свою роль играет и
давление.

Физический переход воды из жидкого состояния в газообразное
называется испарением, потому что газообразное состояние воды называется паром.

Как жидкое состояние воды превращается в газообразное? Когда
мы кипятим воду, она превращается из жидкости в газ, или водяной пар. Когда его
часть остывает, мы видим небольшое облако, которое и называют паром. Хотя, если
мы его видим, то это уже жидкое состояние воды, т.е. скопление ее
микроскопических капелек.

Пар — это вода в газообразном состоянии, которое образуется,
когда вода кипит или испаряется. Настоящий пар невидим; однако слово «пар»
часто ошибочно относят к влажному пару, видимому туману, как аэрозолю водяных
капель, образующихся при конденсации водяного пара.

И тут всплывает такое понятие, как «точка росы». Это
температура воздуха, которая меняется в зависимости от давления и влажности,
ниже которой водный пар начинает конденсироваться в водяные капли и образуется
роса. Т.е. агрегатное состояние воды из газообразного состояния меняется на
жидкое.

Закипает жидкая пресная вода при 100°C (градусах Цельсия)
или 212°F (градусах Фарингейта), в условиях нормального атмосферного давления.
Чем ниже давление (например, в горах), тем выше температура кипения.

Состояние газа

Итак, вода в газообразном состоянии – это пар. Утверждение,
что большая часть воды в гидросфере находится в газообразном состоянии – не
верно.

Не все хорошо себе представляют, в каком состоянии вода
способна испаряться. Оказывается, вода в твердом состоянии испаряется так же,
как и жидкая, только медленнее! Скорость испарения зависит от температуры. Т.е.
в газообразное состояние вода может переходить прямо из твердого, минуя жидкое.

Какие свойства воды не меняются с изменением состояния воды

Испаренная с поверхности Земли вода в газообразном состоянии
образует облака и тучи

Четвертое агрегатное состояние: плазма

Все знают, в каких трех состояниях вода находится в
окружающей природе. Однако, ученые знают и четвертое состояние воды – плазму,
которую называют гидроплазмой.

Читайте также:  Какое свойство воздуха позволяет растениям не замерзать

Водяной пар можно нагреть до такой температуры (2 200 -13
900°С, или 4 000- 25 000 ° F), что молекулы воды распадаются и получается
просто смесь атомов водорода и кислорода в виде плазмы. Там динамически может
присутствовать некоторое количество молекул воды, но всё равно эта смесь ионов
и молекул будет водородно-кислородной плазмой.

Вообще плазма – это такое состояние вещества, которое
настолько насыщено энергией, что от атомов отлетают электроны. Не говоря уже о
разрушении молекулярных структур и кристаллических решеток.

Плазменное состояние воды в природе не встречается, однако оно
всё больше интересует ученых в плане возобновляемых источников энергии. Очень
заманчивая идея – получение из воды топлива в виде горючего водорода, который
реагирует с кислородом и опять образует воду…

Как меняются агрегатные состояния

В принципе, агрегатное (физическое) состояние воды, как и
любого другого вещества, зависит от температуры и давления. В природных
условиях Земли возможны только три состояния веществ: твёрдое, жидкое и
газообразное. Это и есть ответ на вопрос «в каких трех состояниях вода
находится в природе».

Также теперь Вы знаете ответы на многие другие интересные
вопросы типа «какой металл, находясь в расплавленном, т.е. жидком, состоянии,
может заморозить воду, т.е. превратить ее в лёд» и т.п.

И Вы имеете понятие, в каком агрегатном состоянии может
находиться вода в природе и в искусственных условиях.

Источник

Недавно было отмечено физическое изменение свойств воды.

Обычная вода во время кипячения (над ней не производилось никаких доолнительных действий) стала восприниматься иначе, при закипании она вела себя так, как будто ее консистенция изменилась и стала более плотной, киселеобразной. При просмотре на тонком плане в этой воде было видно раскаленной белой массы, напоминающей расплавленный металл.

Данное свойство легко теряется – например при переливании в другую емкость. В таком случае теряется как ощущение измененной консистенции воды, так и сама “огненная” энергетическая составляющая.

Раскаленная масса представляет собой жидкую форму кристаллов тонкофизических мерностей. Назначение этих кристаллов – усиление мощности энергетической составляющей воды. Вода, наделенная огненной энергией обладает большей силой воздействия (в 20-30 раз сильнее, воможен “разгон” до более высоких показателей). Известно, что вода является универсальным носителем энергии и информации, отсюда наговоры на воду и многие другие методы использования воды в магии.

Вода этого типа эффективна в целительской практике (в нее можно вкладывать намерение на очищение и оздорволение организма), можно пить, использовать в приготовлении пищи – здесь жестких рамок нет. Также ее эффективно использовать для очищения помещений – при этом с вещей будут удаляться империл, энергетическая грязь, подселенцы и т.д. Возможно намного более широкое применение – например, для работы с намерением (его усиления).

Как уже писалось, огненная форма воды неустойчива. На данный момент она появляется только в единичных случаях – далеко не у всех, кто кипятит воду, а также легко распадается. Но с ней можно общаться и она реагирует на намерение. Например, перед кипячением можно обратиться к воде с просьбой получить именно воду, заряженную огненной энергией, а также на то, чтобы эти свойства сохранились столько, сколько вам нужно. Важный нюанс – кипятить можно только не закрывая крышкой.

Кристаллы огненной энергии были принесены в водную сферу Земли с Нептуна – планеты Солнечной системы, которая отвечает за водную стихию. Это только одно из немногих изменений и расширений возможностей воды, которые будут происходить по мере очищения нашей реальности.

По ходу этих изменений придется “расширить кругозор” во многих областях. Например, считается, что огненная стихия с водной несовместима – в опредленных сферах взаимодействия это, разумеется, так, но, как видим – не во всех. Также видна неверность теорий о том, что “кипяченая вода – мертвая”. Материалистические представления тоже уйдут. Сейчас проявляются такие свойства воды, которые находятся на стыке физики и биоэнергетики (заметны обычным восприятием, но уже не объяснимы с точки зрения материалистической науки).

В целом вода на Земле усилила свои свойства за счет более тесного энергетического взаимодействия с другими стихиями. Кроме огня, это еще и взаимодействие с воздухом. “Воздушные пузырьки” на воде являются носителем информации, и их емкость увеличилась. Раньше они были практически пустыми, то есть были обычным физическим явлением. Сейчас у них появилась (точнее, разблокировалась) энергетическая функция. Ее также можно применять на практике – “вспенивать” воду и в это время вкладывать в нее нужную информацию через намерение. И тут – огромный простор для творчества в методах, как именно это делать и т.д. В этом следуйте своей интуиции.

Изменение взаимодействия воды со стихией земли проявляется в том, что вода стала быстрее очищаться: ненужные примеси, грязь быстрее выпадают в осадок.

Со временем будут происходить изменения и в других элементах природы, но видимые физические изменения первыми происходят именно в водной стихии.

Источник